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Abstract: With the rapid development of nanotechnology, the study of nanocomposites as electrode
materials has significantly enhanced the scope of research towards energy storage applications.
Exploring electrode materials with superior electrochemical properties is still a challenge for high-
performance supercapacitors. In the present research article, we prepared a novel nanocomposite of
tungsten trioxide nanoparticles grown over supported graphene oxide sheets and embedded with a
poly(3,4-ethylenedioxythiophene) matrix to maximize its electrical double layer capacitance. The
extensive characterization shows that the poly(3,4-ethylenedioxythiophene) matrix was homoge-
neously dispersed throughout the surface of the tungsten trioxide–graphene oxide. The poly(3,4-
ethylenedioxythiophene)@tungsten trioxide–graphene oxide exhibits a higher specific capacitance
of 478.3 F·g−1 at 10 mV·s−1 as compared to tungsten trioxide–graphene oxide (345.3 F·g−1). The
retention capacity of 92.1% up to 5000 cycles at 0.1 A·g−1 shows that this ternary nanocompos-
ite electrode also exhibits good cycling stability. The poly(3,4-ethylenedioxythiophene)@tungsten
trioxide–graphene oxide energy density and power densities are observed to be 54.2 Wh·kg−1 and
971 W·kg−1. The poly(3,4-ethylenedioxythiophene)@tungsten trioxide–graphene oxide has been
shown to be a superior anode material in supercapacitors because of the synergistic interaction of the
poly(3,4-ethylenedioxythiophene) matrix and the tungsten trioxide–graphene oxide surface. These
advantages reveal that the poly(3,4-ethylenedioxythiophene)@tungsten trioxide–graphene oxide
electrode can be a promising electroactive material for supercapacitor applications.

Keywords: poly(3,4-ethylenedioxythiophene); tungsten trioxide; graphene oxide; ternary
nanocomposite; supercapacitor

1. Introduction

Supercapacitors (SCs) have received enormous attention due to their excellent advan-
tages, including long cycle life, high power density, good safety, rapid charging/discharging
rate, and lower maintenance cost [1–3]. Although they have been widely applied in various
fields, including electric vehicles, pulse power systems and portable devices, the traditional
SCs have some obvious shortcomings, such as a large volume, heavy weight and are diffi-
cult to deform, and are far from the requirements for the rapid development of wearable
electronics [2,4]. Therefore, there is a great challenge to overcome these major drawbacks
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in the design and synthesis of flexible high-performance SCs and their corresponding elec-
trode materials [2]. Moreover, some of the electrode materials studied for effective storage
of charge, include the transition metals, carbonaceous material, and conductive polymeric
materials. For use in SC applications, carbonaceous electrode materials such as mesoporous
carbon, graphene oxide (GO), reduced graphene oxide, carbon nanofiber, activated carbon,
and carbon nanotubes exhibit outstanding rate capability, good reversibility, and excellent
stability [2,5–7]. On the other hand, GO is widely used for charge storage applications
in SCs. This is due to their outstanding properties such as high electrical and thermal
conductivity, vast surface area and chemical stability. Furthermore, GO is a flexible lamellar
material that has a wide range of functional groups on both basal planes and edges. As a
result, it can be easily exfoliated and functionalized to form homogeneous suspensions in
both water and organic solvents, providing more possibilities for the synthesis of graphene-
based materials. The existence of oxygen functional groups and aromatic sp2 domains
allows GO to participate in a wide range of bonding interactions [5,8]. Due to these positive
properties with agglomerated and stacked structures, it was found that GO had a specific
capacitance (Csp) of about 150 F·g−1 [9]. The capacitive performance can be improved by
introducing metal oxides (MOs) in between GO sheets in order to reduce the agglomeration
and stacking. Due to their high surface activity, exceptional electrochemical characteristics,
improved, and changeable oxidation states, MOs have recently attracted a great deal of
research attention in SCs [1,10,11]. It was also reported that the MOs/GO hybrid materials
deliver high Csp and high robust cycling stability. For example, Shi et al. [12] reported
fast facile synthesis of SnO2/graphene composite assisted by microwave as the anode
material for lithium-ion batteries and it delivered a Csp of 112.0 F·g−1 with a capacitance
retention as high as 73.2% after continuous 2000 cycles. Gao et al. [13] investigated the
design and preparation of a graphene/Fe2O3 nanocomposite as a negative material for a
supercapacitor, and obtained a Csp that was 378.7 F·g−1 at a current density of 1.5 A·g−1,
and a Csp retention of 88.76% after 3000 cycles. Li et al. [14] studied a three-dimensional
hierarchical graphene/TiO2 composite as an electrode for a supercapacitor which had
a Csp value of 235.6 F·g−1 at 0.5 A·g−1 with a cycling stability of 90% after 500 cycles.
Sheikhzadeh, Gu et al. [15] reported a nanocomposite foam layer of CuO/graphene ox-
ide for a high performance supercapacitor with a Csp of 238.3 F·g−1. Sahoo et al. [16]
reported a vanadium pentaoxide-doped waste plastic-derived graphene nanocomposite
for supercapacitors with a Csp of 58.15 F·g−1 at 1.0 A·g−1. Qiu et al. [17] also reported
scalable sonochemical synthesis of petal-like MnO2/graphene hierarchical composites for
high-performance supercapacitors which had a Csp of 187.2 F·g−1 at 0.5 A·g−1.

Tungsten oxide (WO3) is an electrochemically sustainable MO of type n with imple-
mentation in different sectors. Its 2D layered structure, similar to GO sheets, permits high
reversibility in the intercalation of ions, high electronic conductivity and large current
capacity [5]. In addition to their superior effective applications in energy storage devices,
photocatalysis, electrochromics, gas sensing and field-mission devices, nanostructured
WO3 materials have gained growing interest [18,19]. This is due to their low charge move-
ment resistance and significant surface area [19,20]. Moreover, WO3/GO materials exhibit
advantageous electrochemical redox properties, high specific capacities, and reactivities of
ions [19]. Different investigations have been carried out by researchers. The experimental
results have shown that WO3/GO hybrid materials are potential candidates for SC applica-
tions due to the delivery of higher Csp values of 143.6 F·g−1, as compared to pure WO3
(32.4 F·g−1) at 0.1 A·g−1 [21].

To enhance the capacity of SCs, conducting polymers (CP) such as polyaniline (PANI),
polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT) have offered an efficient
solution [22,23]. PEDOT, owing to its facile availability, exceptional stability, processability,
easy oxidation potential, short band gap, and thermal stability make it perfect for various
applications such as energy storage [22–24]. However, most of the advantages of PEDOT-
based SCs comes from vapor deposition because this provides the exceptional inherent
conductivity suitable for SC electrodes. Consequently, exploring the synthesis approach
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of novel PEDOT electrodes is a useful method and a technique to effectively improve
cycle stability and electrochemical performance. The in situ polymerization of EDOT with
GO is possible; however, the bulk structures with low pores limit the access of electrolyte
ions to the surface resulting in a deprived performance. To fully utilize the substrate as
an electrical double-layer capacitor contributor and MO and a CP shield as a pseudoca-
pacitor active material, it is important to grow the structures with structures suitable for
ion penetration [25]. As recently reported, PEDOT, GO and nanocomposites of WO3 and
conducting polymers can effectively improve the power density of supercapacitors [26–32].
However, the aggregation of nanomaterials easily occurs during the construction of 3D
nanostructures when using the abovementioned materials, leading to a decrease in the
specific surface area [33]. In the literature, studies have been found on the contribution of
CP to GO with the presence of metal oxide [1–3,11–15]. Haldar et al. [1] produced via a
chemical polymerization method, metal oxide/PANI/graphene composites using different
metal oxides (ZrO2, WO3 and V2O5) and investigated its electrochemical properties. Bej-
janki et al. [34] synthetized a SnO2/RGO@PANi ternary composite via chemical oxidation
polymerization for supercapacitors. According to their results, they observed that adding
metal oxide to the GO in the presence of CP matrix greatly affects the supercapacitor’s
properties and increases the specific capacitance value. These results inspired our study.

In this work, we report a simple method to prepare PEDOT@WO3–GO ternary composite,
starting with WO3–GO, which was considered a primary material, where WO3 was applied in
situ on GO sheets using a simple chemical synthesis method. Secondly, polymer matrix was
followed via chemical oxidation polymerization of EDOT. The PEDOT@WO3–GO electrode
material so obtained has excellent electrochemical performance and a good specific capaci-
tance of 478.3 F·g–1 and a maximum energy density of 54.2 Wh·kg–1 with a power density
of 971 W·kg–1. This is attributed to a larger effective surface area of the fabricated materials.
These findings indicate that the PEDOT@WO3–GO nanocomposites could be promising
electrode materials for high-performance supercapacitor applications, which has not been
previously reported.

2. Materials and Methods
2.1. Materials

Graphite powder (Superior Graphite Co., Ltd., Chicago, IL, USA. 99.9%), 3,4-ethylened
ioxythiophene (EDOT; Sigma Aldrich, Madrid, Spain. ≥99.5%), tungsten trioxide (WO3;
Merck, Shanghai, China. ≥99%), ammonium persulfate (APS; Merck, Riga, Lithuania. ≥98%),
polyvinylidene fluoride (PVDF); ammonia solution (NH4OH; Merck, Riga, Lithuania. 25%),
N-methylpyrrolidone (NMP; Merck), carbon black (CB, Superior Graphite Co., Ltd., Chicago,
IL, USA) as conductive additive. Sodium hydroxide (NaOH; Merck, Riga, Lithuania. 37%),
sulfuric acid (H2SO4; Merck, Riga, Lithuania. 90%), hydrogen peroxide (H2O2; Merck,
70%), sodium nitrate (NaNO3; Merck), potassium hydroxide (KOH; Merck, Riga, Lithuania),
potassium permanganate (KMnO4; Merck, Riga, Lithuania), ethanol (C2H5OH; Merck, Riga,
Lithuania. 96%), filter paper, and deionized water (DIW). A commercial grade stainless steel
(SS) foil (thickness: 0.2 mm) was used as the substrate for electrode preparation.

2.2. Measurements

XRD patterns were measured by an X-ray diffractometer (CCDApex Bruker.
Madison, WI, USA). TEM images were collected on an Hitachi H7500 (Tokyo, Japan)
electron microscope. Surface area and pore volume analyses were performed on an iQin-
strument Autosorb analyzer (Madrid, Spain). Prior to measurements, the samples were
degassed at 120 ◦C under high vacuum overnight. The Brunauer–Emmett–Teller (BET)
method was used to calculate the specific surface area of the materials. The pore size
distribution was derived from Barret–Joyner–Halenda (BJH) method. FTIR spectra were
recorded on a Bruker Alpha (Karlsruhe, Germany) spectrophotometer. The chemical com-
position of the materials was obtained via an X-ray photoelectron spectrometer (XPS)
(AVG-Microtech-Multilab, 3000 electron, Tokyo, Japan). Thermogravimetric analysis (TGA)
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was used to check the thermal stability with a Hitachi (STA7200; Tokyo, Japan) instrument
in an N2 atmosphere at a heat rate of 20 ◦C in the temperature range 0 ◦C to 900 ◦C. UV–Vis
spectra were registered using a Hitachi spectrophotometer (U3000; Tokyo, Japan).

2.3. Synthesis of Graphene Oxide (GO)

Graphene oxide (GO) was prepared from graphite powder (GP) using a modified
Hummer’s method [32]. GP (5 g) was first added to concentrated H2SO4 (115 mL) and
NaNO3 (2.5 g) and stirred for 1 h with a magnetic stirrer, to which KMnO4 (15 g) was then
slowly added and mixed for 1 h in an oil bath at 40 ◦C. Finally, to terminate the reaction,
10 mL of 30% H2O2 was added to the suspension. Then, the filtered material was washed
until it reached a neutral pH. The washed product (GO) was dried for 24 h at 80 ◦C.

2.4. Preparation of WO3–GO

GO (100 mg) was added to 15 mL DIW and dispersed by ultrasound for 30 min
to obtain a well-dispersed, negatively charged GO solution. Separately, 2.0 g of WO3
nanoparticles were ultrasonically dispersed in 20 mL NaOH solution (pH 9.5) for 30 min.
Then, the two suspensions were mixed, and the sonication time was extended to 1 h with
mild magnetic stirring at 50 ◦C to fulfill the electrostatic self-assembly process. Finally, the
sediment solid was collected and washed and completely dried and annealed for 1 h at
300 ◦C to obtain the target sample of WO3–GO.

2.5. Fabrication of PEDOT@WO3–GO

1.0 mL EDOT was added to 25 mL 1M HCl by magnetic stirring. Then, the synthesized
WO3–GO (1.0 g) discussed above, was added to it and ultrasonicated 30 min to disperse
it properly. The temperature of the dispersion was reduced below 5 ◦C using an ice bath.
Separately, 25 mL of HCl (1 M) solution was used to dissolve 2.5 g of APS. This solution
was added dropwise to the dispersate under constant stirring for 6 h for the completion of
the polymerization reaction and obtained a precipitate of green color. Then, the residue
was filtered and washed with HCl, ethanol and DIW, and dried at 60 ◦C in an oven for 6 h.
The obtained dry powder (PEDOT@WO3–GO) was collected and stored in a desiccator.

2.6. Electrochemical Studies

The electrochemical performance of the prepared electrodes was determined by a
cyclic voltammetry (CV) technique. The CV was used in a three-electrode configuration, a
platinum wire was used as a counter electrode (CE), a reversible hydrogen electrode (RHE)
served as the reference electrode (RE) and the electrode of prepared material was used
as the working electrode (WE). The electrochemical properties were evaluated at a fixed
potential range of −0.1 V to +1.0 V in 3 M KOH as electrolyte at room temperature [22–24].
To prepare WE, active material of 70 wt%, CB of 15 wt% and PVDF of 15 wt%, were mixed
in acetone and stirred at 60 ◦C until a homogeneous ink was obtained. Subsequently,
the ink was drop-casted on a stainless steel (SS) plate (thickness: 1 µm) and dried at
60 ◦C overnight.

The specific capacitance Csp (F·g−1) from the electrode setup was calculated from CV
and GCD by Equation (1):

Csp =
I∆t
m

(1)

The power density (E) and energy density (P) were calculated using galvanostatic
discharge behavior via Equations (2) and (3):

E =
1
2

Csp(∆V)2 (2)

P =
E
t

(3)
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where Csp denotes specific capacitance (F·g−1), V refers to the potential window (V), m is
the mass of the active material (g), I is the discharge current density (A·g−1) and t (s) is the
discharge time.

3. Results
3.1. Structural Determination

The synthesized WO3, WO3–GO, PEDOT and PEDOT@WO3–GO were characterized
by using FTIR which is shown in Figure 1a. It can be observed that the WO3 nanoparticles
give absorption bands at the positions of 615 cm−1, 726 cm−1 and 833 cm−1 and are
attributed to the stretching and bending vibrations for O–W–O and W–O–W in WO3 [25,26].
The peak at 964 cm−1 is associated with the W=O stretching vibration and the peak
at 1570 cm−1 is attributed to the hydroxyl group in W–OH. The spectra also show the
renowned bands at 1670 cm−1 and 3423 cm−1, which are ascribed to H–O stretching and
bending vibrational modes of free or absorbed water. Moreover, the results of the FTIR
spectrum of WO3–GO confirms the existence of both components WO3 and GO in the
nanocomposite; besides the occurrence of a shift towards higher frequency, new bands at
1055 cm−1, 1435 cm−1 and 1611 cm−1 of the GO spectrum appear and were due to C–O
stretching, C–H bending and C=C stretching, respectively. In addition, the FTIR spectrum
of PEDOT shows bands at 1582 cm−1, 1487 cm−1, 1373 cm−1 and 1208 cm−1 which are
mainly due to C=C and C–C stretching of the quinoid structure of the thiophene rings. The
band at 1151 cm−1 is due to C–O–C bond stretching in the ethylene dioxide units, while the
bands at 932 cm−1 and 652 cm−1 are attributed to the C–S stretching mode. Furthermore,
in the PEDOT@WO3–GO sample, the WO3–GO bands also appear with all spectra typical
of bands for PEDOT. Compared with pure PEDOT, the band intensity of the PEDOT in the
ternary nanocomposite was significantly weakened and broadened owing to the strong
bonds between the PEDOT matrix and WO3–GO. The characteristic bands of the polymer
chain tended to migrate slightly to a higher position. The formation of PEDOT@WO3–GO
was confirmed.
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The XRD patterns of materials are depicted in Figure 1b. A good crystalline nature
of WO3 nanoparticles and also of WO3–GO has been evidenced by the intense diffraction
peaks, but in PEDOT@WO3–GO the peaks are shifted from their respective standard
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positions and the intensity of peaks is reduced, which is due to the existence of the PEDOT
matrix. The diffraction peaks in the XRD pattern of WO3 nanoparticles ascertained at
2θ = 28.13◦, 23.47◦, 24.33◦, 26.63◦, 28.95◦, 33.22◦, 34.16◦, 41.85◦, 47.24◦ and 49.97◦ can be
readily indexed as (002), (020), (200), (120), (112), (022), (202), (222), (004) and (400) to
lattice planes of WO3 monoparticles, respectively (JCPDS—00-044-0141). Moreover, the
XRD diffraction pattern of WO3–GO reveals the characteristic peaks which belong to the
WO3 nanoparticles with two new diffraction peaks at 2θ = 10.43◦ and 47.74◦ which are
characteristic peaks of GO [26]. This result confirms the formation of GO. Since there
were no peaks in the XRD pattern of pure polymer, this signifies its partially amorphous
structure. After the incorporation of WO3–GO into PEDOT, the WO3–GO diffraction peaks
were seen due to the PEDOT matrix.

The particle diameter of the as-prepared nanomaterial was determined by the
Scherrer formula.

D =
k·λ

βcosθ
(4)

where k is the Scherrer constant, and was considered as 0.9 in this work. β is the line
broadening value at half of the maximum intensity (FWHM), which is expressed as ∆2θ in
radians. The mean crystallite size calculated using the Scherrer equation was found to be
215 nm for the PEDOT@WO3–GO nanomaterial, which agrees well with the mean diameter
calculated from TEM measurements.

The XPS in Figure 2 shows the shift of C1s binding energy of the WO3–GO, PEDOT
and PEDOT@WO3–GO samples. The C1s spectrum of WO3–GO shows a major peak at
284.59 eV which is attributed to the bonding energy of C–C related to component GO [27].
The second shoulder peak at 286.05 eV is attributed to C–OH (epoxy/hydroxy). Another
oxygen containing group, O–C=O, was present in very small concentrations at 288.43 eV.
Moreover, the typical carbon spectra (C1s) of pure PEDOT is exhibited in a peak at 284.57 eV
and is assigned to the C=C chain of α-PEDOT [28]. The peak at 284.97 eV corresponds
to the C=C chain of β-PEDOT [28], and the peak at 287.21 eV is assigned to C–O/C–S
chains [29]. In addition, the ternary nanocomposite was observed to contain numerous
oxygen-containing functional groups because of the presence of the two components,
PEDOT and WO3–GO together. Therefore, the area under the curve at 286.48 eV and also at
286.48 eV are larger for PEDOT@WO3–GO than for WO3–GO. These results are consistent
with those reported in the literature.
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The narrow scan spectrum of the W4f core level for samples is shown in Figure 3.
For pristine WO3, the deconvoluted peak observed at 35.48 eV could be related to the
W4f7/2 level, whereas the peak at 37.62 eV could correspond to the W4f5/2 level [30];
whereas these peaks shift to more positive values for the WO3–GO material, to become the
binding energies of 35.98 eV and 38.09 eV, respectively. Likewise, the W4f XPS spectrum of
PEDOT@WO3–GO also displays two peaks located at 36.03 eV and 38.15 eV corresponding
to the existence of the W6+ oxidation state.
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Figure 3. W4f scanning spectra of samples: (a) WO3; (b) WO3–GO and (c) PEDOT@WO3–GO.

Figure 4a illustrates the nitrogen adsorption–desorption isotherm of the materials. All
samples show type IV isotherms with a typical H3 type hysteresis loop according to the
Brunauer classification, indicating the existence of textural meso-/microporosity. This is
mainly due to the presence of slit-shaped pores, which are formed by the accumulation
of crystal nanoparticles [32]. Moreover, the specific surface area (SBET) and pore volume
(Vpore) of the WO3 are 23.57 m2·g−1 and 0.07 cm3·g−1, respectively. Likewise, calculations
reveal that the SBET and Vpore of the WO3–GO samples are 41.82 m2·g−1 and 0.08 cm3·g−1,
respectively. The increase in the surface area can be explained by the GO nanosheets having
the largest surface area, mainly contributed by the GO nanosheets’ high surface area in the
WO3–GO architecture (SBET of GO is 63.31 m2·g−1). In previous studies, PEDOT-specific
surface area was varied, depending on the synthesis technique or even the treatment
of polymer after preparation. Sequeira et al. [35] stated that the SBET and Vpore were
27 m2·g−1 and 0.09 cm3·g−1, respectively. Cheng et al. [36] reported that the SBET was
58.86 m2·g−1. The SBET differed considerably when changing the material used in the
nanocomposite’s preparation. Accordingly, it was found that the formation of the PEDOT
matrix increases the SBET of WO3–GO to 103.92 m2·g−1 and the corresponding Vpore to
0.11 cm3·g−1. Therefore, the polymer backbone in the PEDOT@WO3–GO structure would
presumably provide additional space and volume for the diffusion of ions during the
electrochemical charging and discharging processes.

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

  
(a) (b) 

Figure 4. (a): Nitrogen adsorption isotherms; and (b): TGA curves of materials. 

The TEM images of WO3, WO3–GO and PEDOT@WO3–GO are given in Figure 5. It can 
be observed that WO3 has various oval-shaped nanoparticles with a particle size distribu-
tion between 90 nm and 160 nm. It is worth mentioning that, owing to the flexible and two-
dimensional sheet-like nature of graphene and its derivatives, they can easily be used to 
wrap or encapsulate oval nanoparticles. GO has been applied for the encapsulation of WO3 
nanoparticles. WO3–GO possesses a number of advantages when compared to bare WO3, 
including less nanoparticle aggregation as well as the enhancement of electrical, electro-
chemical, and optical properties [37]. Specifically, owing to the characteristically strong neg-
ative charge of GO the encapsulation of WO3 by GO results in the suppression of aggrega-
tion, with a particle size distribution between 170 nm and 240 nm. Interestingly, it can be 
seen in Figure 5c that the WO3–GO material is adorned with well-distributed PEDOT for 
the ternary nanocomposite, which is beneficial for SC devices. WO3–GO sheets form aggre-
gates with an average size of about 150~300 nm. The PEDOT matrix covers WO3–GO sheets; 
the size of the PEDOT@WO3–GO is 100~400 nm, which agrees well with the mean diameter 
calculated from XRD measurements. 

 
Figure 5. TEM images of: (a) WO3; (b) WO3–GO; and (c) PEDOT@WO3–GO. 

3.2. Electrochemical Studies 
We used cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electro-

chemical impedance spectroscopy (EIS) to characterize the electrochemical performances of 
electrodes. All analyses were carried out in a three–electrode testing system with 3 M KOH 

Figure 4. (a): Nitrogen adsorption isotherms; and (b): TGA curves of materials.

Figure 4b illustrates the TGA curves for samples. PEDOT@WO3–GO demonstrated
higher thermal stability than pure polymer. The largest weight loss occurs at temperatures
from 480 ◦C to 610 ◦C for both PEDOT and PEDOT@WO3–GO, due to the destruction of
the polymer backbone and carbon skeleton at the same time. In addition, the weight loss of
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PEDOT@WO3–GO and WO3–GO was stabilized at temperatures from 25 ◦C to 900 ◦C at
about 83.53% and 93.78%, respectively; which indicates that the amount of polymer loaded
on the WO3–GO material was about 10.25 wt%. Likewise, these results indicate that the
amount of GO sheets formed on the WO3 surface was about 6.22 wt%.

The TEM images of WO3, WO3–GO and PEDOT@WO3–GO are given in Figure 5.
It can be observed that WO3 has various oval-shaped nanoparticles with a particle size
distribution between 90 nm and 160 nm. It is worth mentioning that, owing to the flexible
and two-dimensional sheet-like nature of graphene and its derivatives, they can easily be
used to wrap or encapsulate oval nanoparticles. GO has been applied for the encapsulation
of WO3 nanoparticles. WO3–GO possesses a number of advantages when compared to
bare WO3, including less nanoparticle aggregation as well as the enhancement of electrical,
electrochemical, and optical properties [37]. Specifically, owing to the characteristically
strong negative charge of GO the encapsulation of WO3 by GO results in the suppression
of aggregation, with a particle size distribution between 170 nm and 240 nm. Interestingly,
it can be seen in Figure 5c that the WO3–GO material is adorned with well-distributed
PEDOT for the ternary nanocomposite, which is beneficial for SC devices. WO3–GO sheets
form aggregates with an average size of about 150~300 nm. The PEDOT matrix covers
WO3–GO sheets; the size of the PEDOT@WO3–GO is 100~400 nm, which agrees well with
the mean diameter calculated from XRD measurements.
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3.2. Electrochemical Studies

We used cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electro-
chemical impedance spectroscopy (EIS) to characterize the electrochemical performances
of electrodes. All analyses were carried out in a three–electrode testing system with 3 M
KOH as the electrolyte. Figure 6a presents the CV curves of WO3, WO3–GO, PEDOT and
PEDOT@WO3–GO materials recorded at a scanning rate of 10 mV·s−1, with a potential
window ranging from −0.1 V to +1.0 V. The PEDOT and PEDOT@WO3–GO electrodes
featured obvious redox peaks. The PEDOT@WO3–GO electrode possessed the largest
specific capacitance among these CV curves. Additionally, the PEDOT@WO3–GO electrode
featured two pairs of redox peaks, the first within the ranges 0.2–0.4 V [(1)/(1′)] due to the
existence of PEDOT and the second between 0.6–0.7 V [(2)/(2′)] related to the WO3–GO
material. The CV measurements for PEDOT@WO3–GO revealed that the separation be-
tween anodic and cathodic peaks is equal to 160 mV for the first pair and 70 mV for the
second pair [3,32]. Contrarily, the CV curve of the WO3–GO electrode had a rectangular
shape with angular forms in which the contribution of electrical double-layer capacitor
and pseudocapacitance may be distinguished. In spite of this, the pattern exhibits a small
pair of peaks that appeared within the range 0.55–0.65 V [(3)/(3′)]. Moreover, the first
oxidation/reduction peaks observed for PEDOT@WO3–GO were absent on the CV curves
of WO3–GO, suggesting that effective interaction of the ions led to an electrical double-layer
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capacitor [32]. Thus, both the WO3–GO and PEDOT species in the PEDOT@WO3–GO struc-
ture contributed to the pseudocapacitance. Accordingly, an electrode prepared from the
PEDOT@WO3–GO material would exhibit reversible redox reactions and rate capabilities.
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The capacitive behaviors of the electrodes prepared were examined by GCD in a
three–electrode arrangement at 0.1 A·g−1 with a potential range from −0.1 to 1.0 V. As
shown in Figure 6b, all GCD curves have the form of a triangle, suggesting that the SC
has perfect properties. Generally, the discharge curve comprises two steps; the first is
the electrical double-layer capacitor with a potential ranging from 1.0 to 0.4 V and the
second is the electrical double-layer capacitor and pseudocapacitance with a potential
ranging from 0.4 to −0.1 V. Moreover, the non-linearity in the GCD plots demonstrated
the pseudocapacitance behavior of all electrodes, which agreed with the results achieved
from the CV plots [25]. The specific capacitance value of the PEDOT@WO3–GO electrode
(478.3 F·g−1) is superior to those of the PEDOT (28.6 F·g−1), WO3 (57.4 F·g−1) and WO3–GO
(145.3 F·g−1) electrode nanomaterials at a current density of 1.0 A·g−1. In addition, the
reported specific capacitance value of the PEDOT, WO3, WO3–GO and PEDOT@WO3–GO
by the CV graphs at the scan rate of 20 mV·s−1 is 32.5 F·g−1, 60.7 F·g−1, 147.1 F·g−1 and
503.2 F·g−1, respectively. The PEDOT@WO3–GO is higher than that of the other samples,
which is due to the common contribution of PEDOT and WO3–GO to the electrochemical
process. The synergistic effect of polymer matrix and WO3–GO enhances the electrochemi-
cal activity and thereby increases the specific capacitance. On the other hand, the direct
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addition of WO3–GO during the polymerization of EDOT can make PEDOT uniformly
coat the outside of the WO3–GO nanoparticles, forming a “shell-core structure”, so that
the two have a better coordination at the nanoscale, and in nanocomposites. Thus, the
material exerts a better synergistic effect and improves the electrochemical performance of
the composite material [38].

Figure 6c presents the variation in CV measurements of PEDOT@WO3–GO at different
scan rates ranging from 10 mV·s−1 to 100 mV·s−1 across the potential window from −0.1 V
to +1.0 V. This curve exhibited a well-defined redox form, inferring the characteristic
pseudocapacitance behavior resulted from likely faradic redox processes [39]. Additionally,
from the shape of the CV patterns, this electrode is well preserved, even at a scan rate equal
to 100 mV·s−1, indicating that this material has the best rate capacity of all the synthesized
materials. The specific capacitance value decreases as the scan rate rises, mainly due to
ion exchange storage. Moreover, the shape of the CV patterns were similar; however, the
peak current increased as the scan rate grew, indicating the excellent rate efficiency and
reversibility of the charge–discharge process of the electrode. Moreover, CV measurements
of WO3–GO at different scan rates were performed and are shown in Figure 6d. We can
see that the size of the CV pattern increases as the scanning speeds increase. In addition,
the CV curves are closer to rectangles and more symmetrical, as well as the oxidation and
reduction peaks, indicating that a pseudocapacitance action is also taking place.

Figure 7a,b depicts the typical GCD plots of the WO3–GO and PEDOT@WO3–GO
electrodes at various current densities and at a scan rate of 10 mV·s−1. The calculated
specific capacitance of PEDOT@WO3–GO at 0.1 and 5.0 A·g−1 were 478.3 and 382.5 F·g−1,
respectively, showing a good rate performance. The specific capacitance decreases with
increasing current density, which may be due to an insufficient time for electrolyte ions to
diffuse into the pores at the high current density. Additionally, a comparative analysis of
WO3–GO was performed concerning current densities, which showed a regular increment
in the specific capacitance with a decrease in current densities. The detailed specific
capacitance performance of two electrodes is displayed in Figure 7c. These data fully prove
that the fabricated PEDOT@WO3–GO electrode has incredibly potent adaptability to a large
current charge/discharge, which was able to be applied in high-power charge/discharge
occasions [35].

Figure 7d shows the investigations on cycling stability of PEDOT@WO3–GO and
WO3–GO electrodes using charge/discharge measurements at 0.1 A·g−1 in the potential
window of−0.1 V to +1.0 V over 5000 cycles. The cyclic performance of prepared electrodes
are very important factors to be considered in SCs. It is observed from the figure that the
PEDOT@WO3–GO electrode showed only a 95.2% reduction after 1000 cycles. Nevertheless,
an extra charging/discharging process improved the stability of capacitance, with almost
92.1% of the capacitance remaining after the 5000-cycle test, confirming a very strong
cycling stability. This demonstrates that the developed material is a reliable electrode for
SC applications. The cyclic stability of WO3–GO showed as an 83.7% capacity retention
at 5000 cycles. It is worth mentioning that the enhanced electrochemical performance of
PEDOT@WO3–GO is due to the uniform distribution of the 2D layered PEDOT matrix
and WO3 on 2D layered GO sheets. Hence, these multilayers on WO3–GO surfaces could
be predicted to be a 3D layered structure, which could be caused by the introduction of
PEDOT as a nitrogen source into the WO3–GO lattice, solving the restacking problem of
GO sheets bonded to WO3 [5,40,41].

Figure 8a shows the curves of energy and power density for electrodes. It is observed
that PEDOT@WO3–GO showed the highest value of the power density (971 W·kg−1) and
energy density (54.2 Wh·kg−1) as compared to WO3–GO (power density is 585 W·kg−1

and power density is 29.7 Wh·kg−1). Thus, it confirms that PEDOT@WO3–GO showed
enhanced charge transfer kinetics at the electrode/electrolyte interface with more stability
towards electrochemical performance and hence, it could act as an alternative electrode
material in SC applications. Table 1 compares the electrochemical performance of a few
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related electrodes; these results suggest the superiority of the PEDOT@WO3–GO electrode
with those of other MO-based and GO-based materials.
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Table 1. Electrochemical performance of different materials as supercapacitor electrodes.

Electrodes Specific Capacitance
(F·g–1)

Energy Density
(Wh·kg–1)

Power Density
(W·kg–1) References

Graphene/Fe2O3 378.7 64.09 800.01 [13]
WO3/GO 143.6 // // [21]

WO3 32.4 // // [21]
Graphene–WO3 nanowire 465 25 6000 [21]

WO3/Se(ASC) 0.858 0.047 0.345 [42]
WO3–MnO2 103 24.13 915 [43]
WO3/SnO2 530 35 468 [44]

Graphene/PEDOT 270 34 25000 [45]
Graphene/SnO2/PEDOT 183 22.8 238.4 [46]

GO/PEDOT:PSS 155 10.79 1.53 [47]
PEDOT:PSS/MnO2/GO 841 593 // [48]

GO/Glucose/PEDOT: PSS 19.72 // // [49]
Graphene/PEDOT:PSS/Ecoflex 82.4 11.44 131.58 [50]

WO3–GO 345.3 29.7 585 This work
PEDOT@WO3–GO 478.3 54.2 971 This work

Figure 8b shows the Nyquist plot of PEDO@WO3–GO and WO3–GO electrodes, the
plot consists of a semicircle followed by a straight line in the low-frequency region, which
is related to the electrochemical and mass transfer processes, respectively. In the low-
frequency region, the quasi-vertical curves indicating the diffusion or Warburg impedance
are mainly governed by both the contributions, i.e., non-faradaic and faradaic. From
Figure 8b, it is observed that two electrodes make a transition angle between 65◦ and 70◦,
which is a clear indication of kinetics and diffusion of ions due to double-layer capacitive
and faradaic behavior. In theory, the low-frequency region exhibiting an ideal capacitor
should display vertical line behavior. The plot, however, demonstrates that the vertical
line is slanted at an angle, which is associated with ion diffusion behavior. This deviation
is caused by two factors; firstly, a variable penetration depth of an AC signal due to pore
size dispersion at both electrode materials, resulting in anomalous capacity; and secondly,
faradaic contribution occurring at the electrode surface [51]. In order to interpret the data
collected from EIS, a Randles cell as an equivalent circuit was utilized and is shown in
the inset Figure 8b, where (Rs) is the resistance of the solution and (ZW) is the Warburg
impedance for the diffusion of redox. (Cdl) is the double-layer capacitance, and (Rct) is the
charge-transfer resistance. For the PEDOT@WO3–GO electrode, the Rct was about 9.7 Ω,
which is less than that of WO3–GO material showing a Rct of about 17.8 Ω. The ZW of
the PEDOT@WO3–GO, which appeared in the low frequency region and corresponded
to a diffusion-controlled process, was much less than that of WO3–GO, indicating the
abundance of ions on the electrode surface causing a decrease in impedance. In terms of
the Cdl, there was no difference between the two electrodes. Furthermore, the values of
the equivalent series resistance (ESR), which include the electrolyte resistance, the internal
electrode resistance, and the electrical resistance between the electrode and the current
collector, can be obtained from the real axis intercept of the complex-plane impedance plots
(inset of Figure 8b). At the same time, EDR is defined as the difference between R (the
intersection value of the extrapolation of the EIS near-vertical linear segment and Z′-axis)
and the ESR [52,53]. The PEDOT@WO3–GO electrode shows the lowest ESR of 0.34 Ω and
EDR of 8.21 Ω in comparison with the WO3–GO material (ESR = 0.67 Ω, EDR = 17.82 Ω).

4. Conclusions

Formation of WO3–GO on a PEDOT matrix as a high-performance SC electrode
material consisted of preparation of GO using a modified Hummer’s method and WO3
nanoparticle loading by an electrostatic self-assembly process to form a binary WO3–GO hy-
brid, has been accomplished. This was then followed by an in situ polymerization method
of an EDOT monomer on the surface of WO3–GO. The preparation of samples was con-
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firmed by XRD, FTIR, TGA, TEM, BET and XPS studies. The prepared PEDOT@WO3–GO
electrode exhibited high cyclic stability of the material as described by the CV curve. EIS
studies demonstrated high electrochemical performance with superior capacitive behavior.
The highest specific capacitance (478.3 F·g−1), energy density (54.2 Wh·kg−1), power den-
sity (971 W·kg−1), and capacitance retention of 92.1% even after 5000 cycles was obtained
for PEDOT@WO3–GO rather than the WO3–GO electrode (345.3 F·g−1, 29.7 Wh·kg−1 and
585 W·kg−1, respectively). These results showed that the multilayered ternary nanocom-
posite has high stability in terms of electrochemical performance and is considered a good
choice of electrode for energy storage applications.
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