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Abstract: Ultrathin broadband absorbers with high efficiency, wide angular tolerance, and low
fabrication cost are in demand for various applications. Here, we present an angle-insensitive
ultrathin (<150 nm) broadband absorber with an average 96.88% (experiment) absorptivity in the
whole visible range by utilizing a simple dielectric–semiconductor–lossy metal triple-layer film
structure. The excellent broadband absorption performance of the device results from the combined
action of the enhanced absorptions in the semiconductor and lossy metal layers exploiting strong
interference effects and can be maintained over a wide viewing angle up to ±60◦. Benefiting
from the lossy metal providing additional absorption, our design reduces the requirement for the
semiconductor’s material dispersion and has great flexibility in the material selection of the metal
layer. Additionally, the lithography-free nature of the proposed broadband visible absorber provides
a high-throughput fabrication convenience, thus holding great potential for its large-area applications
in various fields.

Keywords: broadband absorber; planar thin-film structure; ultrathin absorbing semiconductor;
Fabry–Pérot cavity; interference effect

1. Introduction

Broadband perfect absorbers, possessing near-unity absorption for the incident beam
over a certain waveband along with the entirely suppressed reflection and transmission,
have drawn substantial attention due to their great promise in many applications such
as photovoltaic solar cells [1], thermal imaging [2], thermal emitters [3], and photodetec-
tors [4]. Benefiting from the rapid development of nanofabrication technologies, broadband
absorbers based on metamaterials and metasurfaces have been widely investigated due
to their unique advantages of high absorptivity, ultrathin thickness, easy integration, and
flexible working wavelength scalability compared to conventional heavy and bulky semi-
conductor absorbers [5]. In the past decade, various subwavelength micro/nanostructure
systems such as tapered hyperbolic arrays [6], metal–insulator–metal (MIM) [7,8], nanograt-
ings [9], nanoholes [10], nanowires [11], and nanocylinders [12] have been designed to
realize broadband absorption properties across a wide frequency region from microwave to
optical (even ultraviolet) bands by utilizing the coupling of multiple resonances to achieve a
perfect impedance match between the air and the device [13–16]. However, the fabrications
of the aforementioned broadband absorbers require multiple complicated and expensive
nano-patterning processing steps such as e-beam lithography and reactive ion etching,
greatly hindering their practical applications in a large area and low cost. Therefore, facili-
tating broadband perfect absorption in lithography-free planar thin-film structures is highly
desirable and can be easily scaled up by using simple thin-film deposition technologies [17].
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To date, various multilayer planar designs have been reported to achieve highly ef-
ficient absorption in a broad wavelength range [18]. A widely used configuration is a
Fabry–Pérot (F-P) resonator consisting of dielectric–metal–dielectric–metal (DMDM) film
stacks, in which the metal materials are generally selected from the metals with high losses,
such as nickel (Ni), titanium (Ti), chromium (Cr), tungsten (W), and iron (Fe) [19–23].
The thickness of the top lossy metal layer is in the order of several nanometers, allowing
the multiple round-trip reflections of the incident light within the structure and finally
leading to sufficient light absorptions from the visible to the near-infrared (NIR) region
by forming a low quality factor F-P cavity [24]. In addition, other strategies have also
emerged to achieve broadband absorption performances by utilizing lossy metals [25–27].
For example, Yang et al. proposed an ultra-broadband absorber by continuously depositing
ultrathin semiconductor (germanium (Ge), amorphous silicon (a-Si)), dielectric (titanium
dioxide (TiO2), and magnesium fluoride (MgF2)) layers on a lossy Cr substrate [28]. The
anti-reflection (AR) effects are introduced by the MgF2/TiO2/a-Si/Ge multilayers featuring
the graded refractive index profile, resulting in a high absorption efficiency of 98% aver-
aged from 400 to 2000 nm (even 20 µm) [29]. However, the structures of these absorbers
involve plenty of layers (at least four-layer stack films), which makes the fabricating error
and complexity, as well as cost, significantly increase. Recently, it was found that strong
interference effects could be excited in an ultrathin absorbing semiconductor film coated on
a metallic substrate, leading to strong absorption with a broad bandwidth at the resonant
wavelength [30]. Although many broadband absorber designs have been proposed by
utilizing ultrathin semiconductor films, the near-unity absorption characteristic cannot
cover the whole visible range [2,31,32]. Therefore, how to achieve more efficient absorp-
tion over a wider spectral range with simpler planar thin-film structures still remains a
significant challenge.

In this work, we propose and experimentally demonstrate a wide-angle ultrathin
broadband visible absorber based on a triple-layer planar thin-film structure, which is
comprised of a top dielectric layer, an ultrathin absorbing semiconductor film, and a lossy
metallic substrate. Unlike a typical semiconductor–dielectric–metal mirror structure in
which an unusual material dispersion is required for the semiconductor, our design is
easier to implement and has great flexibility in the material selection of the metal layer. The
fabricated device exhibits a nearly perfect absorption as high as 98.68% with an average
absorption efficiency of 96.88% from 400 nm to 800 nm, which directly results from the
combined action of the enhanced absorptions in the semiconductor and lossy metal layers
by exploiting the excited F-P absorption and AR resonances. Additionally, due to the high
refractive indices of the used materials and the ultrathin thickness (<150 nm) of the whole
structure, the excellent broadband absorption performance of the device exhibits a great
angular tolerance up to ±60◦. The proposed broadband visible absorber can be realized
using simple thin-film deposition methods, thereby opening up a new opportunity for
its large-area and low-cost application in various areas, such as photovoltaic solar cells,
imaging, and detections.

2. Methods
2.1. Device Fabrication

The proposed ultrathin broadband visible absorber based on dielectric–semiconductor–
lossy metal triple-layer films was fabricated on a clean silicon substrate by e-beam evapo-
ration (DE400, DE Technology Inc., King of Prussia, PA, USA) and atom layer deposition
(ALD, R-200Adv, PICOSUN, Dresden, Germany). Ni and Ge films were deposited at room
temperature with the rate of 2 Å/s and 0.5 Å/s, respectively, when the vacuum of the
e-beam evaporator chamber was lower than 9 × 10−8 Torr. For TiO2 ALD deposition,
the precursors used were titanium tetrachloride (TiCl4, pure 99.999%) as the metalorganic
precursor and deionized water (DI water) as the oxidant. The deposition temperature was
80 ◦C where the chamber pressure was lower than 10 hPa. The carrier gas flows of TiCl4
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and DI water were maintained at 120 sccm and 200 sccm, respectively. The average growth
rate was measured to be 0.56 Å/cycle.

2.2. Simulation and Measurement

Optical simulations based on the transfer matrix method were carried out to calculate
the absorption spectra of the designed broadband visible absorber at normal and oblique in-
cidence, normalized electric field intensity distribution in the structure, optical admittance,
and net phase shifts. The optical constants of all the materials were calibrated using a spec-
troscopic ellipsometer (RC2D, J. A. Woollam, Lincoln, NE, USA) and utilized in the simula-
tions. An ultraviolet–visible–near-infrared spectrophotometer (Lambda-950, PerkinElmer,
Waltham, MA, USA) and a spectroscopic ellipsometer (M-2000DI, J. A. Woollam, USA)
were used to measure the reflection spectra of the fabricated device at normal incidence and
45◦~70◦ viewing angles, respectively. The absorption performances were then obtained
from 1-R relation, where R is the reflectance due to the zero transmittance of the device.

3. Results and Discussion

Figure 1a depicts the design process of our proposed angle-invariant broadband ab-
sorber based on an ultrathin planar thin-film structure. It begins with a simple bilayer
structure consisting of an ultrathin absorbing semiconductor film on top of a highly re-
flective metallic mirror, in which a broadband absorption could be easily achieved at the
resonant wavelength due to the excited strong interference effect [33]. However, the ab-
sorption efficiency is generally not sufficient. For example, the maximum absorptivity
of ~82.57% appears at 550 nm, and the average absorption remains above around 65%
over the visible regime for a typical design of 10 nm Ge/100 nm silver (Ag), as presented
in Figure 1b(i). To further enhance the optical absorption, one widely used design is the
semiconductor–dielectric–metallic mirror structure, in which the top semiconductor film
is required to exhibit an unusual type of material dispersion [2,32,34]. Although an effec-
tive medium design using two absorbing films [34] and controlling the semiconductor’s
polycrystallinity [32] was proposed to match the ideal optical complex refractive index, the
near-unity absorption band still cannot cover the entire visible range, and the fabrication
costs were also increased. Another design is the dielectric–semiconductor–metallic mir-
ror structure, in which the top dielectric film acts as an AR layer to further suppress the
reflection [35]. As shown in Figure 1b(ii), the reflection is significantly suppressed from
400 nm to 800 nm, and the average absorption efficiency is increased to ~88% when adding
a 38-nm-thick TiO2 AR layer on the top of 10 nm Ge/100 nm Ag. It is worth noting that
the reflection is still high at long wavelengths because the absorption is mainly ascribed
to the Ge layer, while the intrinsic loss of Ge is very low in this region. Therefore, the
highly reflective metal mirror can be further replaced by a lossy metal substrate, forming a
dielectric–semiconductor–lossy metal structure to provide an additional absorption layer.
It can be seen from Figure 1b(iii) that the reflection is further suppressed, and near-unity ab-
sorption performances are achieved in a wide wavelength range from 400 to 800 nm when
replacing the Ag substrate with a lossy Ni layer. Compared to the typical semiconductor–
dielectric–metallic mirror structure, this design reduces the requirements for the material
dispersion of the semiconductor film and makes it easier to achieve broadband absorptions.
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lossy Ni film with optical thickness can prevent any light transmission and act as an ad-
ditional absorber at the same time, greatly reducing the limitations for the unique material 
dispersion of the ideal semiconductor required in other studies. Figure 2b provides the 
optical constants of these three materials used in calculations. Figure 2c plots the calcu-
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tion peaks of ~98.31% and ~97.96% appear at 462 nm and 670 nm in the simulation, re-
spectively. The inset in Figure 2b shows a photograph of the fabricated sample under am-
bient illumination, exhibiting a totally black color appearance at normal incidence. In ad-
dition, it is evident that our design has great flexibility in the material selection of the 
bottom metal layer. As presented in Figure 2d, broadband absorption performances with 
high efficiencies can also be easily achieved when using other lossy metal substrates, in-
cluding Cr, Ti, and W. The optimized structural parameters are 42 nm TiO2/10 nm Ge/100 
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Figure 1. (a) Illustration of our broadband absorber design strategy. The configurations from top to
bottom are an ultrathin semiconductor film coated on a highly reflective metallic mirror, a semicon-
ductor film coated on a metallic mirror with an additional dielectric added, and a semiconductor
film coated on a lossy metal substrate with an additional dielectric added. (b) The simulated reflec-
tion spectra of the typical broadband absorber designs in (a): (i) 10 nm Ge/100 nm Ag; (ii) 38 nm
TiO2/10 nm Ge/100 nm Ag; and (iii) 38 nm TiO2/10 nm Ge/100 nm Ni.

Figure 2a illustrates the schematic view of our designed lithography-free and angle-
insensitive ultrathin broadband visible absorber, which is a triple-layer thin-film structure
consisting of a 38-nm-thick TiO2 AR layer, a 10-nm-thick Ge absorbing semiconductor layer,
and a 100-nm-thick Ni layer on a silicon substrate from the top to the bottom. The lossy
Ni film with optical thickness can prevent any light transmission and act as an additional
absorber at the same time, greatly reducing the limitations for the unique material disper-
sion of the ideal semiconductor required in other studies. Figure 2b provides the optical
constants of these three materials used in calculations. Figure 2c plots the calculated and
measured absorption spectra of the proposed device under normal incidence, presenting a
fairly good match with each other and strong absorption performances across the entire
visible range with average efficiencies of ~96.66% and ~96.88%, respectively. The maximum
absorptivity of ~98.68% appears at 662 nm in the experiment, and two absorption peaks
of ~98.31% and ~97.96% appear at 462 nm and 670 nm in the simulation, respectively.
The inset in Figure 2b shows a photograph of the fabricated sample under ambient illu-
mination, exhibiting a totally black color appearance at normal incidence. In addition,
it is evident that our design has great flexibility in the material selection of the bottom
metal layer. As presented in Figure 2d, broadband absorption performances with high
efficiencies can also be easily achieved when using other lossy metal substrates, including
Cr, Ti, and W. The optimized structural parameters are 42 nm TiO2/10 nm Ge/100 nm Cr,
40 nm TiO2/10 nm Ge/100 nm Ti, and 42 nm TiO2/15 nm Ge/100 nm W, respectively.
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Figure 2. (a) The three-dimensional schematic illustration of our designed ultrathin broadband
visible absorber. (b) The optical constants of lossy materials and dielectric materials used for the
calculations. (c) The simulated and measured absorption spectra of the proposed device at normal
incidence. The inset shows the optical image of a fabricated sample with dimensions of 2 cm × 2 cm.
(d) The simulated absorption spectra of the optimized broadband visible absorber using different
lossy metal substrates, including Cr, Ti, and W. Their corresponding average absorption efficiencies
are also calculated.

In order to better understand the mechanism of the strong broadband absorption
performance in this triple-layer thin-film structure, the total absorption spectrum is plotted
together with the separate absorption profiles in each layer of the device to elucidate the
function of each layer, as depicted in Figure 3a. Obviously, the Ni and Ge layers contribute
equally to the nearly perfect absorption across the entire visible range, but the short-
wavelength absorption is mainly ascribed to Ge, and the long-wavelength absorption is
concentrated in Ni, which can be clearly understood by studying the wavelength-dependent
electric field distribution inside the designed device. As shown in Figure 3b, a strong electric
field can be observed in Ni and Ge at all the wavelengths, and the stronger field intensity
enters the Ni layer as the incident wavelength increases, which is consistent with the
gradually enhanced absorption in Ni. It is interesting to note that although the electric
field inside Ge is stronger in the long-wavelength range, the Ge layer exhibits a relatively
weak absorption due to its intrinsically low loss property in this region. To reveal the
resonant locations, the net phase shifts, which include two reflection phases at both the
top and bottom interfaces and the propagation phase accumulation within the layer, are
calculated for the Ge and top TiO2 layers and plotted in Figure 3c. The resonances occur at
the wavelengths where the net phase change is equal to a multiple of 2π. It is found that an
F-P absorption resonance is excited at 735 nm inside the Ge layer (the red curve), directly
leading to the enhanced electric field and strong absorption in Ni at long wavelengths. In
addition, the AR resonance @470 nm is excited within the top TiO2 layer (the blue curve),
resulting in an enhanced electric field and strong absorption in Ge at short wavelengths.
The F-P absorption and AR resonances function together, leading to the strong broadband
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absorption characteristic of the proposed device and creating two absorption peaks at
462 nm and 670 nm, respectively. Figure 3d compares the simulated absorption spectra of
the layered structures with and without the top 38-nm-thick TiO2 film. It is evident that the
device without the TiO2 layer (the red curve) exhibits a relatively flat absorption with an
average absorption efficiency of 67.3% due to a considerable amount of reflection from the
large index contrast between Ge and air. However, light absorption in the entire visible
range is significantly enhanced by the excited AR resonance in the device with the top TiO2
layer (the black curve).
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separate absorption in each layer. (b) Normalized electric field intensity profiles inside the whole
structure of the device at all wavelengths. (c) Calculated net phase shifts divided by 2π within the top
TiO2 and Ge layers, respectively. (d) Absorption spectra comparisons of the device with and without
the top TiO2 AR layer.

On the other hand, the highly efficient broadband absorption performance of the
proposed ultrathin TiO2/Ge/Ni triple-layer film stacks can be explained by plotting the
optical admittance diagram of the structure as well. The optical admittance (i.e., the
reciprocal of the impedance) is defined as Y =

√
ε/µ, where ε and µ are the relative

permittivity and permeability, respectively, and is numerically equal to the material’s
refractive index due to µ ≈ 1 at optical frequencies for typical materials [36]. The admittance
of the entire structure starts from the point of the silicon substrate, and the succeeding loci
are determined by both the film thickness and the optical properties of the following layers.
Lossless dielectrics and perfect electric conductors result in a circular trajectory, whereas
spiral loci result from the absorbing media, such as semiconductors or metals. The distance
between the ending admittance point of the film stacks and the admittance of air (1, 0)
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provides a direct measure of the reflectance of the entire structure’s reflectivity at normal
incidence by utilizing the following equation:

R =

(
1 − (x + iy)
1 + (x + iy)

)2
,

where x and y are the real and imaginary parts of the final admittance, respectively. Figure 4
plots the admittance locus of our proposed ultrathin broadband visible absorber at different
wavelengths, including 400 nm, 500 nm, 600 nm, 700 nm, and 800 nm, where the admit-
tances present a similar variation trend and the ending admittance positions are (1.37, 0.62),
(1.34, −0.11), (1.33, −0.21), (1.09, −0.3), and (0.91, −0.58), respectively. Obviously, these
admittance points are very close to that of air, resulting in very low reflections of ~8.61%,
2.28%, 2.82%, 2.33%, and 8.7%, respectively. As the transmitted light is completely pre-
vented by the bottom thick metallic substrate, the significantly suppressed reflections in
the whole visible range lead to the broadband absorption property of the proposed device.
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Figure 4. Optical admittance locus of the proposed broadband visible absorber at five discrete
wavelengths in the visible range. The reflectance of the device at normal incidence is proportional to
the length of the black line, which connects the final admittance point of the structure and the point
of the incident medium (air).

Next, we examine the influence of the thickness change in the TiO2 and Ge layers on
the absorption efficiency of the proposed broadband visible absorber. Figure 5a provides a
simulated 2D contour plot of the optical absorption as a function of the wavelength and
the top TiO2 AR layer thickness for the designed TiO2/Ge/Ni triple-layer film stacks at
normal incidence. The AR resonance will get shifted as the TiO2 thickness varies due to
the different propagation phase shifts in the TiO2, directly resulting in a significant change
in the absorption performance. It can be seen that the broadband absorption covering the
entire working area with an average efficiency above 90% can be maintained at the TiO2
thickness ranging from 30 to 60 nm. Figure 5b plots the absorption spectra of the layered
structure with the TiO2 thicknesses of 30, 40, 50, and 60 nm, respectively. Obviously, the
absorption intensity decreases in the whole visible range when reducing the TiO2 thickness
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from 40 nm to 30 nm as the AR resonant condition is not satisfied. In contrast, with
increased TiO2 thickness (>40 nm), the long-wavelength absorption is still very high due to
the strong F-P absorption resonance excited in the Ge, but the short-wavelength absorption
gradually decreases since the AR resonance gradually moves toward the longer wavelength
range. Similarly, taking from the absorption plotted as a function of the wavelength and
the Ge layer thickness in Figure 5c, the TiO2 thickness should be limited within the range
of 5 to 20 nm to ensure the average absorption efficiency beyond 90%. Figure 5d plots the
specific absorption spectra with the Ge thickness of 5, 10, 15, and 20 nm, respectively. As
the Ge thickness increases from 5 nm to 10 nm, the F-P absorption resonance is further
away from the AR resonance, resulting in enhanced light absorption at both short and long
wavelengths. When further increasing the Ge thickness (>10 nm), the absorption resonance
moves further towards the long-wavelength range and finally outside the working area,
leading to a gradually reduced long-wavelength absorption. From this investigation, it is
found that the optimal thickness for TiO2 and Ge should be chosen as 38 nm and 10 nm,
respectively, in order to achieve the maximum overall absorption.
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thickness as 38 nm.

Lastly, we also explored the dependence of our proposed broadband visible absorber
on the incident angle by calculating and measuring the angle-resolved absorption spectra
under unpolarized light illumination, as illustrated in Figures 6a and 6b, respectively.
Obviously, the experimental observations seem in good agreement with the prediction
of the calculated results, both presenting the relatively flat dispersion curves and highly
efficient broadband absorption characteristics within a wide range of oblique incident
angles from 0◦ to 70◦. Specifically, the nearly broadband perfect absorption feature can be
maintained before the value of the incident angle up to 40◦, while there is a slight decrease
in overall absorption as the incident angle further increases. The average absorption
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efficiencies of both the simulated and measured results are still higher than 90% and 75% at
the very large incident angles of 60◦ and 70◦, respectively. No significant reduction in the
optical absorption indicates that the proposed broadband visible absorber exhibits a high
angular tolerance up to ±60◦, which can be further validated by the photographic images
of the fabricated devices taken at different observing directions, as presented in Figure 6c.
The device displays a stable high-purity black color appearance with negligible reflection as
the viewing angle increases up to 60◦. Such angle-insensitive absorption behavior directly
results from the high refractive indices of the employed materials (i.e., Ge and TiO2), which
can reduce the refraction angle inside the film stack according to Snell’s law and lead
to a very small resonance shift when increasing the incident angle [13]. In addition, the
accumulated propagation phase shifts within the structure are almost insignificant since
the total thickness of the Ge and TiO2 films is much thinner than the incident wavelength,
which is also responsible for the angle-robust broadband absorption performance of our
designed device.
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Figure 6. (a) The simulated and (b) measured angle-resolved absorption spectra of the proposed
ultrathin broadband visible absorber under unpolarized light incidence up to 70◦. (c) Photographic
images of the fabricated broadband absorber device taken with indoor ambient light at the viewing
angles of 20◦, 40◦, and 60◦. The sample dimension is 2 cm × 2 cm.

4. Conclusions

In summary, we present a new design scheme for an angle-insensitive ultrathin broad-
band visible absorber based on a simple triple-layer film structure consisting of an ultrathin
absorbing semiconductor sandwiched between a dielectric layer atop and a lossy metal
beneath. The lossy metal can provide additional absorption, reducing the requirements for
the ideal semiconductor’s material dispersion in other designs and expanding the range
of material selection of the metal layer. Under the action of the F-P absorption and AR
resonances, the absorptions in the semiconductor and lossy metal are significantly en-
hanced, jointly leading to the near-unity absorption across the entire visible range with an
average absorptivity of 96.88% in the experiment, respectively. As all the utilized materials
feature high refractive indexes, the strong absorption performance of our device presents a
great angle-invariant characteristic up to ±60◦. The fabrication of the proposed broadband
visible absorber only involves simple thin-film deposition processes, thus enabling its mass
production for practical applications in various areas.
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