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Abstract: Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone
elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a
CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate
electrical and thermal conductivity due to CNT fabric combined with the strength of Kevlar fabric or
yarn. In the material synthesis, a notable difficulty was that the CNT-silicone did not bond strongly
to the Kevlar. The composites passed the Vertical Flame Test ASTM D6413 and the Forced Air Oven
Test NFPA 1971. These hybrid composites can have multiple applications in areas requiring favorable
conductivity, strength, and flame and heat resistance. The application areas include firefighter apparel,
military equipment, conductive/smart structures, and flexible electronics. The synthesis process used
to manufacture CNT-silicone/Kevlar composites yielded composite sheets with an area of 2250 cm2.
The process is scalable and customizable for the synthesis of CNT composites with tailored properties.
Improvements in the bonding of CNT-silicone to Kevlar are being investigated.

Keywords: CNT-silicone; CNT sheets; Kevlar yarn; Kevlar fabric; Kevlar veil

1. Introduction

Carbon nanotubes (CNTs) are 1D nanostructures composed of single carbon atoms
with unique C-C covalent bonding and a seamless hexagonal network [1]. CNTs have
been attracting the interest of researchers due to their important properties such as high
mechanical strength and low density, high aspect ratio, favorable electrical and thermal
conductivity, flame resistance, unique optical properties, semiconducting behavior, and so
on [2–5]. Arc discharge, laser ablation, gas phase pyrolysis (Figure 1), a bottom-up organic
approach, and chemical vapor deposition (CVD) are some of the well-known methods used
for CNT synthesis [6].

The exact growth mechanism of CNTs is still debated, but the CVD method of CNT
synthesis is popular among researchers as CVD can be conveniently used to tailor CNT
properties such as diameter, orientation, conductivity, porosity, permeability, and func-
tionalization, thus expanding their use to a wide range of applications [6,7]. Thermal
or plasma-enhanced catalytic CVD, water or oxygen-assisted CVD, hot-filament CVD,
microwave plasma CVD, and radio frequency CVD are some of the CVD techniques used
for large-scale CNT production [6,8–13].

Nanoelectronics, nanocomposites, energy storage, hydrogen storage, biomedicine,
wearable electronics, smart materials and sensors, air/water filtration, and drug delivery
are some, but not all, application areas of CNT materials [2,14]. However, there are some
challenges to achieving quick and widespread use. Although CNTs are customizable, it
is difficult to maintain precise conditions to tune their properties and gain control over
nanotube growth [15,16]. Every parameter, such as the type and dimensions of the CVD
equipment, reaction temperature, reaction gas and gas flow rates, the selection of catalyst,
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etc., needs to be considered for the synthesis of CNTs with tailored and reproducible
properties [17,18]. Macroscale and low-cost synthesis of individual CNTs is still in the
developing phase, and it is difficult to extrapolate their nanoscale properties to macroscale
material forms [19].
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Over the years, CNT composites with different polymers, metals, and ceramics have
been developed for different applications, including aerospace, biomedicine, electromag-
netic interference shielding, supercapacitors, functional textiles, and many more [20–26].
Studies have also demonstrated the capacity of CNT composites to improve friction and
wear behavior in equipment and parts [27–29]. With the improved synthesis procedures,
researchers have been able to synthesize large-scale CNT composites, including pristine
CNT sheets and tapes [30–35]. CNT composites with cotton and spandex have been studied
for dyeable, wearable, and shielding applications [30,36,37]. Researchers have shown that
some application areas of CNT/Kevlar composites improve ballistic performance, wear-
able electronics, fabrics with anti-impact properties, textiles with sensing capabilities, and
triboelectric nanogenerators [38–40]. The CNT/Kevlar composites for those applications
were developed by soaking pieces of Kevlar fabric in CNT using ultrasonic dispersion and
impregnation methods [38–40]. To our knowledge, macroscale and continuous synthesis of
CNT/Kevlar composites have not yet been reported.

Kevlar fabrics have high strength, high modulus, and high impact resistance, and
they can withstand high temperatures [41–43]. The new developments in CNT/Kevlar
composite fabrics provide excellent composite strength, modest electrical conductivity,
and high flame resistance. There can be a wide range of applications for such textiles in
the areas of defense, automobile/aircraft structures and components, functional textiles,
firefighting and insulation, etc. They can also be useful for printable electronics and
thermal management of electronic devices. Looking at the applicational opportunities that
CNT/Kevlar composites could provide, we have developed three variations of composites:
CNT-silicone/Kevlar yarn, CNT-silicone/Kevlar fabric, and CNT-silicone/Kevlar veil.

2. Synthesis of Macroscale CNT Sheet

The pristine CNT sheet was synthesized on a horizontal floating catalyst chemical
vapor deposition (FCCVD) reactor, as shown in Figure 1. The reactor has an injector for the
controlled flow of gases (ultra-high-purity argon and hydrogen). The gas mixture carries
CNT through the reactor tube to the glove box. The injector also contains temperature
sensors and a passage for fuel.

Fuel consisting of methanol (Fisher Chemical, Waltham, MA, USA), ferrocene (Fisher
Chemical), n-hexane (Lab Alley, Spicewood, TX, USA), and thiophene (Aldrich Chemistry,
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St. Louis, MO, USA) was prepared and fed into the reactor at a rate of 90 mL/h through an
atomizer, the role of which is to disperse a catalyst precursor into the reactor chamber for
CNT growth. The carrier gases, argon and hydrogen from the inlet assist in dispersing the
catalyst and fuel inside the reactor. The flow rate of the fuel was controlled with the help of
a syringe pump.

The temperature of the reactor was maintained at 1250 ◦C for the entire synthesis
duration. In an inert atmosphere of argon inside a glove box, a drum collector, rotating at
a speed of 4.3 rpm, was positioned 5 cm from the reactor outlet to collect the CNT sock,
as shown in Figure 2. The drum also transfers the collected CNT materials around its
circumference. The synthesis process can be visualized in Supplementary Material S1.
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Figure 2. The collection of CNT sock coming out of the FCCVD reactor.

Over time, a smooth film of CNTs was collected. For pristine CNTs, acetone was used
for the densification of the sock collected. Using this process, a typical synthesis experiment
ranging from ~90 min to ~120 min can form a CNT sheet of ~20 microns in thickness. The
area of the sheet thus formed is 2250 cm2. Figure 3 presents a pristine CNT sheet formed
using the process. The sheet had a length of 90 cm and a width of 25 cm. The thickness of
the sheet was 20 microns.
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3. Synthesis of CNT-Silicone Composite Sheets

CNT-silicone composite sheets were synthesized by densifying the CNT sock with a sili-
cone solution. Red RTV Gasket Maker High-Temperature Silicone (Permatex, Solon, OH, USA)
was dissolved in naphthalene at different concentrations to prepare a CNT-silicone solution.
For a typical synthesis experiment that forms a uniform silicone solution over time, a
0.03 g/mL solution of high-temperature silicone elastomer was prepared in naphthalene
with the help of a shear mixer (Silverson L4RT-A, East Longmeadow, MA, USA), as shown
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in Figure 4a. A section of CNT-silicone sheet formed by the densification of the CNT sock
by the silicone-naphthalene solution is shown in Figure 4b. The red coloration, which
is due to the deposition of the red silicone solution, can be seen in some sections of the
CNT-silicone composite sheet (indicated by the white oval). The CNT-silicone composite
sheets were more handleable than the pristine CNT sheets.
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cone and naphthalene solution; (b) the CNT-silicone sheet produced; (c) the two-point method of
resistivity measurement.

Except for the thickness, the dimensions of the CNT-silicone sheets were the same as
the pristine CNT sheets, i.e., 90 cm × 25 cm. The thickness increased from 20 microns for
the pristine sheet to ~22 microns for the CNT-silicone sheet. The density of the pristine
CNT sheet was 0.25 g/cc, whereas the density of the CNT-silicon composite was 0.56 g/cc.

The microstructure of the pristine CNT sheets and the various composite sheets was
analyzed using scanning electron microscopy (FEI Aprio LV-SEM, Waltham, MA, USA).
The pristine CNT sheets consisted of CNT strands with diameters ranging from 5.08 nm
to 42.04 nm, with a mean of 17.32 nm and a standard deviation of 7.62 nm, as shown in
Figure 5.

Individual CNT strands were not observed in the SEM imaging of CNT-silicone
samples, Figure 6. The reason for this was the presence of a thin silicone film surrounding
the CNT strands, a result of the densification step, and though this film was present, the
CNT-silicone composite still possessed conductive properties. Figures 5 and 6 are also
typical SEM images for the CNT/Kevlar and CNT-silicone/Kevlar composites because
pristine CNT and CNT-silicone from a similar synthesis process were deposited on top of
the Kevlar fabrics.
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The resistivity of both membranes was calculated using the two-probe method, as
shown in Figure 4c. The resistivity was given as [1,44]:

ρ =
RA
L

, (1)

Here, ρ is the resistivity, L is the length of the CNT sheet, A is the cross-sectional area of the
sheet, and R is the resistance measured across the length of the sheet. Resistivity values are
given in Table 1.

Table 1. Resistivity and conductivity anisotropy ratios. Resistivity measurements are in the plane of
the sheet. Contact resistance is included in the resistivity measurements.

CNT Sheet Type
Resistivity (Ω·cm)

Anisotropy Ratio k‖/k⊥
Along Length Along Width

Pristine CNT sheet 0.0043 0.0091 2.12
CNT-silicone composite sheet 0.0059 0.0163 2.76

The conductivity anisotropy ratio observed was a result of a higher number of junc-
tions (i.e., fewer aligning CNTs) along the direction orthogonal to that of the sock collec-
tion [45]. Similarly, the electrical resistance of the sheet would be much greater through the
thickness of the sheet than in the plane. The greater resistance through the thickness is due
to the nanotube-to-nanotube lateral junctions.
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The tensile strength of the pristine CNT sheet and the CNT-silicone sheet was mea-
sured using a Micro Instron Testing Machine, Model 5948. The sample specimens with
a gauge length of 20 mm and a width of 2 mm were prepared and supported with the
assistance of a rectangular paper specimen holder. Pneumatic grips were used for the test.

The pristine CNT sheet had a maximum tensile strength of 29 MPa at 25% strain along
the length (synthesis direction). A maximum tensile strength of 12.5 MPa was observed at
53% strain along the width (the direction perpendicular to the synthesis direction). The
decrease in strength but increase in strain was a result of anisotropy generated during the
synthesis process. A greater number of CNT junctions were present along the width of the
sample, and they tended to separate when subjected to stress, causing higher strain but
lower strength (Figure 7) [45].
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The CNT-silicone sheet showed a strength of 42.2 MPa at 52.5% strain along the length.
The same sample along the width was 31 MPa at 58% strain. An improvement of 1.5 times
in strength and 2.1 times in strain was obtained along the length due to the integration
of silicone elastomer. Similarly, an improvement of 2.5 times in strength and 1.1 times in
strain was obtained along the width. From these results, it can be concluded that the use of
silicone elastomer improves the strength and strain of CNT sheets and tends to make the
sheets more isotropic in terms of their strength.

Renishaw inVia Raman spectroscopy with a 514 nm wavelength was used to analyze
the CNT-based materials. A laser spot size of ~1 µm2 and a lens of 50× magnification were
used for this study. The exposure time (10 s) and the number of accumulations (3) were
kept the same for all the samples. The Raman spectra of the CNT sheet and CNT-silicone
sheet are shown in Figure 8. Both spectra show the signature peaks of CNT, i.e., D, G, and
2D peaks.

The G peaks of both materials are shown in Figure 9a. No change in the G peak
position or I(D)/I(G) was observed between the pristine CNT sheet and the CNT-silicone
sheet, highlighting that there were no stress/damage/defects in the CNTs due to the
addition of silicone [46].

Furthermore, a silicone peak of around 500 cm−1 was observed in the CNT-silicone
Raman spectra indicating the presence of silicone in the CNT-silicone sheets, as shown in
Figure 9b. This peak was absent in the pristine CNT peak, as seen in Figure 9b.
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4. Synthesis of CNT-Silicone/Kevlar Composites

The synthesis of CNT-silicone/Kevlar composites was performed by continuously
collecting CNT sock with periodic, simultaneous densification using a silicone solution
in the harvest box of a FCCVD reactor. Three types of Kevlar textiles were used for our
synthesis process: Kevlar yarn, Kevlar plane weave fabric, and Kevlar veil.

4.1. CNT-Silicone/Kevlar Yarn Composite

A CNT-silicone/Kevlar yarn hybrid composite sheet was synthesized to utilize the
high strength of Kevlar yarn in CNT composites. A spool of Kevlar yarn was taken and
allowed to wind onto the CNT-collector drum in a fashion similar to the CNT sock collection.
Three major steps were involved: (a) CNT sock exiting the reactor outlet was collected in the
rotating drum; (b) Kevlar yarn unwinding from a spool was collected on the rotating drum
simultaneously, in addition to the CNT sock, but coming from the opposite direction; and
(c) the CNT sock was densified periodically by spraying a silicone-naphthalene solution. A
typical synthesis process took about two hours (Figure 10).

The Kevlar yarn extends along the length of the composite sheet that has a dimension
of 90 cm × 25 cm as shown in Figure 10e. Figure 11a presents the cross-sectional features of
the CNT-silicone/Kevlar yarn composite, where we can observe the reinforcement of Kevlar
yarn surrounded by the CNT-silicone matrix. Figure 11b shows the edge of the composite.



Nanomaterials 2023, 13, 2728 8 of 15

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

rotating drum; (b) Kevlar yarn unwinding from a spool was collected on the rotating drum 
simultaneously, in addition to the CNT sock, but coming from the opposite direction; and 
(c) the CNT sock was densified periodically by spraying a silicone-naphthalene solution. A 
typical synthesis process took about two hours (Figure 10). 

 
Figure 10. Manufacturing CNT-silicone/Kevlar yarn composites: (a) schematic of the CNT-sili-
cone/Kevlar yarn sheet synthesis process; (b) the Kevlar yarn collection side of the collector drum; (c) 
the CNT-sock collection side of the collector drum; (d) the CNT-silicone/Kevlar yarn composite sheet 
as taken out of the collector drum; (e) the CNT-silicone/Kevlar yarn composite sheet. 

The Kevlar yarn extends along the length of the composite sheet that has a dimension 
of 90 cm × 25 cm as shown in Figure 10e. Figure 11a presents the cross-sectional features of 
the CNT-silicone/Kevlar yarn composite, where we can observe the reinforcement of Kevlar 
yarn surrounded by the CNT-silicone matrix. Figure 11b shows the edge of the composite. 

The average thickness of the CNT-silicone/Kevlar yarn composite was 435 microns. The 
Kevlar yarn was continuously wrapped a few hundred times on the CNT sheet. The video 
of the synthesis process is shown In Supplementary Material S2. 

Figure 10. Manufacturing CNT-silicone/Kevlar yarn composites: (a) schematic of the CNT-
silicone/Kevlar yarn sheet synthesis process; (b) the Kevlar yarn collection side of the collector
drum; (c) the CNT-sock collection side of the collector drum; (d) the CNT-silicone/Kevlar yarn
composite sheet as taken out of the collector drum; (e) the CNT-silicone/Kevlar yarn composite sheet.
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Figure 11. CNT-silicone/Kevlar yarn fabric: (a) cross-section; (b) edge section of the CNT-
silicone/Kevlar yarn composite.

The average thickness of the CNT-silicone/Kevlar yarn composite was 435 microns.
The Kevlar yarn was continuously wrapped a few hundred times on the CNT sheet. The
video of the synthesis process is shown In Supplementary Material S2.
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4.2. CNT-Silicone/Kevlar Fabric Composite

Kevlar fabric (Kevlar Plain Weave 195d 38′′/96.52 cm 1.7 oz/58 gsm, Composite
Envisions, WI, USA) was wound around the rotating collector, covering it. The CNT sock
coming out of the reactor was collected on the top of the fabric and periodically densified
with a 0.03 g/mL solution of silicone in naphthalene. The Kevlar fabric improved the
handleability and formed a CNT-silicone/Kevlar fabric hybrid composite textile, as shown
in Figure 12. The bonding of the CNT-silicone matrix material to the Kevlar fabric was
favorable in this case.
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Figure 12. CNT-silicone/Kevlar fabric images without magnification: (a) macroscale CNT-
silicone/Kevlar fabric composite; (b) sections of the front and back surfaces of the fabric.

The cross-section of the CNT-silicone/Kevlar fabric composite is shown in Figure 13a.
Figure 13b shows the edge of the composite, showing the deposition of CNT-silicone on
the fabric fibers. Patterns from the weaving of Kevlar fabric on the composite were also
observed in the imaging, as shown in Figure 13c. This process presents a possibility for
tailoring underlying fabric materials with different patterns to meet the needs of the various
technical and aesthetic application areas. The thickness of the CNT-silicone film can affect
the pattern’s appearance. These composites can also be manufactured in the required
shapes, as they are durable, flexible, easy to cut, and can be sewn like fabrics.

Different weights of Kevlar 29 and Kevlar 49 fabrics were used to form the textile
composites. The CNT-silicone bonded to some of the Kevlar fabrics and did not bond to
others. The bonding is being investigated as further work. Sizing on the Kevlar fabric and
curing parameters may have affected the bonding.

4.3. CNT-Silicone/Kevlar Veil Composite

The Kevlar veil (Kevlar Fabric Veil Chopped Mat 35.5′′/90.17 cm, 26 oz/8 gsm, Com-
posite Envisions, WI, USA) was wound around the rotating collector as stated in Section 4.2.
The CNT sock exiting the reactor was collected on top of the veil with periodic densification
by a silicone-naphthalene solution for about 25 min to generate a thin CNT/Kevlar veil
composite. Since the veil material might be used for filter membranes, another synthesis
was carried out by collecting CNT sock with densification by acetone on the top of the
veil material for about 25 min. Densification with acetone instead of silicone solution
helps obtain a more porous CNT hybrid textile that could be used for various permeability
applications. The veil materials thus manufactured are shown in Figure 14.



Nanomaterials 2023, 13, 2728 10 of 15

Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 12. CNT-silicone/Kevlar fabric images without magnification: (a) macroscale CNT-sili-
cone/Kevlar fabric composite; (b) sections of the front and back surfaces of the fabric. 

Different weights of Kevlar 29 and Kevlar 49 fabrics were used to form the textile com-
posites. The CNT-silicone bonded to some of the Kevlar fabrics and did not bond to others. 
The bonding is being investigated as further work. Sizing on the Kevlar fabric and curing 
parameters may have affected the bonding. 

 
Figure 13. CNT-silicone/Kevlar fabric SEM images: (a) cross-section of CNT-silicone/Kevlar fabric 
composite; (b) edge of CNT-silicone/Kevlar fabric composite; (c) patterns seen in the composite as a 
result of patterns in the underlying fabric. 

4.3. CNT-Silicone/Kevlar Veil Composite 
The Kevlar veil (Kevlar Fabric Veil Chopped Mat 35.5″/90.17 cm, 26 oz/8 gsm, Compo-

site Envisions, WI, USA) was wound around the rotating collector as stated in Section 4.2. 
The CNT sock exiting the reactor was collected on top of the veil with periodic densification 
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composite; (b) edge of CNT-silicone/Kevlar fabric composite; (c) patterns seen in the composite as a
result of patterns in the underlying fabric.
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Figure 14. CNT-silicone/Kevlar veil fabric: (a) macroscale CNT/Kevlar veil composite; (b) front
and back sections of CNT-silicone/Kevlar veil composite; (c) front and back sections of CNT/Kevlar
veil composite.

The cross-sectional features of the CNT-silicone/Kevlar veil and the CNT/Kevlar veil
can be seen in Figure 15a,b, respectively. Figure 15c presents the edge of the composite,
where Kevlar veil fibers are sparsely distributed to reinforce the composites. Figure 15d,e is
similar to those presented for CNT-silicone and pristine CNT sheets.



Nanomaterials 2023, 13, 2728 11 of 15Nanomaterials 2023, 13, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 15. CNT Kevlar veil materials: (a,b) cross-section of CNT-silicone/Kevlar veil and CNT/Kevlar 
veil composites; (c) edge of CNT-silicone/Kevlar veil composite; (d) SEM of CNT-silicone/Kevlar veil 
composite; (e) SEM of CNT/Kevlar veil composite. 

5. Results and Discussions 
Macroscale pristine CNT, CNT-silicone, CNT-silicone/Kevlar yarn, CNT-silicone/Kev-

lar fabric, CNT-silicone/Kevlar veil, and CNT/Kevlar veil composites were synthesized us-
ing a scalable FCCVD system. The length and width of the sheets were 90 cm by 25 cm. The 
thickness and density of the pristine CNT sheets and the CNT-silicone sheets were 20 mi-
crons, 0.25 g/cc, and 22 microns, 0.56 g/cc, respectively, as discussed in Section 3. The thick-
ness of CNT-silicone/Kevlar yarn composites was 435 microns, and the CNT-silicone/Kevlar 
fabric was 116 microns. The CNT-silicone/Kevlar veil composites for this synthesis were 
measured at 95 microns in thickness, whereas the CNT/Kevlar veil was 90 microns. The 
thickness of these membranes can be varied easily by modifying the collection period of the 
sock. The length and width of the sheets can also be altered using different parameters (a 
larger drum diameter) for the collector setup. 

Pristine CNT sheets, CNT-silicone composite sheets, and CNT-silicone/Kevlar yarn 
sheets were thermally and electrically conductive along their front and back surfaces, 
whereas CNT-silicone/Kevlar fabric composites were conductive on the surface with CNT-
silicone deposition. Interestingly, CNT-silicone/Kevlar veil and CNT/Kevlar veil composites 
are conductive on the surface with the CNT-silicone deposition, whereas the conductivity 
on the other surface can depend upon the contact pressure applied. This property is being 
studied for impact and damage detection in sensitive equipment and machinery, and it is 
part of follow-up work. 

The density, resistivity, and anisotropy ratios of the membranes are tabulated in Table 
2. 

Table 2. Density, resistivity, and conductivity anisotropy ratios. The data represents in-plane proper-
ties. The results include contact resistance. 

CNT Sheet Type Density 
(g/cc) 

Resistivity (Ω‧cm) Anisotropy Ratio, 
k‖/k┴ Along Length Along Width 

CNT-silicone/Kevlar yarn 0.20 0.06 0.11 1.83 
CNT-silicone/Kevlar fabric 0.90 0.11 0.26 2.36 
CNT-silicone/Kevlar veil 0.30 0.09 0.09 1.89 

Figure 15. CNT Kevlar veil materials: (a,b) cross-section of CNT-silicone/Kevlar veil and
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silicone/Kevlar veil composite; (e) SEM of CNT/Kevlar veil composite.

5. Results and Discussions

Macroscale pristine CNT, CNT-silicone, CNT-silicone/Kevlar yarn, CNT-silicone/Kevlar
fabric, CNT-silicone/Kevlar veil, and CNT/Kevlar veil composites were synthesized using
a scalable FCCVD system. The length and width of the sheets were 90 cm by 25 cm.
The thickness and density of the pristine CNT sheets and the CNT-silicone sheets were
20 microns, 0.25 g/cc, and 22 microns, 0.56 g/cc, respectively, as discussed in Section 3.
The thickness of CNT-silicone/Kevlar yarn composites was 435 microns, and the CNT-
silicone/Kevlar fabric was 116 microns. The CNT-silicone/Kevlar veil composites for this
synthesis were measured at 95 microns in thickness, whereas the CNT/Kevlar veil was
90 microns. The thickness of these membranes can be varied easily by modifying the
collection period of the sock. The length and width of the sheets can also be altered using
different parameters (a larger drum diameter) for the collector setup.

Pristine CNT sheets, CNT-silicone composite sheets, and CNT-silicone/Kevlar yarn
sheets were thermally and electrically conductive along their front and back surfaces,
whereas CNT-silicone/Kevlar fabric composites were conductive on the surface with
CNT-silicone deposition. Interestingly, CNT-silicone/Kevlar veil and CNT/Kevlar veil
composites are conductive on the surface with the CNT-silicone deposition, whereas the
conductivity on the other surface can depend upon the contact pressure applied. This
property is being studied for impact and damage detection in sensitive equipment and
machinery, and it is part of follow-up work.

The density, resistivity, and anisotropy ratios of the membranes are tabulated in
Table 2.

The Raman spectra of CNT-silicone/Kevlar veil, CNT/Kevlar, CNT-silicone/Kevlar
fabric, CNT-silicone/Kevlar yarn, CNT-silicone, and pristine CNT are shown as a stack
in Figure 16a. From the spectra, it is clear that neither the addition of silicone nor Kevlar
made significant changes, as no change in I(D)/I(G) or the position of the G peaks shown
in Figure 16b was observed. Although a slight difference in the G peak position can be
seen, it is between 1580 cm−1 and 1590 cm−1, which is very common for CNTs.
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Table 2. Density, resistivity, and conductivity anisotropy ratios. The data represents in-plane proper-
ties. The results include contact resistance.

CNT Sheet Type Density (g/cc)
Resistivity (Ω·cm)

Anisotropy Ratio, k‖/k⊥
Along Length Along Width

CNT-silicone/Kevlar yarn 0.20 0.06 0.11 1.83
CNT-silicone/Kevlar fabric 0.90 0.11 0.26 2.36
CNT-silicone/Kevlar veil 0.30 0.09 0.09 1.89

CNT/Kevlar veil 0.17 0.06 0.06 1.67
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Figure 16. (a) Raman spectra of CNT sheet and CNT-silicone sheet; (b) Raman G peak of CNT-
silicone/Kevlar veil, CNT/Kevlar veil, CNT-silicone/Kevlar fabric, CNT-silicone/Kevlar yarn, CNT-
silicone, and Pristine CNT.

Pristine CNT sheets, along with other composite sheets, were thermally conductive
and flame-resistant. The composites passed the Vertical Flame Test ASTM D6413/D6523M-
15 and the Forced Air Oven Test NFPA 1971 [47,48]. The flame application time for vertical
flame testing the samples was 12 s. All the samples exhibited less than 1 s of after-flame
and after-glow time. The char length in the samples was less than 4 cm, and no melting or
dripping was observed (Figure 17a). For NPFA compliance, the samples were placed in an
oven at 260 ◦C for 5 min. All the samples remained intact without melting, dripping, or
shrinking as shown in Figure 17b–g.
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Figure 17. (a) Vertical Flame test on a CNT-silicone/Kevlar fabric sample; (b–g) Pristine CNT,
CNT-silicone, CNT-silicone/Kevlar yarn, CNT-silicone/Kevlar fabric, CNT-silicone/Kevlar veil, and
CNT/Kevlar veil samples before and after Forced Air Oven Test. None of the samples showed
excessive char length during the Vertical Flame test. None of the samples melted or dripped during
both tests. There was no noticeable shrinkage in the samples during the Forced Air Oven Test.
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6. Safety Concerns

The manufacturing process (CNT synthesis and coating) described in this paper pro-
duces a complex mixture of flammable gases. Any oxygen leakage into the reactor system at
such a high temperature (1250 ◦C) could result in explosions with severe consequences. An
inert atmosphere for pyrolysis must be maintained in the reactor tube during the synthesis
process. An oxygen sensor should be used to verify that the oxygen content in the harvest
box is low. Continuous dilution of the exhaust gases with a high flow rate of fresh Argon
gas or another inert gas is required to cool and reduce the concentration of the flammable
gases in the harvest box. The ceramic process tube must be heated and cooled slowly to
prevent cracking. Two key improvements in safety for this process are being implemented
and will be reported in future publications.

7. Conclusions

Macroscale CNT-silicone/Kevlar composites were manufactured by reinforcing a
CNT-silicone matrix with Kevlar yarns, fabrics, and veil materials. The hybrid composites
are flexible, conductive, and flame-resistant. Synthesis of CNT-silicone membranes with
Kevlar takes advantage of the pristine strength of Kevlar veil, fabrics, and yarns while
utilizing the multi-functional properties of CNT and CNT-silicone composites. The strength
of Kevlar combined with CNT and silicone properties may be beneficial in applications
requiring flexibility, strength, and flame resistance, such as personal protective equipment
for firefighters and first responders. Composites such as CNT-silicone/Kevlar fabric are
conductive on one surface while being insulative on the opposite surface. This feature is an
important requirement for a variety of applications, such as one-sided insulation, smart
structures, flexible conductors, and electromagnetic shields. The thermal conductivity of
these composites can also be beneficial in extending their use for thermal management
of electronic devices, where their thin fabrics or membranes can act as structural support
for distributing the generated heat across the surface for cooling. The Kevlar veil has a
thin and sparse arrangement of tiny, chopped fibers on which the CNT-silicone matrix is
layered. The veil improves the strength and handleability of the CNT-silicone sheet. The
porous nature of the CNT/Kevlar veil can be used for air/water filtration. In addition, the
composites with Kevlar veil materials are conductive on one surface and show conductive
or insulating behavior, depending on the applied contact pressure, on the another surface.
This feature is beneficial for smart structures requiring impact measurement and protection.
The application areas of the CNT-silicone/Kevlar composites will be explored further in
follow-up work. To summarize, the macroscale and scalable production of pristine CNT,
CNT-silicone, and CNT-silicone/Kevlar composites broadens the conventional application
areas of CNTs and addresses the scaling-up difficulties. One area for improvement is to
increase the bonding strength of CNT-silicone to Kevlar fabric.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13192728/s1, Video S1: CNT Sheet Synthesis; Video S2: Synthesis of
CNT-Silicone/Kevlar Yarn Composite.
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