Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogels
2.3. Characterizations
2.4. Mechanical Properties
2.5. Sensing Performance
2.6. Self-Healing Properties
2.7. Preparation of Strain Sensors
2.8. Participant Recruitments
3. Results and Discussion
3.1. Design Principle of Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensors
3.1.1. Self-Healing Performance
3.1.2. Mechanical Performance
3.1.3. Sensing Performance
3.2. Applications as Wearable Electronic Skins for Human Motion Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Li, C.; Li, G.; Yu, D.; Song, Z.; Wang, H.; Liu, X.; Liu, H.; Liu, W. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. Small 2021, 18, 2101518. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Zhu, M.; Kuang, Z.; Li, X.; Xu, F.; Miao, S.; Zhang, Z.; Lou, X.; Li, H.; et al. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem. Rev. 2023, 123, 7953–8039. [Google Scholar] [CrossRef]
- Bai, Z.; Xu, Y.; Lee, C.; Guo, J. Autonomously Adhesive, Stretchable, and Transparent Solid-state Polyionic Triboelectric Patch for Wearable Power Source and Tactile Sensor. Adv. Funct. Mater. 2021, 31, 2104365. [Google Scholar] [CrossRef]
- Fu, R.; Guan, Y.; Xiao, C.; Fan, L.; Wang, Z.; Li, Y.; Yu, P.; Tu, L.; Tan, G.; Zhai, J.; et al. Tough and Highly Efficient Underwater Self-Repairing Hydrogels for Soft Electronics. Small Methods 2022, 6, e2101513. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Kim, Y.S.; Shepherd, R.F. Autonomous Self-healing Optical Sensors for Damage Intelligent Soft-bodied Systems. Sci. Adv. 2022, 8, eabq2104. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhang, Z.; Zhang, N.; Li, J.; Zhou, P.; Hu, F.; Rong, Y.; Lu, B.; Gu, G. High-stretchability, Ultralow-hysteresis Conducting Polymer Hydrogel Strain Sensors for Soft Machines. Adv. Mater. 2022, 34, 2203650. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.; Xu, S.; Wu, J.; Bo, R.; Jin, T.; Xiao, Y.; Liu, Z.; Zhang, F.; Cheng, X.; Bai, K.; et al. A Soft Microrobot with Highly Deformable 3D Actuators for Climbing and Transitioning Complex Surfaces. Proc. Natl. Acad. Sci. USA 2022, 119, e2215028119. [Google Scholar] [CrossRef]
- Chen, J.; Peng, Q.; Thundat, T.; Zeng, H. Stretchable, Injectable, and Self-healing Conductive Hydrogel Enabled by Multiple Hydrogen Bonding toward Wearable Electronics. Chem. Mater. 2019, 31, 4553–4563. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Ma, T.; Yang, Y.; Luo, J.; Wang, H.; Jiang, P. A Review of Soft Actuator Motion: Actuation, Design, Manufacturing and Applications. Actuators 2022, 11, 331. [Google Scholar] [CrossRef]
- Li, S.; Zhou, X.; Dong, Y.; Li, J. Flexible Self-Repairing Materials for Wearable Sensing Applications: Elastomers and Hydrogels. Macromol. Rapid Commun. 2020, 41, e2000444. [Google Scholar] [CrossRef]
- Saha, T.; Del Caño, R.; Mahato, K.; De la Paz, E.; Chen, C.; Ding, S.; Yin, L.; Wang, J. Wearable Electrochemical Glucose Sensors in Diabetes Management: A Comprehensive Review. Chem. Rev. 2023, 123, 7854–7889. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Fan, X.; Chen, S.; Zhao, N. Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing. Adv. Funct. Mater. 2019, 29, 1808509. [Google Scholar] [CrossRef]
- Su, G.; Yin, S.; Guo, Y.; Zhao, F.; Guo, Q.; Zhang, X.; Zhou, T.; Yu, G. Balancing the Mechanical, Electronic, and Self-healing Properties in Conductive Self-healing Hydrogel for Wearable Sensor Applications. Mater. Horiz. 2021, 8, 1795–1804. [Google Scholar] [CrossRef]
- Yu, T.; Lü, X.; Bao, W. High Electrical Self-healing Flexible Strain Sensor based on MWCNT-polydimethylsiloxane Elastomer with High Gauge Factor and Wide Measurement Range. Compos. Sci. Technol. 2023, 238, 110049. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, X.; Wang, Y.; Wang, P.; Jiang, X.; Song, Z.; Ding, J.; Liu, G.; Li, X.; Sun, W.; et al. Gel-based Strain/pressure Sensors for Underwater Sensing: Sensing Mechanisms, Design Strategies and Applications. Compos. Part B Eng. 2023, 255, 110631. [Google Scholar] [CrossRef]
- Kim, D.; Akbar, Z.; Malik, Y.; Jeon, J.; Jang, S. Self-healable Polymer Complex with A Giant Ionic Thermoelectric Effect. Nat. Commun. 2023, 14, 3246. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Panhuis, M. Self-healing Hydrogels. Adv. Mater. 2016, 28, 9060–9093. [Google Scholar] [CrossRef]
- Wang, S.; Urban, M. Self-healing Polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Zhao, Y.; Ohm, Y.; Liao, J.; Luo, Y.; Cheng, H.-Y.; Won, P.; Roberts, P.; Carneiro, M.R.; Islam, M.F.; Ahn, J.H.; et al. A Self-healing Electrically Conductive Organogel Composite. Nat. Electron. 2023, 6, 206–215. [Google Scholar] [CrossRef]
- Lu, B.; Yuk, H.; Lin, S.; Jian, N.; Qu, K.; Xu, J.; Zhao, X. Pure PEDOT:PSS hydrogels. Nat. Commun. 2019, 10, 1043. [Google Scholar] [CrossRef]
- Yuk, H.; Lu, B.; Lin, S.; Qu, K.; Xu, J.; Luo, J.; Zhao, X. 3D Printing of Conducting Polymers. Nat. Commun. 2020, 11, 1604. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Yuk, H.; Hu, F.; Wu, J.; Tian, F.; Roh, H.; Shen, Z.; Gu, G.; Xu, J.; Lu, B.; et al. 3D Printable High-performance Conducting Polymer Hydrogel for All-hydrogel Bioelectronic Interfaces. Nat. Mater. 2023, 22, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Lu, B.; Zhao, X. Hydrogel Bioelectronics. Chem. Soc. Rev. 2018, 48, 1642–1667. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, G.; Xue, Y.; Duan, Q.; Liang, X.; Lin, T.; Wu, Z.; Tan, Y.; Zhao, Q.; Zheng, W.; et al. Fatigue-Resistant Conducting Polymer Hydrogels as Strain Sensor for Underwater Robotics. Adv. Funct. Mater. 2023, 2305705. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, L.; Wang, J.; Meng, Q.; Zhong, S.; Gao, Y.; Cui, X. Recent Advances in Polysaccharide-based Self-healing Hydrogels for Biomedical Applications. Carbohydr. Polym. 2022, 283, 119161. [Google Scholar] [CrossRef]
- Xie, X.; Yu, J.; Li, Z.; Wu, Z.; Chen, S. Self-healable PEDOT-based All-organic Films with Excellent Electrochromic Performances. New J. Chem. 2022, 46, 21167–21175. [Google Scholar] [CrossRef]
- Park, S.; Thangavel, G.; Parida, K.; Li, S.; Lee, P. A Stretchable and Self-healing Energy Storage Device Based on Mechanically and Electrically Restorative Liquid-metal Particles and Carboxylated Polyurethane Composites. Adv. Mater. 2019, 31, 1805536. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, S.; Qian, L.; Wei, N.; Nica, V.; Coseri, S.; Han, F. Super Stretchable, Self-healing, Adhesive Ionic Conductive Hydrogels Based on Tailor-made Ionic Liquid for High-performance Strain Sensors. Adv. Funct. Mater. 2022, 32, 2204565. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Wu, Z.; Xu, X.; Ma, H.; Hou, J.; Xu, Q.; Yang, R.; Zhang, K.; Zhang, M.; et al. Robust PEDOT:PSS-based Hydrogel for Highly Efficient Interfacial Solar Water Purification. Chem. Eng. J. 2022, 442, 136284. [Google Scholar] [CrossRef]
- Yin, H.; Liu, F.; Abdiryim, T.; Liu, X. Self-healing Hydrogels: From Synthesis to Multiple Applications. ACS Mater. Lett. 2023, 5, 1787–1830. [Google Scholar] [CrossRef]
- Yang, N.; Qi, P.; Ren, J.; Yu, H.; Liu, S.; Li, J.; Chen, W.; Kaplan, D.L.; Ling, S. Polyvinyl Alcohol/silk fibroin/borax Hydrogel Ionotronics: A Highly Stretchable, Self-healable, and Biocompatible Sensing Platform. ACS Appl. Mater. Interfaces 2019, 11, 23632–23638. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shen, Z.; Hu, P.; Wang, T.; Zhang, X.; Liang, L.; Bai, J.; Qiu, L.; Lai, X.; Yang, X.; et al. Facile Fabrication and Characterization of High-performance Borax-PVA Hydrogel. J. Sol-Gel Sci. Technol. 2022, 101, 103–113. [Google Scholar] [CrossRef]
- Ai, J.; Li, K.; Li, J.; Yu, F.; Ma, J. Super Flexible, Fatigue Resistant, Self-healing PVA/xylan/borax Hydrogel with Dual-crosslinked Network. Int. J. Biol. Macromol. 2021, 172, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lu, H.; Wang, X. Transient Polymer Hydrogels Based on Dynamic Covalent Borate Ester Bonds. Chin. J. Chem. 2022, 40, 2794–2800. [Google Scholar] [CrossRef]
- Kumar, A.; Han, S. PVA-based Hydrogels for Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 159–182. [Google Scholar] [CrossRef]
- Ma, H.; Qin, H.; Xiao, X.; Liu, N.; Wang, S.; Li, J.; Shen, S.; Dai, S.; Sun, M.; Li, P.; et al. Robust Hydrogel Sensors for Unsupervised Learning Enabled Sign-to-verbal Translation. InfoMat 2023, 5, e12419. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Z.; Song, H.; Chang, Y.; Hou, W.; Li, Y.; Han, G. High-sensitivity and Extreme Environment-resistant Sensors Based on PEDOT:PSS@PVA Hydrogel Fibers for Physiological Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 35114–35125. [Google Scholar] [CrossRef]
- Deng, G.; Li, F.; Yu, H.; Liu, F.; Liu, C.; Sun, W.; Jiang, H.; Chen, Y. Dynamic Hydrogels with an Environmental Adaptive Self-healing Ability and Dual Responsive Sol-gel Transitions. ACS Macro Lett. 2012, 1, 275–279. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, C.; Sun, Y.; Gan, S.; Dong, L.; Zhao, J.; Rong, J. Flexible, All-hydrogel Supercapacitor with Self-healing Ability. Chem. Eng. J. 2021, 418, 128616. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, J.; Zhou, B.; Zhang, X. Bioinspired Bimodal Mechanosensors with Real-time, Visualized Information Display for Intelligent Control. Adv. Funct. Mater. 2023, 33, 2300321. [Google Scholar] [CrossRef]
- Tang, Z.; Jia, S.; Zhou, C.; Li, B. 3D Printing of Highly Sensitive and Large-measurement-range Flexible Pressure Sensors with a Positive Piezoresistive Effect. ACS Appl. Mater. Interfaces 2020, 12, 28669–28680. [Google Scholar] [CrossRef] [PubMed]
Hydrogel Sample | Preparation Method | Strain (%) | Self-Healing Efficiency (%) | Refs. |
---|---|---|---|---|
PEDOT:PSS-PVA | Physical crosslinking | 300 | --- | [6] |
PEDOT:PSS-PVA | Physical crosslinking | 519.9 | --- | [37] |
PEDOT:PSS-PVA | Physical crosslinking | 600 | --- | [24] |
PEDOT:PSS-PVA | Physical–chemical dual crosslinking | 300 | --- | [29] |
PEO terminated with dithiodipropionic | Chemical crosslinking | 650 | 50 | [38] |
PANI/PVA/ CPBA/Ca2+ | Chemical crosslinking | 633 | 6 | [39] |
PEDOT:PSS-PVA | Physical–chemical dual crosslinking | 300 | 83.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Zhang, Z.; Li, K.; Ma, C.; Zhou, W.; Lin, T.; Xu, J.; Liu, X. Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring. Nanomaterials 2023, 13, 2465. https://doi.org/10.3390/nano13172465
Cao J, Zhang Z, Li K, Ma C, Zhou W, Lin T, Xu J, Liu X. Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring. Nanomaterials. 2023; 13(17):2465. https://doi.org/10.3390/nano13172465
Chicago/Turabian StyleCao, Jie, Zhilin Zhang, Kaiyun Li, Cha Ma, Weiqiang Zhou, Tao Lin, Jingkun Xu, and Ximei Liu. 2023. "Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring" Nanomaterials 13, no. 17: 2465. https://doi.org/10.3390/nano13172465
APA StyleCao, J., Zhang, Z., Li, K., Ma, C., Zhou, W., Lin, T., Xu, J., & Liu, X. (2023). Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring. Nanomaterials, 13(17), 2465. https://doi.org/10.3390/nano13172465