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Abstract: The effect of odd viscosity on the instability of liquid film along a wavy inclined bottom
with linear temperature variation is investigated. By utilizing the long-wave approximation, the
non-linear evolution equation of the free surface is derived. By applying the normal mode method,
the linear instability of thin film flow is investigated. With the help of multi-scale analysis methods,
the weakly non-linear instability of thin film flow is also investigated. The results reveal that the
Marangoni effect caused by non-uniform temperature distribution promotes the instability of the
liquid film, while the odd viscosity has a stabilizing effect. In addition, for a positive local inclination
angle θ, an increase in bottom steepness ζ inhibits the instability of the liquid film flow. In contrast,
with a negative local inclination angle θ, increased bottom steepness ζ promotes the instability of
the liquid film flow. The results of the temporal linear instability analysis and the weakly non-
linear instability analysis have been substantiated through numerical simulations of the non-linear
evolution equations.

Keywords: liquid film; odd viscosity; Marangoni effect; bottom steepness; instability

1. Introduction

Liquid membranes find extensive applications in various industrial engineering fields,
including thin film evaporators and liquid film dust collectors used in chemical equipment,
as well as thin liquid film cooling of large-scale integrated circuits [1,2]. Additionally, the
instability analysis of liquid films flowing along inclined or vertical planes is of significant
relevance in the coating industry, where it plays a crucial role in microchip manufacturing,
paper coating, magnetic film coating, and other related processes [3–6]. The complexities
of liquid film flow have therefore garnered significant attention from researchers and
practitioners alike, making it an important and constantly studied area of interest.

Benjamin [7] and Yih [8] were among the pioneers in studying the stability of liquid
film flow over inclined planes. They focused on solving the linear stability problem for
the fundamental flow of constant thickness and determined the critical Reynolds number
Rec. When the Reynolds number exceeds Rec, the flow of liquid film becomes unstable.
Samanta [9,10] conducted an analysis of the linear stability of thin liquid film flow on a
non-uniformly heated inclined plane, neglecting the effect of inertial forces and employing
the canonical mode method. Simultaneously, the long wave perturbation method was
utilized to solve the control equation, leading to the derivation of a nonlinear surface wave
equation. This enabled the analysis of linear, nonlinear, and sideband stability of liquid film
flow on a vertically non-uniformly heated substrate. For additional studies on the stability
of a thin film flow over the beveled and vertical planes, reference can be made to articles by
Bauer and Kerczek [11], Hanratty [12] and Craster and Matar [13], among others. As for the
stability of the film flow on a heated or inclined plane, research can be found in the work
of Kalliadasis et al. [14], Sadiq et al. [15] and Mukhopadhyay et al. [16]. Gjevik [17] and
Nakaya [18] extended the stability investigation of thin films to consider nonlinear stability.

Nevertheless, the aforementioned studies have primarily focused on liquid film flows
over inclined or vertical substrates. In industrial equipment or other practical applications,
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certain substrates unavoidably have uneven surfaces. Solely investigating plane slopes may
introduce bias when applied to non-level cases. In other words, the substrate’s structural
characteristics significantly influence the stability of liquid film flow. The fluid dynamics
of falling liquid films over undulating surfaces has attracted considerable attention, with
early work by Pozrikidis [19] examining free surface Stokes flow along a sinusoidal base.
Bielarz [20] discussed the stability of thin free surface liquid films flowing over structural
surfaces, employing both one-dimensional and two-dimensional calculations. Wierschem
and Aksel [21] performed a linear stability analysis of a Newtonian liquid film flowing
down an inclined wavy plane. Their study investigated how wavy bottom variations,
significantly longer than the film thickness, impact the stability of steady film flow com-
pared to that over a flat inclined plane. Trifonov [22] studied the flow of a viscous liquid
film along an inclined corrugated surface, using an integral model and employing Floquet
theory to analyze the stability of nonlinear steady-state flows under various conditions.
For research on the influence of substrate structure on film flow, references can be made to
the works of Heining and Aksel [23], as well as Tougou [24]. These studies shed light on
the crucial role played by the substrate’s unevenness or corrugations in determining the
stability characteristics of a liquid film flow.

In recent years, odd viscosity has emerged as a prominent subject of investigation in
the study of thin film flow stability. Odd viscosity [25,26] is the non-dissipative component
of the viscosity tensor and is contained in its antisymmetric part. Avron [27,28] made a
break-through discovery by demonstrating that in a classical fluid, when time-reversal
symmetries are broken, either spontaneously or due to an external magnetic field or rota-
tion, the viscosity tensor can have a non-zero odd part that gives rise to a dissipationless
linear response coefficient known as odd or Hall viscosity. In natural situations where
the time-reversal symmetry of a classical liquid is broken, odd viscosity effects are com-
monly observed in biological [29], granular [30] and colloidal [31] systems. Kirkinis and
Andreev [32] explored the impact of odd viscosity on the thermocapillary instability of a
viscous liquid film flowing along a uniformly heated solid substrate, while considering a
fixed temperature gradient across the free surface. Their findings revealed that the initial
wave of odd viscosity can suppress thermocapillary instability, leading to enhanced stability
of the thin liquid film. A comprehensive exploration of odd viscosity in fluid dynamics
was presented by Lapa et al. [33], providing a broader understanding of this intriguing
phenomenon. Additionally, Zhao and Jian [34] investigated the effect of odd viscosity on
the stability of a falling thin film in the presence of an electromagnetic field. Employing the
lubrication approximation, they derived a new nonlinear evolution equation for the free
surface that takes into account the influence of odd viscosity. Through linear and weakly
nonlinear stability analyses, they found that odd viscosity has a stabilizing effect on the
system. These studies collectively contribute to our understanding of the significant role
that odd viscosity plays in influencing the stability characteristics of thin film flows, and
highlight its relevance in various physical systems and applications.

This paper is centered around investigating the influence of odd viscosity on the
instability of liquid film flowing down an undulated inclined plate with linear temperature
variation. Specifically, the study examines the effects of odd viscosity, thermocapillary
effects and bottom steepness on flow instability, leading to corresponding conclusions.

2. Mathematical Model

We consider the flow of an incompressible viscous Newtonian fluid driven by gravity
in two dimensions. The fluid flows down an inclined, corrugated substrate with uneven
heating, as depicted in Figure 1. The Cartesian coordinate system ex̂, eŷ has an angle β

with respect to the horizontal, and the base contour b̂(x̂) is periodic with amplitude â
and wavelength λ̂, where x̂ is in the direction of the main flow. The substrate profile is
undulated, so a local curvilinear coordinate system is introduced, and the when thickness
of the thin films are thin enough compared to the curvature radius of the bottom, the flow
(u, v) is still mainly parallel to the bottom [35]. Therefore, at every point of the bottom, a
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local coordinate system ex, ey is defined, where ex is the tangent and ey is normal to the base.
For any point P in the fluid, the coordinates of the curve are the arc length x of the base and
the distance y along the ey to the base. In ex̂, eŷ coordinates P = (x̂− sin θy, b̂(x̂) + cos θy),
where θ = θ(x̂) = arctan(∂b̂(x̂)/∂x̂) is the local inclination angle between ex̂ and ex.

Figure 1. The schematic diagram of the physical model.

This is the considered film flows along a moderate steepness undulating substrate and
has a long length compared to the film thickness. The substrate curvature κ is denoted by

κ(x̂) = −∂2b̂(x̂)
∂x̂2

1 +

(
∂b̂(x̂)

∂x̂

)2
−3/2

. (1)

For further details on the transformation to curvilinear coordinates, we refer to the
study of Wierschem et al. [36].

We assume that such fluids are time reversal symmetry breaking, and the falling film
problem should consider both even τe and odd τo viscosity coefficients. In this case, the
Cauchy stress tensor τ is expressed as

τ = τe + τo, (2)

τe
ij = −pδij + ηe

(
∂ui
∂xj

+
∂uj

∂xi

)
, (3)

τo
ij =− ηo

(
δi1δj1 − δi2δj2

)(∂u1

∂x2
+

∂u2

∂x1

)
+ ηo

(
δi1δj2 − δi2δj1

)(∂u1

∂x1
− ∂u2

∂x2

)
, (4)

where i, j = 1, 2, ηe and ηo denote the odd and even viscosity coefficients, respectively.
The dynamic properties of an incompressible fluid can be described by the continuity

equation and the momentum equation. Referring to Wierschem et al. [36], the following
equations are derived based on the curvilinear coordinate transformation considering the odd
viscosity and the Marangoni effect. And, to simplify the notations, we set u = u1, v = u2,
x = x1, and y = x2.

1
1 + κy

(
∂u
∂x

+ κv
)
+

∂v
∂y

= 0, (5)

ρ

(
∂u
∂t

+
1

1 + κy
u
(

∂u
∂x

+ κv
)
+ v

∂u
∂y

)
= − 1

1 + κy
∂p
∂x

+ ρg sin(β− θ)

+ ηe

[(
1

1 + κy

)3 ∂κ

∂x

(
v− y

∂u
∂x

)
+

(
1

1 + κy

)2(∂2u
∂x2 − κ2u + 2κ

∂v
∂x

)
+

1
1 + κy

κ
∂u
∂y

+
∂2u
∂y2

]

− ηo

[
−
(

1
1 + κy

)3 ∂κ

∂x

(
u + y

∂v
∂x

)
+

(
1

1 + κy

)2( ∂2v
∂x2 − κ2v− 2κ

∂u
∂x

)
+

1
1 + κy

κ
∂v
∂y

+
∂2v
∂y2

]
,

(6)
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ρ

(
∂v
∂t

+
1

1 + κy
u
(

∂v
∂x
− κu

)
+ v

∂v
∂y

)
= −∂p

∂y
− ρg cos(β− θ)

+ ηe

[
−
(

1
1 + κy

)3 ∂κ

∂x

(
u + y

∂v
∂x

)
+

(
1

1 + κy

)2( ∂2v
∂x2 − κ2v− 2κ

∂u
∂x

)
+

1
1 + κy

κ
∂v
∂y

+
∂2v
∂y2

]

+ ηo

[(
1

1 + κy

)3 ∂κ

∂x

(
v− y

∂u
∂x

)
+

(
1

1 + κy

)2(∂2u
∂x2 − κ2u + 2κ

∂v
∂x

)
+

1
1 + κy

κ
∂u
∂y

+
∂2u
∂y2

]
,

(7)

∂T
∂t

+
1

1 + κy
u

∂T
∂x

+ v
∂T
∂y

= kc

[(
1

1 + κy

)2 ∂2T
∂x2 −

(
1

1 + κy

)3
y

∂κ

∂x
∂T
∂x

+
1

1 + κy
κ

∂T
∂y

+
∂2T
∂y2

]
, (8)

where ρ is the liquid density, p is the pressure, T is the temperature, g is the gravitational
acceleration, and kc is the thermal diffusivity, which is assumed to be constant.

At the substrate y = 0, the boundary conditions for fluid no-slip and no-penetration
and the boundary condition for temperature are

u = v = 0, (9)

T = Tg + bx, (10)

where Tg is the ambient temperature, b = ∆T/λ̂ is the linear rate of change of temperature,
∆T = TH − TC, where TH and TC denote the temperatures at the hotter part and colder
part of the substrate, respectively.

At the free surface y = h(x, t), dynamic and kinematic boundary conditions are

1√
1 +

(
1

1+κh hx

)2

[
ηe{(1 + κh)2 − h2

x}
{

1
1 + κh

(
∂v
∂x
− κu

)
+

∂u
∂y

}
+ 2ηe

{
(1 + κh)

∂v
∂y

−
(

∂u
∂x

+ κv
)}

hx + ηo{(1 + κh)2 − h2
x}
{

1
1 + κh

(
∂u
∂x

+ κv
)
− ∂v

∂y

}
+ 2ηo

{
(1 + κh)

∂u
∂y

+

(
∂v
∂x
− κu

)}
hx

]
= (1 + κh)

(
∂σ

∂x
+ hx

∂σ

∂y

)
,

(11)

pa − p +
1

1 +
(

1
1+κh hx

)2

[
2ηe

{(
1

1 + κh

)3(∂u
∂x

+ κv
)

h2
x +

∂v
∂y
−
(

1
1 + κh

)2( ∂v
∂x
− κu

)

×hx −
1

1 + κh
∂u
∂y

hx

}
+ ηo

{(
1−

(
1

1 + κh
hx

)2
)(

∂u
∂y

+
1

1 + κh

(
∂v
∂x
− κu

))
− 2

1 + κh

×
(

1
1 + κh

(
∂u
∂x

+ κv
)
− ∂v

∂y

)
hx

}]
= σ

(1 + κh)hxx − h ∂κ
∂x hx − κ

[
(1 + κh)2 + 2h2

x

]
[
(1 + κh)2 + h2

x

]3/2 ,

(12)

∂h
∂t

+
1

1 + κh
u

∂h
∂x
− v = 0, (13)

where σ is the surface tension, and is assumed to vary linearly over a small tempera-
ture range

σ = σ0 − γ(T − Tg), (14)

σ0 is the surface tension at the reference temperature Tg and γ = −∂σ/∂T |T=Tg
.
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The balance between heat supply to and heat loss at the free surface y = h(x, t) is
given by Newton’s law of cooling:

− λ√
1 +

(
1

1+κh hx

)2

[
− 1

(1 + κh)2 hx
∂T
∂x

+
∂T
∂y

]
= kg

(
T − Tg

)
, (15)

where λ is the thermal conductivity, and kg is the heat transfer coefficient between the fluid
and the air.

In order to investigate the effect of substrate undulation on the film flow, we use the
thin film flow over a flat bottom as referenced. So the Nusselt velocity u0 = ρgh0

2 sin θ/3ηe,
where h0 is the constant film thickness, is also the length scale in the transverse direction,
and λ̂ is the characteristic longitudinal length scale, which is very long compared to the
film thickness.

The following dimensionless quantities are introduced to dimensionlessize the equa-
tion (indicated by the asterisk):

x∗ =
2πx

λ̂
, y∗ =

y
h0

, h∗ =
h
h0

, u∗ =
u
u0

, v∗ =
λ̂v

2πh0u0
,

t∗ =
2πu0t

λ̂
, p∗ =

p
ρu02 , κ∗ =

λ̂2κ

4π2 â
, T∗ =

2π
(
T − Tg

)
∆T

,

x̂∗(x∗) =
2πx̂(x)

λ̂
, b̂∗(x̂∗) =

b̂
â

(
λ̂x̂∗

2π

)
, θ∗ = arctan

(
ζ

∂b̂∗

∂x̂∗

)
,

(16)

where ζ = 2πâ/λ̂ is the bottom steepness and α = 2πĥ/λ̂ is the aspect ratio.
Using the Equation (16) in the governing equations and boundary conditions, we

arrive after dropping the asterisk as

∂u
∂x

+
∂v
∂y

+ αζκ

(
v + y

∂v
∂y

)
= 0, (17)

αRe
(

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −αRe

∂p
∂x

+ 3
sin(β− θ)

sin β
+

∂2u
∂y2 + ακζ

∂u
∂y
− αµ

∂2v
∂y2 + O

(
α2
)

, (18)

−αReζκu2 = −Re
∂p
∂y
− 3

cos(β− θ)

sin β
+ α

∂2v
∂y2 + µ

(
αζκ

∂u
∂y

+
∂2u
∂y2

)
+ O

(
α2
)

, (19)

αRePr

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
=

∂2T
∂y2 + αζκ

∂T
∂y

+ O
(

α2
)

. (20)

At the substrate y = 0, we have

u = 0, v = 0, T = x. (21)

At the free surface y = h(x, t), we have

∂u
∂y

+ αζκ

(
2h

∂u
∂y
− u

)
+ αµ

{(
∂u
∂x
− ∂v

∂y

)
+ 2

∂u
∂y

hx

}
= −Mn

(
∂T
∂x

+ hx
∂T
∂y

)
+ O

(
α2
)

, (22)

pa − p +
2α

Re

(
∂v
∂y
− ∂u

∂y
hx

)
+

µ

Re
∂u
∂y

= α2We(1− CaT)
(

hxx − ξκ + 2ζ2κ2h
)
+ O

(
α2
)

, (23)

∂h
∂t

+ u
∂h
∂x
− v− αζκhu

∂h
∂x

+ O
(

α2
)
= 0, (24)

∂T
∂y

+ BiT + O
(

α2
)
= 0, (25)
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where pa =
pa

ρu0
2 , µ = ηo

ηe is the odd viscosity coefficient, Re = ρu◦h◦
ηe is the Reynolds number,

We = σ0
ηeu0

is the Weber number, Mn = αγ∆T
ηeu0

is the Marangoni number, Pr = ηe

ρkc
is the

Prandtl number, Ca = γ∆T
σ0

is the Capillary number, and Bi =
kgh0

λ is the Biot number,

ξ = ζ
α ≡

â
ĥ

.

3. Approximate Solution of the Equations

The physical quantities u, v, p and T are expanded as power series of the small
parameter α:

u = u0 + αu1 + · · · ,

v = v0 + αv1 + · · · ,

p = p0 + αp1 + · · · ,

T = T0 + αT1 + · · · .

(26)

Then we substitute the asymptotic Equation (26) into the dimensionless Equations (17)–(25)
to obtain the zero-order governing equations and boundary conditions

∂u0

∂x
+

∂v0

∂y
= 0, (27)

3 sin(β− θ)

sin β
+

∂2u0

∂y2 = 0, (28)

Re
∂p
∂y

= −3 cos(β− θ)

sin β
+ µ

∂2u0

∂y2 , (29)

∂2T0

∂y2 = 0. (30)

At the substrate y = 0,
u0 = v0 = 0, T0 = x. (31)

At the free surface y = h(x, t),

∂u0

∂y
= −Mn

(
∂T0

∂x
+ hx

∂T0

∂y

)
, (32)

pa − p0 +
µ

Re
∂u0

∂y
= α2We

(
hxx − ξκ + 2ζ2κ2h

)
, (33)

∂h
∂t

+ u0 ∂h
∂x
− v0 = 0, (34)

∂T0

∂y
= 0. (35)

The solutions at zeroth order can be found as

u0 =
3 sin(β− θ)

sin β

(
hy− 1

2
y2
)
−Mny, (36)

v0 = −
3 sin

(
β− θ

)
2 sin β

hxy2, (37)

p◦ =
1

Re

(
3 cos(β− θ)

sin β
+ µ

3 sin(β− θ)

sin β

)(
h− y

)
+ pa −

µ

R
e− α2We

(
hxx − ξκ + 2ζ2κ2h

)
. (38)
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The first order governing equations and boundary conditions are obtained.

∂u1

∂x
+

∂v1

∂y
+ ζκv0 + ζκy

∂v0

∂y
= 0, (39)

Re

(
∂u0

∂t
+ u0 ∂u0

∂x
+ v0 ∂u0

∂y

)
= −Re

∂p0

∂x
+ κζ

∂u0

∂y
− µ

∂2v0

∂y2 +
∂2u1

∂y2 , (40)

−Reζκu02
= −Re

∂p1

∂y
+

∂2v0

∂y2 + µ

(
ζκ

∂u0

∂y
+

∂2u1

∂y2

)
, (41)

RePr

(
∂T0

∂t
+ u0 ∂T0

∂x
+ v0 ∂T0

∂y

)
=

∂2T1

∂y2 + ζκ
∂T0

∂y
. (42)

At the substrate y = 0,
u1 = v1 = 0, T1 = 0. (43)

At the free surface y = h(x, t),

∂u1

∂y
+ ζκ

(
2h

∂u0

∂y
− u0

)
+ µ

{(
∂u0

∂x
− ∂v0

∂y

)
+ 2

∂u0

∂y
hx

}
= −Mn

(
∂T1

∂x
+ hx

∂T1

∂y

)
, (44)

−p1 +
2

Re

(
∂v0

∂y
− ∂u0

∂y
hx

)
+

µ

Re
∂u1

∂y
= 0, (45)

u1 ∂h
∂t
− v1 − ζκhu0 ∂h

∂x
= 0, (46)

∂T1

∂y
= 0. (47)

By solving the first order equation, we obtain the expression of T1 and u1 as

T1 = RePr
{

sin
(

β− θ
)

sin β

(
−1

8
y4 +

1
2

hy3 − h3y
)
−Mn

(
1
6

y3 − 1
2

h2y
)}

, (48)

u1 =
1
2

Re
sin(β− θ)

sin β

(
y3 − 3h2y

)
ht + MnRePr

(
5
2

sin(β− θ)

sin β
h3 −Mnh2

)
hxy + Re

× sin(β− θ)

sin β

{
3
8

sin(β− θ)

sin β

(
y3 − 4h3

)
hy− 1

8
Mn
(

y3 − 4h3
)

y
}

hx + Re
(

1
2

y2

−hy)

{
3 cos(β− θ)

Re sin β
hx − α2We

(
hxxx − ξ

∂κ

∂x
+ 2ζ2κ2hx + 4ζ2κh

∂κ

∂x

)}
+ ζκ

×
{

sin(β− θ)

sin β

(
1
2

y3 − 3
2

hy2 + 3h2y
)
+

1
2

Mny2
)
− 2µ

(
3 sin(β− θ)

sin β
h−Mn

)
hxy.

(49)

From the continuity equation, we have

ht = −
(

3 sin
(

β− θ
)

sin β
h2 −Mnh

)
hx. (50)

Putting this in (49), we obtain
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u1 =MnRePr
(

5
2

sin
(

β− θ
)

sin β
h3 −Mnh2

)
hxy + Re

sin
(

β− θ
)

sin β

{
sin(β− θ)

sin β

(
3
8

hy4 − 3
2

h2y3

+3h4y
)
+ Mn

(
−1

8
y4 +

1
2

hy3 − h3y
)}

hx + Re
(

1
2

y2 − hy
){

3 cos(β− θ)

Re sin β
hx

− α2We
(

hxxx − ξ
∂κ

∂x
+ 2ζ2κ2hx + 4ζ2κh

∂κ

∂x

)}
+ ζκ

{
sin(β− θ)

sin β

(
1
2

y3 − 3
2

hy2 + 3h2y
)

+
1
2

Mny2
}
− 2µ

(
3 sin(β− θ)

sin β
h−Mn

)
hxy.

(51)

The local flow rate q(x, t) is defined in

q(x, t) =
∫ h

0
u(x, y, t)dy, (52)

where u(x, y, t) = u0(x, y, t) + αu1(x, y, t) + O(α2). Solving for the integral on the right-
hand side of Equation (50), we obtain

q(x, t) =
sin
(

β− θ
)

sin β
h3 − 1

2
Mnh2 + α

[
MnRe

(
5
4

sin
(

β− θ
)

sin β
h5 − 1

2
Mnh4

)
hx + Re

sin(β− θ)

sin β

×
(

6
5

sin(β− θ)

sin β
h6 − 2

5
Mnh5

)
hx −

Re
3

{
3 cos(β− θ)

Re sin β
hx − α2We

(
hxxx − ξ

∂κ

∂x

+ 2ζ2κ2hx + 4ζ2κh
∂κ

∂x

)}
h3 + ζκ

(
9
8

sin(β− θ)

sin β
h4 +

1
6

Mnh3
)

− µ

(
3 sin(β− θ)

sin β
h3 −Mnh2

)
hx

]
.

(53)

Using alternative form of the kinematic boundary conditions

∂h
∂t

+ (1− αζκh)
∂q
∂x

+ O
(

α2
)
= 0. (54)

We obtain a non-linear evolution equation for the thickness of the film

ht + A(h)hx + α(B(h)hx + C(h)hxxx)x = 0, (55)

where,

A(h) =
(

3 sin(β− θ)

sin β
h−Mn

)
h + α

{
α2WeRe

(
− ξ +

16
3

ζ2κh

)
h2 ∂κ

∂x

+
3
2

ζκh2
(

sin(β− θ)

sin β
h + Mn

)}
,

(56)

B(h) =MnRePr
(

5
4

sin(β− θ)

sin β
h5 − 1

2
Mnh4

)
+ Re

sin(β− θ)

sin β

(
6
5

sin(β− θ)

sin β
h6 − 2

5
Mnh5

)
−
(

cos(β− θ)

sin β
− 2

3
α2WeReζ2κ2

)
h3 − µ

(
3 sin(β− θ)

sin β
h3 −Mnh2

)
,

(57)

C(h) =
1
3

α2WeReh3. (58)

We introduce a new parameter S, as defined by earlier researchers [37]:

S = α2We. (59)
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From now on, for the sake of simplicity of the formula, we shall use the following abbreviation:

s =
sin(β− θ)

sin β
, c =

cos(β− θ)

sin β
. (60)

4. Linear Stability Analysis

To investigate the stability of the thin film flow, a small perturbation at the free interface
is assumed. The film thickness h, which can be written as

h = 1 + η(x, t), (61)

where η � 1 denotes the dimensionless distance of free surface of the liquid film from free
surface of the smooth laminar flow.

To eliminate the α in Equation (55), we set the conversion

x = αx̃, t = αt̃. (62)

Substituting Equations (61) and (62) into Equation (55), retaining up to O(η3), after drop-
ping the cap sign, we obtain

ηt + A1ηx + B1ηxx + C1ηxxxx + A′1ηηx + B′1
(
ηηxx + η2

x
)
+ C′1

(
ηηxxxx + ηxηxxx

)
+

1
2

A′′1 η2ηx + B′′1

(
1
2

η2ηxx + ηη2
x

)
+ C′′1

(
1
2

η2ηxxxx + ηηxηxxx

)
+ O

(
η4
)
= 0,

(63)

where A1, B1, C1 and their corresponding derivatives (denoted by primes) are the values
corresponding to h = 1. The linear response of the film is studied by assuming that the
perturbation is in the form of a sinusoidal perturbation, that is

η(x, t) = Γ exp[i(kx−ωt)] + c.c., (64)

where Γ is the amplitude of the disturbance, k is the wave number, c.c. is the complex
conjugate and ω = ωr + iωi is the complex frequency, ωr and ωi are the linear growth
rates of oscillation frequency and amplitude, respectively. Substituting Equation (64) into
Equation (63) and considering the linear part, the dispersion relation can be obtained as

Disp(ω, k) = −iω + iA1k− B1k2 + C1k4 = 0. (65)

In Equation (65), the real and the imaginary parts of ω are expressed as

ωr = A1k,

ωi = B1k2 − C1k4.
(66)

The flow will be linearly unstable if the linear growth rate of amplitude is ωi > 0, conversely,
the flow is linearly stable, and the flow will be neutrally stable if ωi = 0. At this point, the
critical Reynolds number is

Rec =
c− 2Boζ2κ2 + µ

(
3s−Mn

)
1
4 MnPr

(
5s− 2Mn

)
+ 2

5 s
(
3s−Mn

) , (67)

where Bo = 4π2σ0/ρgλ̂2 sin β is the inverse Bond number and 3Bo = SRe.
As µ → 0, we obtained the same critical Reynolds number as that derived by

Mukhopadhyay and Mukhopadhyay [35].
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5. Weakly Non-Linear Analysis

We use the method of multiple scale and expend the interfacial perturbation η in the
following form [38–40]

η(x, x1, . . . , t, t1, t2, . . .) = εη11 + ε2η12 + ε3η13 + . . . , (68)

where

x1 = εx, t1 = εt, t2 = ε2t, . . . , (69)

here x and t represent the rapidly varying scales, while x1, t1, and so on represent the
slowly varying scales. Assuming these variables are independent of each other, then the
derivatives of time and space become as shown in

∂t → ∂t + ε∂t1 + ε2∂t2 , (70)

∂x → ∂x + ε∂x1 . (71)

Substituting the Equations (68)–(71) into the Equation (63), we obtain

(L0 + εL1 + ε2L2 + . . .)(εη11 + ε2η12 + ε3η13 + . . .) = −ε2N2 − ε3N3 − . . . , (72)

where the operators L0, L1, L2, and the non-linear terms N2, N3 in Equation (72) are shown below.

L0 =
∂

∂t
+ A1

∂

∂x
+ B1

∂2

∂x2 + C1
∂4

∂x4 ,

L1 =
∂

∂t1
+ A1

∂

∂x1
+ 2B1

∂2

∂x∂x1
+ 4C1

∂4

∂x3∂x1
,

L2 =
∂

∂t2
+ B1

∂2

∂x2
1
+ 6C1

∂4

∂x2∂x2
1

,

N2 =A′η11
∂η11

∂x
+ B′1

[
η11

∂2η11

∂x2 +

(
∂η11

∂x

)2
]
+ C′1

[
η11

∂4η11

∂x4 +
∂η11

∂x
∂3η11

∂x3

]
,

N3 =A′1

[
η11

(
∂η12

∂x
+

∂η11

∂x1

)
+ η12

∂η11

∂x

]
+ B′1

[
η11

(
∂2η12

∂x2 + 2
∂2η11

∂x∂x1

)
+ η12

∂2η11

∂x2

+ 2
∂η11

∂x

(
∂η12

∂x
+

∂η11

∂x1

)]
+ C′1

[
η11

(
∂4η12

∂x4 + 4
∂4η11

∂x3∂x1

)
+ η12

∂4η11

∂x4 +
∂η11

∂x

×
(

∂3η12

∂x3 + 3
∂3η11

∂x2∂x1

)
+

∂3η11

∂x3

(
∂η11

∂x1
+

∂η12

∂x

)]
+

1
2

A′′1 η2
11

∂η11

∂x

+ B′′1

[
1
2

η2
11

∂2η11

∂x2 + η11

(
∂η11

∂x

)2
]

.

(73)

For the first-order equation of ε, we have

L0η11 = 0, (74)

the solution of this equation has the following form:

η11 = Γ(x1 , t1 , t2)[exp iΘ] + c.c., (75)

where Γ(x1 , t1 , t2) is the complex amplitude. Θ = kx− ωrt, ω = ωr + iωi is the complex
frequency, because near the neutral curve ωi ∼ O(ζ2). Thus, the function exp(ωit) is slow
and may be absorbed in Γ(x1, t1, t2).
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For the second-order equation of ε, we have

L0η12 = −L1η11 − N2. (76)

Substituting the expression (75) into the Equation (76), we obtain

L0η12 =− i

[
∂Disp(ωr, k)

∂ωr

∂Γ
∂t1
− ∂Disp(ωr, k)

∂k
∂Γ
∂x1

]
eiΘ −Q1Γ2e2iΘ + c.c., (77)

where Disp(ωr, k) is given by Equation (65) and

Q1 = iA′1k− 2B′1k2 + 2C′1k4. (78)

The solution η12 is obtained from Equation (77) in the following form:

η12 = − Q1Γ2e2iΘ

Disp(2ωr, 2k)
+ c.c.. (79)

Introducing the coordinate transformation δ =
(
x1 − cgt1

)
, where cg = (−Dispk/Dispωr

),
and using the solvability condition of the third-order equation, we obtain

∂Γ
∂t2

+ J1
∂2Γ
∂δ2 − ε−2ωiΓ +

(
J2 + i J3

)
|Γ|2Γ = 0, (80)

where
J1 =B1 − 6C1k2,

J2 =
1
2

(
C′′1 k4 − B′′1 k2

)
+

(
A′1
)2k2 + 2

(
7C′1k4 − B′1k2)(B′1k2 − C′1k4)
16C1k4 − 4B1k2 ,

J3 =
1
2

A′′1 k +
A′1k

(
B′1k2 − 7C′1k4

)
+ 2A′1k

(
B′1k2 − C′1k4

)
16C1k4 − 4B1k2 .

(81)

The diffusion effect in Equation (80) is neglected to obtain

∂Γ
∂t2
− ε−2ωiΓ +

(
J2 + i J3

)
|Γ|2Γ = 0. (82)

The solution of the equation can be written as

Γ = a exp[−ib(t2)t2]. (83)

Substituting Equation (83) into Equation (82), we obtain

∂a
∂t2

=
(
ε−2ωi − J2a2)a, (84)

∂[b(t2)t2]

∂t2
= J3a2. (85)

The second term on the right-hand side of Equation (84) is a non-linear term that
regulates the exponential change of the linear perturbation, depending on the sign of ωi
and J2. When the right side of Equation (84) is 0, the equilibrium amplitude is solved as

εa =

√
ωi
J2

. (86)

The term J2 < 0 can lead to the instability of the system. According to the signs of
ωi and J2, four non-linear regions are defined, which are: the supercritical stability region
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I(ωi > 0, J2 > 0), the subcritical instability region II(ωi < 0, J2 < 0), the unconditionally
stable region III(ωi < 0, J2 > 0) and the explosive state region IV(ωi > 0, J2 < 0).

6. Numerical Simulations

We numerically solve Equation (55) within a periodic domain to comprehend the
evolution of finite amplitude perturbations. To achieve this, we transform the problem into
a set of ordinary differential equations (ODE) by discretizing the spatial variables into a
series of wave numbers through the Fourier transform. Subsequently, we employ the fast
Fourier transform algorithm to compute these wave numbers as the numerical solution to
the nonlinear evolution Equation (55) [41].

Fourier transform of the Equation (55) in the x domain

∂ĥ
∂t

=− ik · F
{

sF−1[ĥ]3 − 1
2

MnF−1[ĥ]2 + ζκ

(
3
8

sF−1[ĥ]3
)
− SRe

(
1
3

ξF−1[ĥ]3 − 4
3

ζ2κ

× F−1[ĥ]4
)

∂κ

∂x
+ MnRePr

(
5
4

sF−1[ĥ]5 − 1
2

MnF−1[ĥ]4
)

F−1[ikĥ] + Res
(

6
5

s

× F−1[ĥ]6 − 2
5

MnF−1[ĥ]5
)

F−1[ikĥ]− cF−1[ĥ]3F−1[ikĥ] +
2
3

SReζ2κ2F−1[ĥ]3

× F−1[ikĥ]− µ

(
3sF−1[ĥ]3 −MnF−1[ĥ]2

)
F−1[ikĥ] +

1
3

SReF−1[ĥ]3F−1[(ik)3ĥ]

}
.

(87)

Initially, a finite-amplitude monochromatic disturbance is given as

h(x, 0) = 1 + 0.03 cos kx, (88)

where k is the wave number. The computation is performed on a uniform grid with the
number of spatial grid points varying N = 200 and ∆t =0.1∼0.2.

7. Specific Case Study

We choose the substrate profile as

b̂(x̂) = â sin
(
2x̂/λ̂

)
, (89)

where λ̂ = 3 is the wavelength and â = 0.15 is the amplitude of the wavy bottom profile [35].
x̂ = 10π/3 is a point on the “uphill” and x̂ = 5π/3 is a point on the “downhill”. We will
understand more easily according to Figure 1. Moreover, the basal steepness ζ is a fixed
quantity rather than a perturbation parameter. Since both the basal curvature κ(x̂) and the
local inclination θ(x̂) are functions of x̂, the critical Reynolds number is also a function of x̂.

8. Results and Discussion
8.1. Linear Stability Analysis

Figure 2 depicts the temporal growth rate curve for various values of the Marangoni
number. It is evident that the Marangoni number exerts a destabilizing effect on the
system. The destabilizing role of the Marangoni number Mn can be explained from a
physical perspective as follows: when the liquid film flows downward along the substrate,
the thermocapillary force appearing at the interface acts in the opposite direction of the
gravitational acceleration as Mn increases and then enhances the growth of the surface
instabilities [42].
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(a) (b)

Figure 2. Temporal growth rate curve derived from ωi = B1k2 − C1k4, (a) x = 10π/3; (b) x = 5π/3,
for different values of Marangoni number when Re = 2, ζ = 0.1π, S = 4.5, Pr = 7, µ = 0.4, β = π/3.

Figure 3 displays the temporal growth rate curve for different values of odd viscosity.
Notably, the odd viscosity µ has a stabilizing effect on the system. This is because the
odd viscosity µ comes into play effectively through shear stress on the free surface as
the liquid film flows downward along the substrate, causing additional stress on the free
surface, which increases the critical Reynolds number giving the stabilizing effect [32].
Equation (67) further supports this observation, showing that the critical Reynolds number
Rec rises as the odd viscosity µ increases. As a result, higher values of odd viscosity lead to
a more stable fluid flow, reducing the likelihood of surface perturbations and instability. In
addition, we compare Figure 2a,b, or Figure 3a,b: interestingly, the fluid exhibits greater
stability in the “uphill” part under the same conditions. This distinction is attributed to
the difference in the sign of the local inclination angle θ in these regions. The variation in
θ plays a significant role in influencing the stability characteristics of the fluid flow along
the substrate.

(a) (b)

Figure 3. Temporal growth rate curve derived from ωi = B1k2 − C1k4, (a) x = 10π/3; (b) x = 5π/3,
for different values of odd viscosity when Re = 2, ζ = 0.1π, S = 4.5, Pr = 7, Mn = 0.4, β = π/3.

In Figure 4, it is evident that under same conditions, the critical Reynolds number
of the “uphill” point increases with an increase in the bottom steepness ζ. In contrast,
the critical Reynolds number of the “downhill” point decreases as the bottom steepness ζ
increases. From Equation (67), for a positive local inclination angle θ, an increase in bottom
steepness ζ inhibits the instability of the liquid film flow. Conversely, with a negative local
inclination angle θ, increased bottom steepness ζ promotes the instability of the liquid
film flow.
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(a) (b)

Figure 4. Critical Reynolds number as a function of bottom steepness, (a) x = 10π/3; (b) x = 5π/3,
for different values of odd viscosity when Re = 2, ζ = 0.1π, S = 4.5, Pr = 7, Mn = 0.4, β = π/3.

Moreover, as Mn → 0, µ → 0 and ζ → 0, we find from Figure 5 that the value of
the critical Reynolds number is equal to Rec = (5/6) cot β ∼ 0.48, which was originally
obtained by Benjamin [7] and Yih [8].

Figure 5. Comparison of Rec as a function of bottom steepness for isothermal bottom at a point on
the “downhill” (x = 5π/3) and at a point on the “uphill” (x = 10π/3) portion when Bo = 1, Pr = 7,
β = π/3.

8.2. Weakly Non-Linear Stability Analysis

From Figure 6, we observe that, under same conditions, the subcritical instability
region II and unconditional stability region III gradually enlarge as the odd viscosity
µ increases. In contrast, the supercritical stability region I and the explosive region IV
gradually shrink. Moreover, the critical Reynolds number Rec increases with the odd
viscosity µ. This implies that the odd viscosity has a stabilizing effect on the flow, as it leads
to larger stability regions and higher critical Reynolds numbers.

Similarly, Figure 7 reveals that, under same conditions, the subcritical instability
region II and unconditional stability region III gradually shrink as the Marangoni number
Mn increases. Conversely, the supercritical stability region I and the explosive region
IV gradually enlarge. Additionally, the critical Reynolds number Rec decreases with the
increase in the Marangoni number. Hence, the Marangoni effect destabilizes the flow,
resulting in reduced stability regions and lower critical Reynolds numbers.
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(a) (b)

(c) (d)

Figure 6. Stability curves, (a) µ = 0; (b) µ = 0.4; (c) µ = 0.8; (d) µ = 1.2, for different odd viscosity µ

when ζ = 0.1π, S = 4.5, Pr = 7, Mn = 0.4, β = π/3. I–IV represent the supercritical stability region,
the subcritical instability region, unconditional stability region and the explosive region, respectively.

8.3. Numerical Simulations

Figures 8 and 9 illustrate the short-time evolution of the free surface for different
values of odd viscosity µ and the Marangoni number Mn in the subcritical instability
region, respectively. As shown in both figures, the disturbance amplitude gradually
decreases over time, indicating that the liquid film stabilizes as the disturbances dampen.
This behavior is characteristic of the subcritical instability region, where disturbances
do not grow unbounded but rather stabilize over time. Furthermore, when comparing
Figures 8 and 9, we can observe that the odd viscosity µ has a stabilizing effect. Conversely,
the Marangoni number Mn has a destabilizing effect.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Stability curves, (a) Mn = 0; (b) Mn = 0.2; (c) Mn = 0.4; (d) Mn = 0.6, for different
Marangoni number Mn when ζ = 0.1π, S = 4.5, Pr = 7, µ = 0.2, β = π/3. I–IV represent the
supercritical stability region, the subcritical instability region, unconditional stability region and the
explosive region, respectively.

In Figure 10a, we can see that under the same conditions, the amplitude of the free
surface disturbance first becomes smaller and then larger as the bottom steepness ζ increases
in the subcritical instability region. This observation supports the previous conclusion that
the critical Reynolds number of the “uphill” point increases with the bottom steepness ζ,
while the “downhill” point decreases with increasing ζ. The varying amplitudes of the
free surface disturbance further highlight the contrasting roles of the bottom steepness ζ
in influencing the stability of the fluid flow at different regions of the substrate. We can
observe wave changes within the explosive region, as depicted in Figures 10b and 11. The
obtained results align with those within the subcritical unstable region.

(a) (b)

Figure 8. Film thickness at different times, (a) µ = 0; (b) µ = 0.4, when Re = 2, k = 1.75, ζ = 0.1π,
S = 4.5, Pr = 7, Mn = 0.5, β = π/3.

(a) (b)

Figure 9. Film thickness at different times, (a) Mn = 0; (b) Mn = 0.4, when Re = 1, k = 1.7, ζ = 0.1π,
S = 4.5, Pr = 7, µ = 0.2, β = π/3.
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(a) (b)

Figure 10. Variations of waves with bottom steepness through numerical simulation, (a) when Re = 1,
k = 1.5, S = 4.5, Pr = 7, µ = 0.2, Mn = 0.4, β = π/3; (b) Re = 3, k = 1.48, S = 4.5, Pr = 7, µ = 0.2,
Mn = 0.4, β = π/3.

(a) (b)

Figure 11. Variations of waves with different odd viscosity and Marangoni number through numerical
simulations, (a) odd viscosity µ when Re = 3, k = 1.4, S = 4.5, Pr = 7, Mn = 0.5, β = π/3;
(b) Marangoni number Mn when Re = 3, k = 0.67, S = 4.5, Pr = 7, µ = 0.2, β = π/3.

9. Conclusions

We have mainly studied the effect of odd viscosity on the instability of falling liquid
film over a non-uniformly heated inclined corrugated substrate. To simplify the analysis,
we neglect the evaporation effect by assuming a nonvolatile fluid. Additionally, for the
sake of convenience, we consider the free surface to be adiabatic. The mechanism of
thermocapillary helps move the fluid from a warmer region to a colder neighborhood. This
study is conducted on general periodic bottom contours and is analyzed and discussed in
the specific case of sinusoidal bottoms.

In our investigation, we carefully considered the impact of various factors, including
odd viscosity, thermocapillary effects, and bottom steepness. By taking these factors into
account, we derived the non-linear evolution equation. Temporal linear stability analysis
are performed based on Equation (55), and we find that the odd viscosity has a stabilizing
effect, while the Marangoni number always has a destabilizing effect. We observed that
regardless of the presence of odd viscosity or the value of the Marangoni number, the fluid
flow is consistently more stable at the “uphill” point compared to the “downhill” point.
This distinction is a consequence of different signs of the local inclination angle.

In the investigation of weakly non-linear stability, we employed the multiple scales
method to derive the Ginzburg–Landau equation. By analyzing the signs of ωi and J2,
we have identified four distinct nonlinear regions. We find that the subcritical instability
region II and the unconditional stability region III enlarge with odd viscosity µ increases,
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and conversely, the supercritical stability region I and the explosive region IV shrink. While
the results for the Marangoni effect are opposite to the odd viscosity effect.

To gain a deeper understanding of the stability of liquid film flow and investigate the
influence of different parameters, we employ the fast Fourier transform method to solve
the non-linear Equation (55). The results obtained from the numerical simulations are in
agreement with the findings of the previous linear stability analysis. Numerical simulations
indicate that, increasing odd viscosity diminishes perturbations and decreases the wave’s
maximum height, which is precisely the opposite to the Marangoni effect. While with
the increase in the bottom steepness, the height of the wave amplitude lowers first and
then rises.
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