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Abstract: Previous reports have shown that it is difficult to improve the methanol adsorption
performance of nitrogen and oxygen groups due to their low polarity. Here, we first prepared porous
carbon with a high specific surface area and large pore volume using benzimidazole as a carbon
precursor and KOH as an activating agent. Then, we improved the surface polarity of the porous
carbon by doping with Lithium (Li) to enhance the methanol adsorption performance. The results
showed that the methanol adsorption capacity of Li-doped porous carbon reached 35.4 mmol g−1,
which increased by 57% compared to undoped porous carbon. Molecular simulation results showed
that Li doping not only improved the methanol adsorption performance at low pressure, but also
at relatively high pressure. This is mainly because Li-modified porous carbon has higher surface
polarity than nitrogen and oxygen-modified surfaces, which can generate stronger electrostatic
interactions. Furthermore, through density functional theory (DFT) calculations, we determined the
adsorption energy, adsorption distance, and charge transfer between Li atom and methanol. Our
results demonstrate that Li doping enhances the adsorption energy, reduces the adsorption distance,
and increases the charge transfer in porous carbon. The mechanism of methanol adsorption by Li
groups was revealed through experimental and theoretical calculations, providing a theoretical basis
for the design and preparation of methanol adsorbents.

Keywords: porous carbon; methanol adsorption; lithium doping; pore structure; adsorption mechanism

1. Introduction

The excessive release of volatile organic compounds (VOCs) poses significant hazards
to both human health and the environment [1,2]. These compounds, including benzene,
formaldehyde, and xylene, readily evaporate at room temperature. VOCs react with nitro-
gen oxides in the air to form ozone, which can irritate the respiratory system. Prolonged
exposure to VOCs can lead to respiratory diseases and immune system abnormalities [3,4].
Methanol, consisting of CH3 and OH groups, is a significant industrial raw material and
reagent. It is one of the most common VOCs gases in the atmosphere, and contributes to
the formation of photochemical smog and poses a threat to the human nervous system [5,6].
Consequently, it is crucial to investigate efficient methanol adsorbents to enhance their
extensive utilization in industrial processes.

Adsorption technology is considered one of the most mature and effective methanol
control technologies [7,8]. The key to adsorption technology lies in the development of
high-performance adsorbents. Commonly used adsorbents, such as porous carbon [9–11],
metal-organic frameworks (MOFs) [12,13], mesoporous silica [14], and zeolites [15], have
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been used as adsorbents to reduce VOCs in polluted media. Porous carbon, with advan-
tages such as easy surface modification, high specific surface area, tunable pore structure,
and low cost, is considered to be a promising adsorbent [9,16,17]. For porous carbon,
surface chemistry and pore structure are two important factors determining its methanol
adsorption performance [18–20]. Previous studies have shown that nitrogen and oxy-
gen doping has been found to enhance methanol adsorption at low pressure, while the
total pore volume determines the adsorption performance at high pressure. For exam-
ple, Ma et al. [10] conducted experiments on biomass-based porous carbons to evaluate
their methanol adsorption performance. The results showed that oxygen groups could
increase the adsorption capacity of methanol at relatively low pressures, while at relatively
high pressures the adsorption capacity of methanol varied consistently with the total pore
volume of the porous carbon, without a significant relationship with the oxygen groups.
This is mainly because oxygen groups have low polarity, making it difficult to improve
the methanol adsorption performance at relatively high pressure. Recently, alkali metal
doping has been found to provide higher surface polarity compared to nitrogen, oxygen,
and sulfur doping, improving gas adsorption [21,22]. For example, Ma et al. [22] demon-
strated that the incorporation of alkali metals into porous carbon significantly enhances
its CO2 absorption capacity, reaching values of 8.43–12.46 mmol g−1. This represents a
3–4-fold increase compared to undoped porous carbon and a 2–3-fold increase compared
to nitrogen/oxygen-doped porous carbon. However, to date, there is a lack of research
investigating the potential of alkali metal-doped porous carbon for methanol adsorption.

Benzimidazole is a cost-effective and commercially viable nitrogen-rich organic com-
pound, which serves as a suitable single-source precursor for the synthesis of heteroatom-
doped porous carbons. For instance, Wu et al. [23] prepared porous carbon materials using
benzimidazole as a carbon source, which exhibited a specific surface area of 3000 m2 g−1,
a total pore volume of 2.8 cm3 g−1, an oxygen content of 5.6 at%, and a nitrogen content
of 1.7 at%. In this study, we first prepared porous carbon with high specific surface area
and pore volume using benzimidazole as a carbon precursor and KOH as an activating
agent. Then, Li doping was employed to enhance the surface polarity of the carbon-based
materials and improve the methanol adsorption performance. Finally, the isothermal ad-
sorption curve of methanol on the Li-doped slit pore model was calculated using grand
canonical Monte Carlo (GCMC) simulation, and the impact of Li groups and pore size on
the methanol adsorption performance was analyzed. Density functional theory (DFT) was
used to calculate the adsorption energy, electron transfer and adsorption distance between
Li group and methanol molecules. The synergistic adsorption of methanol by Li doping
and pore size was studied based on the results of GCMC and DFT calculations, and the
adsorption mechanism was revealed.

2. Experimental Section
2.1. Material Synthesis

Preparation of Porous Carbon: Using benzimidazole as carbon precursor and KOH
as activator, porous carbons with well-developed pores were prepared with the chemical
activation method. The specific procedure is as follows: Firstly, KOH and benzimidazole
were mixed in a ratio of 3:1 and thoroughly ground. The mixture was then transferred
into a quartz boat and placed in a tube furnace. The composite material was placed in
a tubular furnace and purged with nitrogen gas for 30 min to remove the air inside the
furnace. Then, the temperature was increased at a rate of 5 ◦C min−1 under a nitrogen
gas atmosphere until reaching 800 ◦C, and held for 1 h. After that, the temperature was
decreased at a rate of 5 ◦C min−1 until reaching room temperature. The obtained product
was placed in a 5 wt% HCl solution and stirred with a magnetic stirrer for 1 h to remove
excess potassium salts. Finally, the sample was washed with deionized water and filtered,
followed by drying in a 120 ◦C drying oven for 6 h. The resulting sample was denoted
as PC.
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Preparation of Li-doped porous carbon: A solution of LiOH (20 mg mL−1) was taken
in volumes of 5 mL, 10 mL, and 25 mL, and mixed thoroughly with 0.1 g of PC. After
drying, the mixture was subjected to a second carbonization process in a tube furnace.
The temperature was gradually elevated at a rate of 5 degrees Celsius per minute until it
reached the pinnacle of 600 degrees Celsius, and then maintained for 1 h. Subsequently,
the temperature was lowered to room temperature. The resulting samples were washed in
water with a magnetic stirrer at room temperature for 10 h, followed by drying at 105 ◦C
for 8 h. These samples were named LiPC-1 (5 mL), LiPC-2 (10 mL), and LiPC-3 (25 mL)
according to the volume of LiOH solution used.

2.2. Material Characterization and Computational Methodology

The Supplementary Information (Text S1) provides detailed information on the char-
acterization of materials and computational methodology. The L-J potential parameters
and atomic partial charges of the gas molecule are shown in Table 1.

Table 1. Lennard-Jones parameters used in calculation of force field.

Atom ε (K) σ (Å) q (e)

C (acetone) 40 3.82 0.424
O (acetone) 79 3.05 −0.424

CH3 (acetone) 98 3.75 0.000
H (methanol) - - 0.435
O (methanol) 93 3.02 −0.700

CH3 (methanol) 98 3.75 0.265
C (surface) 47.86 3.47 Calc.
O (surface) 48.16 3.03 Calc.
H (surface) 7.65 2.85 Calc.
Li (surface) 12.58 2.45 Calc.

3. Results and Discussion
3.1. Chemical and Structural Properties of Porous Carbon

The morphology of the LiPC-3 was presented using SEM images. Figure 1a displays
the surface of the LiPC-3 with honeycomb-like features when the magnification scale was
set to 2 µm. Figure 1b shows the randomly distributed sheet-like disordered microstructures
of LiPC-3 when the magnification scale was set to 500 nm. X-ray diffraction analysis was
performed on the LiPC-1, LiPC-2, and LiPC-3 samples, as shown in Figure 2. It can be
observed that the common feature for different amounts of alkali metal Li doping is the
broad peak at 2θ = 23◦, which represents the (002) diffraction plane and indicates a partial
graphitization degree of the porous carbon [24]. Additionally, the peaks of Li derivatives
in the XRD pattern were not very prominent, indicating a good dispersion of Li in the
porous carbon.

Figure 3 displays the N2 adsorption–desorption isotherms of all samples at 77 K. The
N2 adsorption isotherm of the PC sample sharply increased with a relative pressure of
P/P0 = 0.01, indicating the presence of micropores. It is worth noting that the isotherm of
PC shows an increasing N2 adsorption with increasing relative pressure in the range of
P/P0 = 0.01–0.5, along with a small hysteresis loop, indicating the presence of mesopores.
After Li doping, there was no significant change in the N2 adsorption isotherm. As shown
in Figure 3b, the pore size distribution mainly fell within two similar ranges: 1–2 nm
and 2–5 nm. With the introduction of Li, the peak at 1–2 nm increased and the peak
at 2–5 nm shifted to the right, indicating that Li doping could enhance the micropore
volume and reduce the size of narrow mesopores in the porous carbon. As shown in
Table 2, PC exhibited a high specific surface area and total pore volume of 2268 m2 g−1 and
1.716 cm3 g−1, respectively. The specific surface area of Li-doped porous carbon increased
from 2268 m2 g−1 to 2678 m2 g−1, representing a 14% increase. However, the total pore
volume decreased from 1.716 cm3 g−1 to 1.688 cm3 g−1. This is mainly due to the fact that
LiPC-3 showed the highest micropore volume of 0.535 cm3 g−1, which was a 32% increase
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compared to PC. These results were mainly attributed to the activation of porous carbon
by LiOH, leading to an increase in micropore volume, while the activation or pyrolysis
process caused the collapse of mesopores, resulting in a decrease in mesopores.
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The types and quantities of elements in the samples were measured using X-ray
photoelectron spectroscopy (XPS). The spectrum of LiPC-3 only showed four main peaks,
corresponding to C 1s, N 1s, O 1s and Li 1s (Figure 4a). As shown in Figure 4b, the N1s
peak was divided into pyridinic-N (398.4 ± 0.2), pyrrolic-N (399.8 ± 0.2), and graphitic-N
(400.7 ± 0.2). Pyrrolic-N was the main nitrogen functional group in all samples [25,26].
As shown in Figure 4c, the C 1s peak was divided into C-C/C=C (286.2 eV), C-O/C-N
(287.4 eV), and C=O/C=N (289.0 eV) [27]. Figure 3d shows the O 1s peak divided into
five peaks at 532.1 eV (COOH), 531.9 eV (C=O), 532.8 eV (C-O), 533.4 eV (OH), and 535 eV
(H2O adsorption) [8,28]. With the increase in Li proportion, the nitrogen content decreased
while the oxygen content increased (Table 2).
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Table 2. Textural properties and surface chemistry of PC samples.

Sample SBET/m2 g−1 V t/cm3 g−1 Vmicro/cm3 g−1 Vmes + Vmar/cm3 g−1 O/at. % N/at. % Li/at. %

PC 2268 1.716 0.406 1.31 9.35 1.64 0
LiPC-1 2511 1.664 0.489 1.37 13.35 1.47 8.8
LiPC-2 2300 1.508 0.443 1.065 16.39 1.43 11.04
LiPC-3 2678 1.688 0.535 1.153 11.67 1.42 12.99
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3.2. Methanol Adsorption

The excellent pore structure and high surface area make high-performance porous
carbon a promising adsorbent material. As shown in Figure 5, it can be seen that PC exhibits
excellent methanol adsorption performance, with an adsorption capacity of 22.5 mmol g−1.
In order to further increase the methanol adsorption performance, we doped Li to increase
the surface polarity of the porous carbon and improve the affinity between the porous
carbon and methanol. Li doping increased the methanol adsorption performance of the
porous carbon. For example, LiPC-3 showed the highest methanol adsorption performance,
with a capacity of 35.4 mmol g−1. Compared to PC, the methanol adsorption amount of
LiPC-3 increased by 57%. Previous works in the literature have shown that the methanol
adsorption capacity of porous carbon is mainly determined by the specific surface area and
total pore volume [10,29]. The specific surface area of LiPC-3 increased by 18% compared
to PC, while the total pore volume decreased. Therefore, the highest methanol adsorption
capacity of LiPC-3 was mainly due to the introduction of Li into the porous carbon, which
increased the surface polarity and improved the affinity between the porous carbon and
methanol. Moreover, Li-doped porous carbon exhibited a superior adsorption capacity for
methanol compared to other adsorbents, including porous carbons [29,30], MOFs [8,31–33],
and metal oxide/carbon composites [34] (Table 3). This advantageous adsorption capability
holds significant promise for future environmental applications.
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Table 3. Equilibrium amount of methanol adsorbed on various adsorbents.

Adsorbents Qe
(mmol g−1)

Temperature
(◦C)

Pressure or Inlet
Concentration References

AC (YP-50) 16.6 25 15 kPa [30]
CN950 13.2 25 15 kPa [29]

A5 3.8 25 16 kPa [35]
HPCMF. 7.6 25 15 kPa [36]
PAF-12 9.0 25 16 kPa [37]
OMP 13.7 25 15 kPa [38]
PAF-5 29.2 25 16 kPa [31]
PAF-20 19.0 25 16 kPa [32]
PAF-11 20.4 25 16 kPa [39]
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Table 3. Cont.

Adsorbents Qe
(mmol g−1)

Temperature
(◦C)

Pressure or Inlet
Concentration References

AC/ZnO composite 15.0 25 200 g m−3 [34]
AC/MgO composite 12.3 25 200 g m−3 [34]
AC/CuO composite 11.0 25 200 g m−3 [34]
AC/ZrO composite 13.9 25 200 g m−3 [34]

HKUST-1 17.8 25 17.5 kPa [8]
MIL-101Cr 35.9 25 13 kPa [8]

Cu-BTC 20.1 25 12 kPa [33]
LiPC-3 35.4 25 15 kPa Present work

3.3. Methanol Adsorption Mechanism

The effect of pore size and nitrogen/oxygen groups on methanol adsorption at 25 ◦C,
as simulated by GCMC, is showed in Figure 6. As shown in Figure 6a, the methanol
adsorption isotherm was similar to the water adsorption isotherm on porous carbon [40].
At 15 kPa, compared to the pore size range of 0.8–2 nm, there was a slight decrease
in methanol adsorption in the pore size range of 0.6–0.7 nm. This was mainly because
methanol molecules adsorbed as a monolayer in the 0.6–0.7 nm slit pore model, while there
was multilayer filling adsorption in the 0.8–2 nm range. When the pore size exceeded 2 nm,
the methanol adsorption sharply decreased at 15 kPa. It is worth noting that the adsorption
capacity of the 6 nm pore size can be neglected compared to the 0.6 nm pore size. This
could be attributed to inadequate methanol–methanol interactions in the slit pore model,
which cannot support the adsorption of methanol molecules in wider pores [10,41]. To
gain a better understanding of the impact of the slit pore model on methanol adsorption at
low pressures, a threshold pressure was introduced. This threshold pressure represents
the pressure at which the adsorbate begins to be adsorbed by the adsorbent. As the pore
size increased from 0.7 nm to 6 nm, the threshold pressure increased from 0.8 kPa to 5 kPa.
Additionally, the saturated adsorption capacities at 1 kPa for pores of 0.6 nm and 0.7 nm
were 16 mmol g−1 and 14 mmol g−1, respectively. For pores of 0.8–2 nm, the threshold
pressure to reach the saturated adsorption capacity was 3–10 kPa. However, for pores of
3–6 nm, the saturated adsorption capacity was not reached even at 15 kPa. This indicates
that smaller pore sizes are advantageous for adsorbing methanol at low pressures. As
shown in Figure 6b, Li doping can reduce the threshold pressure of methanol. This is
primarily attributed to the increased polarity of the carbon framework surface due to the
doping of Li atoms, which enables strong interactions with the OH groups in methanol.
At 15 kPa, compared to pure graphite (2 nm), the pore size for filling adsorption in the slit
pore model increased to 3 nm after Li doping, and the adsorption capacity in the 4–6 nm
pores was also improved. In addition, at 15 kPa, the methanol adsorption capacity was also
increased by 10–20%. Therefore, Li doping not only improved the adsorption performance
of methanol at low pressures, but also at relatively high pressures, which was different
from the results of nitrogen- and oxygen-doped porous carbons in previous works in
the literature.

To better explain the electrostatic interactions between Li and methanol molecules, the
charge distribution of atoms on the graphene sheet doped with Li was calculated using
the Mulliken charge method. As shown in Figure 7, the Li atom in the Li-doped graphene
sheet carried a strong positive charge of 0.615 e, while the oxygen atom connected to the
Li atom carried a strong negative charge of −0.562 e. Therefore, Li doping led to a strong
electronegativity/electropositivity on the carbon surface, which could provide effective
adsorption sites for methanol and enhance its adsorption performance.
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Furthermore, GCMC simulations were performed with and without electrostatic
interactions between the carbon framework and methanol molecules. The adsorption
capacity of porous carbon with and without electrostatic interactions for methanol is
shown in Figure 8a. As shown in Figure 8, electrostatic interactions could lower the
threshold pressure for methanol adsorption in the slit pore model, thereby providing
a larger adsorption capacity at relatively low pressures. At relatively high pressures,
electrostatic interactions could also increase the adsorption performance of methanol,
increasing it by about 15% in the slit pores around 0.6 and 1.5 nm. In the 3 nm slit pore,
the electrostatic effect generated by the Li-doped slit hole model increased the adsorption
capacity of methanol by 357% compared with the undoped one. Additionally, we examined
the influence of Li-doped porous carbon on methanol adsorption properties by estimating
the electrostatic contribution using Equation (1).

Electrostatic contribution =
Swith − Swithout

Swith
× 100% (1)
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The adsorption amounts of methanol molecules on Li-doped graphite sheets with
and without electrostatic interactions were denoted as Swith and Swithout, respectively. The
electrostatic contribution of graphite sheets to methanol absorption at 25 ◦C is shown in
Figure 6b. The doping of Li enhanced the electrostatic contribution of the 0.6 nm pore
to 99% at 0.5 kPa, which decreased to 30% as the pressure increased to 1 kPa, and then
gradually decreased to 10% at 15 kPa. Additionally, the introduction of Li atoms resulted
in electrostatic contributions of over 95% for the 1.5 nm and 3 nm pores at pressures
ranging from 0 to 7 kPa. As the adsorption pressure increased to 15 kPa, the electrostatic
contributions of the 1.5 nm and 3 nm pores decreased to 10% and 75%, respectively. This
indicates that electrostatic interactions played a more significant role in methanol absorption
at low pressures compared to high pressures. In this process, alkali metals exhibited
stronger electrostatic interactions due to their higher electron accepting/donating density,
thereby enhancing the capture of methanol. Furthermore, the electrostatic interactions of
methanol adsorption were stronger in the slit pore model as the pore size increased. For
example, the electrostatic contribution of methanol adsorption decreased to 30% at 1.5 kPa
for a pore size of 0.6 nm, while the electrostatic contributions of pore sizes 1.5 nm and 3 nm
still remained at 99%. Additionally, at 15 kPa, the electrostatic contributions of pore sizes
0.6 nm and 1.5 nm were only around 13%, while the electrostatic contribution of the 3 nm
pore size remained at 80%.

The isotherm effects of lithium-, nitrogen-, and oxygen-doped narrow pores on
methanol adsorption are illustrated in Figure 9. At relatively low pressure, nitrogen and
oxygen doping could reduce the threshold pressure for methanol adsorption and increase
the adsorption capacity of methanol, while the saturated adsorption capacity of methanol
showed no significant difference. The adsorption capacity of methanol at 15 kPa ranged
from 21.9 to 22.9 mmol g−1, which was 3.8–8.5% higher than that of undoped methanol
(21.1 mmol g−1). This indicates that nitrogen and oxygen groups have limited influence
on the adsorption capacity of methanol under relatively high pressure, but can enhance
the adsorption capacity of methanol under relatively low pressure. The lithium-doped slit
pores reached saturation at 1 kPa, while the saturation pressures for nitrogen and oxygen
doping were both above 2.5 kPa, which mainly meant that the slit pore models produced
by lithium doping had stronger surface polarity than those of doped nitrogen and oxygen.
Additionally, the saturated adsorption amount of lithium-doped narrow pores increased
by approximately 10–25% compared to nitrogen and oxygen doping. This was mainly due
to the higher surface polarity of the lithium-modified porous carbon compared to nitrogen
and oxygen modifications.
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The optimal adsorption sites of methanol on graphite are illustrated in Figure 10. As
shown in Figure 10, the adsorption energy of methanol on graphite was only −14.03 kJ mol−1,
while the adsorption energy of methanol on lithium-modified graphite reached −90.27 kJ mol−1,
significantly higher than that of the unmodified graphite. We calculated the adsorption
distance between functional groups and methanol molecules and found that the adsorption
distance between lithium atoms in porous carbon and oxygen atoms in methanol is 1.91 Å,
lower than the distance between hydrogen in graphite and oxygen in methanol (2.41 Å). In
addition, the charge transfer during the adsorption process was also calculated. Hydrogen
atoms in graphite transferred 0.03 electrons to oxygen atoms in methanol, while lithium-
doped graphite transferred 0.33 electrons to oxygen atoms in methanol, significantly higher
than the undoped graphite. These DFT calculation results reveal the mechanism of im-
proved methanol adsorption on lithium-doped porous carbon and are consistent with the
previous conclusions.
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4. Conclusions

In summary, porous carbon with a high specific surface area and large pore volume
was prepared using benzimidazole as a carbon precursor and KOH as an activating agent.
Then, lithium doping was employed to improve the surface polarity of the porous carbon
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and enhance its methanol adsorption performance. The results showed that lithium doping
could increase the micropore volume and decrease the mesopore size of the porous carbon,
resulting in a methanol adsorption capacity of 35.4 mmol g−1, which was 57% higher than
that of the undoped porous carbon. Molecular simulation results indicated that lithium
doping could lower the threshold pressure of methanol adsorption, mainly due to the
increased polarity of the carbon framework caused by lithium doping, which could form
strong interactions with the OH groups in methanol. At 15 kPa, compared to pure graphite
(2 nm), the pore size of the filled adsorption in the lithium-doped narrow pore model
increased to 3 nm, and the adsorption capacity of the 4–6 nm pores also increased. DFT
calculations revealed that the adsorption energy of lithium-modified graphite for methanol
(−90.27 kJ mol−1) was much higher than that of unmodified graphite; the adsorption dis-
tance between lithium atoms and methanol molecules was 1.91 Å, lower than the distance
between hydrogen and oxygen in graphite (2.41 Å). Additionally, lithium-doped graphite
transferred 0.33 e of electrons to the oxygen atoms in methanol, significantly higher than
the undoped case (0.03 e). The mechanism of methanol adsorption by lithium groups was
revealed through experimental and theoretical calculations, providing a theoretical basis for
the design and preparation of methanol adsorbents. In addition, Li-doped porous carbon
can improve the surface polarity of the carbon surface, and can improve the adsorption
and separation performance of CO2 and the separation of light hydrocarbon gases.
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