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Abstract: In this study, a Cu NPs-incorporated carbon-containing mesoporous SiO2 (Cu/C-SiO2)
was successfully synthesized through a grinding-assisted self-infiltration method followed by an
in situ reduction process. The obtained Cu/C-SiO2 was then employed as a Fenton-like catalyst to
remove tetracycline (TC) from aqueous solutions. TEM, EDS, XRD, N2 adsorption–desorption, FTIR,
and XPS methods were used to characterize the crystal structure, morphology, porosity, chemical
composition, and surface chemical properties of the catalyst. The effects of initial TC concentration,
catalyst dosage, H2O2 dosage, solution pH, HA addition, and water media on the TC degradation
over Cu/C-SiO2 were investigated. Scavenging and electrochemical experiments were then carried
out to analyze the TC degradation mechanism. The results show that the Cu/C-SiO2 can remove
99.9% of the concentrated TC solution (C0 = 500 mg·L−1), and it can be used in a wide pH range
(R.E. = 94–99%, pH = 3.0–11.0). Moreover, hydroxyl radicals (•OH) were detected to be the dominant
reactive species in this catalytic system. This study provides a simple and promising method for
the synthesis of heteroatom-containing mesoporous catalysts for the decomposition of antibiotics
in wastewater.

Keywords: Cu nanoparticles; mesoporous silica; Fenton-like catalyst; tetracycline

1. Introduction

Antibiotics have been widely used in medical, animal husbandry, aquaculture indus-
tries, and so on. However, it has been revealed that only a small portion of antibiotics
used in humans and animals are metabolized or absorbed in the body, and approximately
60% of consumed human and veterinary antibiotics are ultimately released as the parent
compounds into the environment [1]. On the other hand, a large number of antibiotics have
been discharged into the environment by medical institutions, pharmaceutical companies,
aquaculture farms, and so on, which also causes serious pollution to the environment.
These residual antibiotics in the environment were circulated and finally accumulated
in water and soil, posing a threat to ecological balance and human health [2]. There-
fore, it is necessary to find an effective and environmentally friendly way to deal with
antibiotic pollutants.

Various techniques including adsorption [3], biodegradation [4], photocatalysis [5],
electrochemical oxidation [6], and advanced oxidation processes (AOPs) [7] have been
applied to remove antibiotics from wastewater. Among them, the AOPs based on free
radicals are extremely popular due to their high activity and strong oxidation ability. The
free radicals (e.g., hydroxyl radical •OH, superoxide radicals •O2

−, or sulfate radical
SO4

•−) can efficiently degrade antibiotics in aqueous solutions [8]. Fenton reaction is a
traditional AOPs technique that has attracted great and continuous interest for its low
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cost, high efficiency, and mild conditions [9]. However, traditional Fenton technology
based on Fe(II) ions has limitations, such as being conducted under low acidic conditions,
accumulating Fe-containing sludge, etc. [10,11]. To overcome these shortcomings, Fenton-
like reactions which apply heterogeneous catalysts as alternatives to replace Fe(II) ions
have been developed.

In heterogeneous Fenton-like reactions, transition metals (Fe, Co, Cu, Mn, etc.) and
their oxides, are considered the most effective catalysts and have been extensively stud-
ied [12–15]. Among them, Cu-based heterogeneous catalysts, which have similar redox
properties to iron but a broader pH range than the Fe-based redox system, showed great
potential in the degradation of antibiotics in aqueous solutions [14–16]. Moreover, the Cu-
containing catalysts were also proved to have good adsorption capabilities, which could
facilitate the in situ catalytic degradation of the pre-adsorbed pollutants [16]. However, the
catalytic activity of pristine Cu or copper oxide is limited due to their less-exposed catalytic
sites. Consequently, Cu species are normally dispersed or incorporated onto supports with
larger surface areas and better chemical stabilities [14–16].

Mesoporous SiO2 that has high stability, large surface area, uniform pore size, and
ordered mesoporous channels can be served as good catalyst support [17,18]. Many ef-
forts have already been devoted to introducing active sites into the mesoporous SiO2 and
applying them as Fenton-like catalysts. For example, a multi-valent Co species doped
mesoporous SiO2 was prepared to eliminate refractory organic pollutants, showing activity
and stability in a very wide pH range [19]. In our previous studies, Fe2O3 and Co3O4
nanoparticles were incorporated into mesoporous SiO2 and showed superior heteroge-
neous Fenton-like catalytic activity for the removal of organic pollutants from aqueous
solutions [20,21]. Moreover, Cu-modified mesoporous materials including Cu/TUD-1 [22],
Cu-MSMs [23], Au@Cu2O [24], TiO2-Au@Cu7S4 [25], and Cu@C/SiO2 NFMs [14] were
also explored as Fenton-like catalysts to degrade various water pollutants. It is confirmed
that loading Cu onto mesoporous SiO2 materials could dramatically improve their catalytic
performance. Nevertheless, the correlations among the structure of Cu-loaded catalysts,
the size and chemical state of Cu species, and its catalytic activity were still less-discovered
up to now.

In the present study, Cu nanoparticles (NPs) incorporated carbon-containing meso-
porous SiO2 (Cu/C-SiO2) were feasibly synthesized using the template-containing meso-
porous SiO2 and Cu(CH3COO)2·H2O as the precursors via a grinding-assisted self-infiltration
approach. The Cu NPs were uniformly dispersed on the matrix of mesoporous SiO2 and
stabilized by the in situ generated C in the mesopores. The finally obtained Cu/C-SiO2 was
then used as a Fenton-like catalyst and performed excellent catalytic activity to degrade
TC from aqueous solutions. Additionally, the effects of the initial concentration of TC,
the dosage of catalyst and H2O2, the solution pH, the addition of humic acid (HA), and
different water on the degradation efficiency towards TC were thoroughly investigated. Fur-
thermore, the possible catalytic mechanism was carefully studied through radical trapping
experiments. This study has provided a flexible way of fabricating nano-metal-modified
mesoporous materials for the efficient degradation of antibiotics from wastewater.

2. Materials and Methods
2.1. Chemicals and Reagents

Tetraethyl orthosilicate (TEOS, Mw = 208.33), aluminum chloride hexahydrate (AlCl3·6H2O,
Mw = 241.43), copper acetate monohydrate (Cu(CH3COO)2·H2O, Mw = 199.65), hydrochlo-
ride (HCl, Mw = 36.46), and sodium hydroxide (NaOH, Mw = 40.00) were supplied by
Sinopharm Chemical Reagent (Shanghai) Co., Ltd. of China. Pluronic P123 (EO20PO70EO20,
Mw = 5800) was purchased from Sigma-Aldrich. Tetracycline hydrochloride (C22H24N2O8·HCl,
TC, Mw = 480.90), and humic acid (HA) were purchased from Aladdin reagent (Shanghai)
Co., Ltd. of China. All chemicals and reagents are of analytical grade and were used without
further purification.



Nanomaterials 2023, 13, 2478 3 of 15

2.2. Synthesis of the Mesoporous Cu-C/SiO2

The template-containing mesoporous SiO2 was synthesized by a hydrothermal
method [26]. Typically, 2.0 g of P123 and 4.82 g of AlCl3·6H2O were dissolved in
75 mL of deionized water, and the clear solution was subsequently heated to 35 ◦C. Then,
4.16 g of TEOS was added to the solution, which was continuously stirred at 35 ◦C for 24 h.
After that, the mixture was further hydrothermally treated in an autoclave at 100 ◦C for
another 24 h. Finally, the white solid product was filtered, washed, and dried. The P123
template in the sample was measured to be 31 wt% by a TG-DSC analysis (Figure S1).

The Cu NPs incorporated carbon-containing mesoporous SiO2 were prepared by
a simple grinding-assisted self-infiltration method followed by an in situ carbonization
reduction process. Typically, 0.6087 g of template-containing mesoporous SiO2 (7 mmol)
and 0.2795 g Cu(CH3COO)2·H2O (1.4 mmol) were ground to obtain a homogeneous powder
mixture, which was labeled Cu/C-SiO2-AS. Then, the mixture was treated at 550 ◦C for 2 h
under N2 atmosphere, and the finally obtained material was named Cu/C-SiO2.

2.3. Characterizations

Characterizations of the materials are elucidated in Supporting Information, Text S1.

2.4. Catalytic Experiments

Catalytic experiments were carried out in a 250 mL glass conical beaker contain-
ing 150 mg of catalyst and 150 mL of TC solution (500 mg L−1) at room temperature
(20 ± 2 ◦C). After the adsorption for 2 h, 15 mL H2O2 (30 wt%) was added to the system to
initiate the catalytic reaction. At a predetermined time, 1 mL of solution was taken out for
filtration, dilution, and then analysis. To investigate the effect of initial TC concentration on
the removal of TC, a different concentrated TC solution (350–600 mg·L−1) was prepared.
To study the effect of catalyst dosage, H2O2, and HA, different numbers of Cu/C-SiO2
(0.1–1.0 g·L−1), H2O2 (5–15 mL), and HA (0.2735–0.6641 g) were added into the reaction
solutions, respectively. pH of TC solution was adjusted from 3 to 11 by diluted HCl or
NaOH solutions to study the effect of solution pH. To investigate the effect of water media,
500 mg·L−1 of TC solution was also prepared using tap water and pure water. In the
trapping agent experiments, 40 mM (0.6486 g) of p-benzoquinone (BQ), or 10–200 mM
(0.1152–2.3036 mL) of isopropyl alcohol (IPA), was added into the reaction solution with an
initial TC concentration of 500 mg·L−1 and 15 mL of H2O2 in the system. In the cycling
tests, the used Cu-C/SiO2 catalyst was calcined in N2 at 500 ◦C for 2 h for regeneration.

The linear sweep voltammetry (LSV) curves and corresponding Tafel slopes were
measured with 50 mM Na2SO4 as the supporting electrolyte on an electron-chemical
workstation (CHI660D, Chenhua, Shanghai, China). The Cu/C-SiO2 catalyst was loaded
on the glassy carbon electrode for detection. The powdered catalyst (5 mg) was firstly
dispersed in ethanol (3 mL) by ultrasonic for 10 min to form a suspension. Next, 6.5 µL
suspension and 1.7 µL Nafion solution (0.5 wt%) were poured onto the glassy carbon
electrode. Then, the catalyst-loaded glassy carbon electrode was dried in a vacuum oven at
80 ◦C for detection.

3. Results and Discussions
3.1. Structure and Composition of Cu/C-SiO2

Figure 1a shows the schematic diagram for the synthesis of Cu nanoparticles (NPs) in-
corporated mesoporous carbon-containing SiO2 (Cu/C-SiO2) through the grinding-assisted
self-infiltration method. The P123-containing mesoporous SiO2 was firstly ground with
the copper precursor (Cu(CH3COO)2·H2O) to obtain a homogeneous powder. Cupric
ions (Cu2+) were spontaneously infiltrated into the confined space between the template
(P123) and the siliceous walls driven by the shearing force of grinding [27,28]. Moreover,
interactions between the Cu2+ and P123 happened in this process, since the color of the
Cu(CH3COO)2·H2O + P123-containing SiO2 mixture changed from light blue to bluish-
green after grinding. After the thermal treatment under N2, the P123 template was directly
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turned to carbon in the channels of mesoporous SiO2. At the same time, cupric ions were
reduced to Cu NPs and incorporated into the carbon-containing mesoporous SiO2 (C-SiO2).
The growth of Cu NPs was restricted in the mesopores and the matrix of C-SiO2 (Figure 1a).
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(e) Dark-field STEM and (f,g) corresponding EDS element mapping images of Cu/C-SiO2. Scale bar
in g: 80 nm).

TEM images indicate that Cu/C-SiO2 has uniform one-dimensional straight channels
and Cu NPs are firmly embedded in the C-SiO2 matrix (Figure 1b). The average lattice
parameter (a0) of the mesoporous Cu/C-SiO2 observed in Figure 1c is about 9.41 nm.
Figure 1d shows a nanoparticle with obvious lattice fringes, which could be attributed
to the crystal plane of Cu NPs [14]. The dark-field STEM image presents a selected area
that has a high number of Cu NPs in the C-SiO2 matrix (Figure 1e). Corresponding EDS
mapping images demonstrate that Si, O, and a small amount of Al are uniformly distributed
on Cu/C-SiO2, and Cu is distributed on the support as a form of NPs (Figure 1g).

Figure 2a shows the low-angle XRD patterns of C-SiO2 and Cu/C-SiO2. Three diffrac-
tion peaks located at 0.87, 1.48, and 1.70◦ were observed for C-SiO2, which correspond
to (100), (110), and (200) planes of the hexagonal space group, indicating the p6mm meso-
porous structure [22]. The intensity of these three diffraction peaks declines, and the peaks
shift to the higher angles (0.89, 1.52, and 1.75◦, respectively) for Cu/C-SiO2, which is
because Cu NPs partially occupied the mesopores the C-SiO2, leading to a decreased lattice
parameter. Figure 2b presents the wide-angle XRD patterns of C-SiO2 and Cu/C-SiO2. The
C-SiO2 shows a wide peak around 23◦, typically identifying as an amorphous structure [29].
However, Cu/C-SiO2 displays three distinct XRD peaks at 43.3, 50.4, and 74.1◦, respec-
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tively, which correspond to (111), (200), and (220) crystal planes of metallic Cu (JCPDS
No. 04-0836) [14]. Moreover, a weak peak at 36.4◦ that corresponds to the (111) crystal
plane of Cu2O is also observed for Cu/C-SiO2 [30], indicating the incomplete reduction of
Cu2+ precursors during the calcination. Wide-angle XRD results indicate that Cu has two
valences in Cu/C-SiO2, and metallic Cu is predominant while the content of univalent Cu
is relatively low.
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C-SiO2 was offset vertically by 200 cm3·g–1, and 33 cm3·g–1·nm–1 for clarification.

Figure 2c gives the N2 adsorption/desorption isotherms of C-SiO2 and Cu/C-SiO2.
Both samples have type IV isotherms with typical H1-type hysteresis loops at high relative
pressure (p/p0), revealing well-ordered mesopores in them [31,32]. Figure 2d shows that
C-SiO2 has a very narrow pore size distribution (PSD) with a primary pore size of 10.78
nm. The PSD curve of the Cu NPs modified sample is a bit wider than that of C-SiO2,
and the primary pore diameter is also smaller (9.94 nm), indicating partial blocking of the
mesopores in Cu/C-SiO2. Moreover, textural properties display that the surface area and
pore volume of Cu/C-SiO2 are 509 m2·g–1 and 0.65 cm3·g–1, respectively, which are smaller
than those of C-SiO2 (756 m2·g–1 and 1.01 cm3·g–1) due to the presence of Cu NPs in the
mesopores (Table S1).

Figure S2 presents the FTIR spectra of C-SiO2, Cu/C-SiO2-AS, and Cu/C-SiO2. The
absorption peaks at 3476 and 1632 cm−1 are attributed to the bending vibration (δOH(H-
O-H)) and telescopic vibration (νOH(H-O-H)) in the water molecule, respectively [33].
The absorption peaks near 1076 and 802 cm−1 correspond to the asymmetric stretching
vibrations of Si-O-Si [νas(Si-O-Si)] and symmetrical stretching vibrations of Si-O-Si [νs(Si-
O-Si)] [34,35]. The characteristic peak at 960 cm−1 reflects the existence of independent
Si-OH functional groups [36]. The small peak at 1387 cm−1 of C-SiO2 is attributed to the
C=C stretching vibrations, which originated from the carbonized P123 [37]. The Cu/C-SiO2
composite appears with three extra peaks at 1445, 686, and 631 cm−1 different from the
other two samples. The vibration of functional groups at 1445 cm−1 may be due to the
delocalized C=C bonds [38], and the peak at 686 and 631 cm−1 are attributed to the presence
of Cu-O-Si bonds and Cu2O in Cu/C-SiO2 [39,40].
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XPS analysis was performed to further explore the chemical state of elements in
C-SiO2 and Cu/C-SiO2. The characteristic peaks of O, Si, and C are observed in the XPS
spectra of the two samples (Figure 3a). Surface contents of Si and O in Cu/C-SiO2 are
slightly decreased if compared with C-SiO2 (Figure 3b). The Si 2p of C-SiO2 and Cu/C-
SiO2 show peaks at binding energy (B.E.) of 103.58 and 103.28 eV, respectively, which
belong to the Si-O-Si bond (Figure 3c) [41]. The blue shift of Cu/C-SiO2 may be induced
by the interaction between Cu and Si. Both samples show an O1s XPS peak at B.E. of
532.84/532.86 eV, confirming the existence of Si-O-Si in them (Figure 3d) [42]. The C1s
spectra of C-SiO2 can be divided into one primary peak at B.E. of 284.73 eV with two
satellite peaks at 286.11 and 289.62 eV, which correspond to C-C, C-O-C, and O-C=O bond
in the material (Figure 3e) [43,44]. These three peaks in Cu/C-SiO2 blue shift towards the
lower B.E., indicating the interactions between Cu and C. Moreover, Cu/C-SiO2 shows
two XPS peaks at 933.28 and 952.08 eV, which are attributed to Cu 2p3/2 and Cu 2p1/2 of
metallic Cu (Figure 3f) [45].
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3.2. Catalytic Performance of Cu/C-SiO2
3.2.1. Adsorption and Synergetic Catalytic Degradation of TC

Figure 4 shows the adsorption and synergistic degradation of TC (500 mg·L−1) on
different catalysts. The adsorption test was carried out for 2 h to preliminarily reach the
adsorption equilibrium. In the adsorption process, commercial CuO and Cu have no
adsorption capability towards TC since the removal efficiency is zero (Figure 4a,b). The
TC adsorption efficiency by Cu/C-SiO2 is 32.6%, which is much higher than that of C-
SiO2 (11.4%), indicating the incorporated Cu NPs are beneficial for improving adsorption
towards TC. The improvement of adsorption efficiency towards TC over Cu/C-SiO2 is
primarily attributed to the accessible active cupric sites, the porous structure, and the
carbon in the mesoporous adsorbent/catalyst. It has been confirmed that the doped Cu
species could remarkably increase the catalyst’s adsorption ability towards TC due to the
complexation of TC and Cu species [46,47]. Moreover, the large surface area and pore
volume of Cu/C-SiO2 also contribute to accommodating TC molecules inside its pores. In
addition, the π-π interactions between the carbon and the ring structure of TC would also
promote the adsorption property of Cu/C-SiO2 [48]. The improved adsorption is beneficial
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for enhancing the catalytic performance of the catalyst, and the adsorbed TC molecules can
be rapidly degraded by those active radicals generated by the catalyst with the assistance
of H2O2.
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After adsorption for 2 h, 15 mL H2O2 was added to the system to initiate the catalytic
reaction. In the system using C-SiO2, the concentration of TC was further decreased and
the total removal efficiency (R.E.) reached 36.7% after further reaction for 2h. However,
when using Cu/C-SiO2 as the catalyst, the highly concentrated TC solution (500 mg·L−1)
was completely removed at a total reaction time of 4 h (R.E. = 99.9%). This demonstrates
the remarkable catalytic activity of the Cu NPs that were incorporated in the mesoporous
C-SiO2. For comparison, the catalytic activities of Cu and CuO were also determined. The
total R.E. of Cu and CuO towards TC is 42.2% and 37.1%, respectively, further suggesting
the active sites in Cu/C-SiO2 catalyst are related to cupric species.

Figure 4c and Table S2 display the kinetic curves and reaction rate constants fitted
by the pseudo-first-order kinetic model. The reaction rate coefficient (k) of Cu/C-SiO2
is 0.05576 min−1, which is at least five times larger than those of C-SiO2, Cu, and CuO
(Table S2). This is possibly due to that the Cu NPs incorporated in mesoporous C-
SiO2 have provided more accessible active sites for the decomposition of TC, and the
meso-channels of SiO2 are beneficial for improving the mass transfer of molecules as well.
Table S3 lists the removal capacities of different catalysts reported in the literature towards
TC [49–53]. The Cu/C-SiO2 material has a high removal ability of TC.

3.2.2. Effect of Initial TC Concentration

Figures 5a and S3a show the adsorption and synergistic degradation of TC with
different initial concentrations (350–600 mg·L−1) by Cu/C-SiO2. The results show
that the TC adsorption efficiency by Cu/C-SiO2 was slightly increased from 53.2%
to 59.5% first, then decreased to 38.0%, 32.6%, 24.0%, and 25.4%, respectively, when
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the initial TC concentration was raised from 350 mg·L−1 to 600 mg·L−1. After the
introduction of H2O2, catalytic degradation of TC happened, and the total R.E. towards
TC in all highly concentrated TC systems (350–600 mg·L−1) is larger than 99% by using
Cu/C-SiO2 as the catalyst (Figures 5a and S3a). The fitted rate coefficient is in the
range of 0.03917–0.05576 min−1, demonstrating the excellent catalytic performance of
Cu/C-SiO2 (Figure S3b).
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3.2.3. Effect of Catalyst Dosage

Figures 5b and S4a show the removal of TC (C0 = 500 mg·L−1) with different catalyst
dosages. The TC adsorption efficiency is about 2%, and the total R.E. is 55% when the
catalyst dosage is 0.1 g·L−1. When the catalyst dosage is increased to 0.5 g·L−1, the
R.E. by adsorption is 13%, and the total R.E. reaches 87%. Further raising the catalyst
dosage to 1.0 g·L−1, the total R.E achieves 99.9% after the reaction for 4 h. Moreover,
the degradation rate constant (k) also increases with the increase in the catalyst dosage
(Figure S4b), indicating that the increased dosage of Cu/C-SiO2 is beneficial for both
improving the degradation capability and the rate towards TC in this catalytic system.

3.2.4. Effect of H2O2 Dosage

Figures 5c and S5 show the effect of H2O2 dosage on the removal of TC. The total R.E.
under reaction for 4 h is 98.4, 99.0, and 99.9% for the system adding 5, 10, and 15 mL of H2O2,
demonstrating a positive tendency of TC degradation with the increase in H2O2 addition.
It is found that introducing 10 mL of H2O2 is enough to initiate and almost completely
remove the highly concentrated TC (C0 = 500 mg·L−1). Moreover, the k values for these
three systems are 0.03721, 0.04088, and 0.05576 min−1, respectively (Figure S5b), suggesting
a faster reaction rate for the system with the higher number of H2O2 addition.

3.2.5. Effect of Solution pH

Figure 5d shows the effect of solution pH on the adsorption and degradation of TC.
When the solution pH increases from 3 to 7, the amount of adsorbed TC by Cu/C-SiO2
is relatively large (R.E. = 61.1–64.9%) (Figures 5d and S6a). This is due to that the surface



Nanomaterials 2023, 13, 2478 9 of 15

of Cu/C-SiO2 is negatively charged in the pH range of 3–11, while the TC is positively
charged or electrically neutral when pH < 7.7 (Figure S6c,d). Electrostatic interaction
between Cu/C-SiO2 and TC plays a primary role in the adsorption under pH < 7.7. When
pH is greater than 7.7, the adsorption capacity decreases with the increase in solution pH,
which is attributed to the electrostatic repulsion between Cu/C-SiO2 and TC since TC is
negatively charged when pH > 7.7 (Figure S6d) [54]. Solution pH has a relatively small
effect on the degradation of TC, and the total R.E. is in the range of 94–99% at pH = 3.0–11.0
(Figures 5d and S6a), indicating that Cu/C-SiO2 can be applied in a wide pH range.

3.2.6. Effect of HA

Humic acid (HA) is a kind of macromolecular organic matter that widely exists in
the environment. Figure 5e displays the adsorption and synergistic degradation of TC
by Cu/C-SiO2 in the reaction solution by adding different amounts of HA to it. The
concentration of HA was expressed as total organic carbon (TOC). Results show that the
addition of HA in the reaction solution greatly boosts the adsorption of TC. The adsorption
efficiency towards TC increases from 32.6% to 84.0%, 92.5%, and 94.9%, respectively, along
with the HA concentration raises from 0 to TOC of HA = 1.825, 2.525, and 4.430 mg·L−1.
This is probably due to that functional groups such as -COOH and -OH in HA would
combine with TC molecules by hydrogen bonding and other forces, and then promote the
removal of TC [55]. After the introduction of H2O2 into the system, the final R.E. of these
systems containing different amounts of HA (TOC = 1.825, 2.525, and 4.430 mg·L−1) also
reaches 98.4%, 98.7%, and 99.0%, respectively. This result indicates that adsorption plays a
very important role in the removal of TC in the system containing HA.

3.2.7. Effect of Water Media

Figure 5f demonstrates the removal of TC by Cu/C-SiO2 in different aqueous media.
The Cu/C-SiO2 shows an adsorption efficiency of 45.0% towards TC in a tap water medium,
which is a bit larger than that in a pure water medium. This implies that impurity ions
in tap water may have a positive effect on the adsorption of TC by Cu/C-SiO2. However,
the total R.E. of TC in tap water is 94.0%, which is lower than that in pure water (99.9%),
indicating that the catalytic ability of Cu/C-SiO2 is affected by the water quality.

3.3. Proposed Mechanism for TC Degradation over Cu/C-SiO2

Scavenging experiments were carried out to investigate the primary reactive species
during the TC degradation process by Cu/C-SiO2 (Figures 6a and S8). BQ and IPA were
applied as scavengers of the superoxide free radicals (•O2

−), and hydroxyl free radicals
(•OH), respectively [56,57]. The removal percentage of TC decreased from 99.9% to 62.8%
when an extra 40 mM of BQ was added into the system, implying the contribution of •O2

−

in this reaction system. Meanwhile, the R.E. of TC dramatically declines from 99.9% to
45.5% after the addition of 40 mM IPA into the system. This indicates that •OH contributes
more than •O2

− in this TC-Cu/C-SiO2-H2O2 catalytic system.
A different number of IPA was introduced into the reaction system to further inves-

tigate the function of •OH during the catalytic process. The total R.E. of TC decreased
gradually with the increase in IPA addition (Figure 6b and Figure S9). When the number of
added IPA is relatively low (10 and 20 mM), the R.E. of TC decreased to 89.8% and 75.7%.
When the introduced IPA number is high (100 and 200 mM), the R.E. of TC became 38.1
and 36.3%. This phenomenon confirms that •OH plays a dominant role in this TC-Cu/C-
SiO2-H2O2 catalytic system. Besides, •O2

− also contributes to the degradation of TC over
Cu/C-SiO2.

Moreover, we have also performed linear sweep voltammetry (LSV) to measure the
redox processes between the catalyst and TC molecules with or without H2O2. The LSV
curves in Figure 6c indicate that no visible oxidation peaks appear in the TC solution.
However, Cu/C-SiO2 has an oxidation peak at ca. 0.11V in TC solution, indicating redox
reactions happened between Cu/C-SiO2 and TC. Comparatively, Cu/C-SiO2 presents a
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much larger oxidation peak at a higher potential (0.65V) in the system containing both TC
and H2O2, implying the enhanced redox ability of Cu/C-SiO2 with the assistance of H2O2.
Furthermore, Cu/C-SiO2 also exhibits a lower Tafel slope in the TC+H2O2 reaction system
than in pure TC solution, suggesting faster reaction dynamics after the addition of H2O2
into the reaction solution (Figure 6d).
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IPA in the Cu/C-SiO2+H2O2 system. (c) LSV curves, and (d) Tafel slopes obtained using Cu/C-SiO2

as electrode material in different reaction conditions.

It was reported that the multivalent Cu species present redox ability similar to tra-
ditional Fe Fenton catalysts, and H2O2 can be decomposed into •OH and •O2

− by Cu
oxides [58]. Based on the above experimental results, it is suggested that TC decomposi-
tion in this Cu/C-SiO2-H2O2 system may involve Equations (1)–(8). The following steps
are suggested: (i) TC molecules adsorbed onto Cu/C-SiO2 through complex interactions,
including electrostatic and coordination interactions [54]. (ii) The multivalent Cu species
in Cu/C-SiO2 reacted with H2O2 and accelerated the formation of •OH and •O2

− free
radicals (Equations (1)−(6)). (iii) TC molecules were attached and simultaneously de-
graded by those active free radicals (Equations (7) and (8)). We also observed that the pH
value of the reaction solution was increased from 3.65 to 4.30 along with the reaction time,
demonstrating the generation of OH− during the catalytic process. Moreover, the pH of
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the reaction solution that was added with IPA increased only to 3.85, indicating that the
addition of IPA strongly inhibits the formation of •OH in the system.

Cu0 + H2O2 → Cu+ + •OH + OH−
(

Eθ = 2.280 V
)

(1)

Cu+ + H2O2 → Cu2+ + •OH + OH−
(

Eθ = 2.641 V
)

(2)

2Cu0 + O2 + H2O→ 2Cu2+ + 4OH−
(

Eθ = 0.060 V
)

(3)

Cu2+ + H2O2 + OH− → Cu+ + •HO2 + H2O
(

Eθ = 1.351 V
)

(4)

Cu+ + H2O2 + OH− → Cu0 + •HO2 + H2O
(

Eθ = 0.990 V
)

(5)

•HO2 + H2O→ •O−2 + H+
3 O (6)

•O−2 + TC→ intermediates → CO2 + H2O (7)

•OH + TC→ intermediates → CO2 + H2O (8)

To further explore the reaction mechanism of catalytic degradation of TC by Cu/C-
SiO2, the surface chemical states of elements in Cu/C-SiO2 after the reaction were studied
by XPS (Figure 7). Characteristic peaks of Si, O, C, and Cu are observed in the reacted
Cu/C-SiO2 (Figure 7a). Moreover, the surface content of Cu was decreased from 0.9 to
0.4 after the catalytic reaction, which is probably due to the metal leaching during the
Fenton-like catalytic reaction (Figures 3b and 7b). XPS spectrum of Si 2p shows a bit higher
B.E. (103.68 eV) corresponds to Si-O-C and the B.E. of O 1s also shifts to a relatively high
value (533.08 eV) after the reaction (Figure 3c,d and Figure 7c,d) [42]. Moreover, the reacted
Cu/C-SiO2 also displays C 1s peaks at 284.78, 285.88, and 289.28 eV, which correspond
to the C-C, C-O-C, and O-C=O bonds, respectively (Figure 7e) [43,44]. The B.E. values of
these C 1s peaks for Cu/C-SiO2 after the reaction are also higher than those for the sample
before the reaction (Figures 3e and 7e). This indicates that the support C-SiO2 might be
involved in the reaction. The Cu 2p peaks of Cu/C-SiO2 after the reaction also show a
positive B.E. shift of about 0.90 eV if compared with those of the sample before the reaction
(Figures 3f and 7f). The B.E. values of Cu 2p3/2 and Cu 2p1/2 are centered at 933.18 and
952.98 eV, respectively, which implies monovalent copper (Cu+) is the dominant species
in the reacted Cu/C-SiO2 catalyst [45]. In addition, an inconspicuous shake-up satellite
between 935 and 950 eV can be observed in Figure 7f, implying the presence of a small
number of divalent copper (Cu2+) species in the sample after the reaction [59].

3.4. Reusability of the Cu/C-SiO2

Figure S10 shows the cycling performance of Cu-C/SiO2 for the adsorption and
degradation of TC (500 mg·L−1). In the first run, the total R.E. towards TC reaches 99%
with a rapid degradation rate. In the second cycle, the R.E. towards TC remains at 98%
with a slower degradation rate. In addition, the TC adsorption efficiency is reduced from
46% to 18% (Figure S10, blue line). This may be due to the leaching of Cu species from the
Cu-C/SiO2 catalyst since 37.5 mg·L−1 of Cu was detected from the reaction solution after
the first run. However, the leaching amount of Cu decreased to 4.9 mg·L−1 after the second
cycle, indicating relative stability of Cu-C/SiO2. In the third cycle, the TC adsorption
efficiency is about 12%, and the total R.E. declines to 58%, implying the decreased catalytic
activity of Cu-C/SiO2. In this cycle, only 1.12 mg·L−1 of Cu was detected in the reacted
solution, suggesting that Cu-C/SiO2 is relatively stable after 3 recycled catalytic reactions.
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4. Conclusions

In summary, we developed novel Cu NPs-doped mesoporous C-SiO2 composite
through pre-infiltrating Cu precursors into the P123-containing mesoporous SiO2, followed
by a synchronously reducing Cu and C precursors in the mesopores of SiO2. The Cu/C-
SiO2 maintains the structural ordering of the mesoporous SiO2, and Cu NPs are effectively
immobilized in the matrix of C-SiO2 since the growth of Cu NPs was restricted by C and the
confined space in C-SiO2. The synthesized Cu/C-SiO2 was then served as a heterogeneous
Fenton-like catalyst and it presents excellent catalytic properties. It can remove 99.9% of
the highly concentrated (C0 = 500 mg·L−1) within a total reaction time of 4h. Moreover,
this catalyst also shows good pH TC adaptability, and the removal efficiency towards TC is
94–99% at pH = 3.0–11.0. The work provides a new feasible strategy for the synthesis and
application of Cu-based heterogeneous catalysts for highly efficient treatment of antibiotics
wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13172478/s1, Text S1: Characterization of the catalysts; Text S2:
Analytical methods for adsorption and catalysis; Table S1: N2 adsorption/desorption results of the
C-SiO2 and Cu/C-SiO2; Table S2: Reaction rate constants of TC degradation by CuO, Cu, C-SiO2,
and Cu/C-SiO2; Table S3: The catalytic capacity of different catalysts towards TC; Figure S1: TG and
DSC curves of the template-containing mesoporous SiO2 samples; Figure S2: FTIR spectra of C-SiO2,
Cu/C-SiO2-AS and Cu/C-SiO2; Figure S3: Effect of initial TC concentration on the removal of TC
(catalyst dosage = 1 g·L−1, C0 = 350–600 mg·L−1, H2O2 = 15 mL, T = 20 ± 2 ◦C): (a) adsorption and
total removal efficiencies, (b) fitted rate constant k; Figure S4: Effect of catalyst dosage on the removal
of TC: (a) adsorption and total removal efficiencies, (b) fitted rate constant k (C0 = 500 mg·L−1, H2O2
= 15 mL); Figure S5: Effect of H2O2 dosage on the removal of TC: (a) adsorption and total removal
efficiencies, (b) fitted rate constant k (catalyst dosage = 1 g·L−1, C0 = 500 mg·L−1); Figure S6: Effect
of pH on the removal of TC: (a) adsorption and total removal efficiencies, (b) fitted rate constant k,
(c) Zeta potentials of Cu/C-SiO2 at different pH values and (d) the molecular formula for TC (catalyst
dose = 1 g·L−1, C0 = 500 mg·L−1, pH = 3.65 ± 0.05, H2O2 = 15 mL); Figure S7: Effect of HA on the
removal of TC: (a) adsorption and total removal efficiencies, (b) fitted rate constant k (catalyst dosage =
1 g·L−1, C0 = 500 mg·L−1, pH = 3.65 ± 0.05, H2O2 = 15 mL); Figure S8: Different quenching scavengers
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in the Cu/C-SiO2 + TC system: (a) adsorption and total removal efficiencies, (b) fitted rate constant k
(catalyst dosage = 1 g·L−1, C0 = 500 mg·L−1, pH = 3.65 ± 0.05, H2O2 = 15 mL); Figure S9: Different
concentrations of IPA in the Cu/C-SiO2 + TC system: (a) adsorption and total removal efficiencies,
(b) fitted rate constant k (catalyst dosage = 1 g·L−1, C0 = 500 mg·L−1, pH = 3.65 ± 0.05, H2O2 = 15 mL);
Figure S10: Cyclic performance of Cu/C-SiO2 + TC system: (a) adsorption and total removal efficiencies,
(b) fitted rate constant k (catalyst dosage = 1 g·L−1, C0 = 500 mg·L−1, pH = 3.65± 0.05, H2O2 = 15 mL).
References [49–53] are cited in the supplementary materials.
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