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Abstract: Cu3SbSe4 is a potential p-type thermoelectric material, distinguished by its earth-abundant,
inexpensive, innocuous, and environmentally friendly components. Nonetheless, the thermoelectric
performance is poor and remains subpar. Herein, the electrical and thermal transport properties of
Cu3SbSe4 were synergistically optimized by S alloying. Firstly, S alloying widened the band gap,
effectively alleviating the bipolar effect. Additionally, the substitution of S in the lattice significantly
increased the carrier effective mass, leading to a large Seebeck coefficient of ~730 µVK−1. Moreover,
S alloying yielded point defect and Umklapp scattering to significantly depress the lattice thermal
conductivity, and thus brought about an ultralow κlat ~0.50 Wm−1K−1 at 673 K in the solid solution.
Consequently, multiple effects induced by S alloying enhanced the thermoelectric performance of
the Cu3SbSe4-Cu3SbS4 solid solution, resulting in a maximum ZT value of ~0.72 at 673 K for the
Cu3SbSe2.8S1.2 sample, which was ~44% higher than that of pristine Cu3SbSe4. This work offers
direction on improving the comprehensive TE in solid solutions via elemental alloying.

Keywords: Cu3SbSe4-based materials; solid solutions; S alloying; point defect; thermoelectric properties

1. Introduction

Thermoelectric (TE) technology has the capability to directly and reversibly convert
heat into electricity, making it a promising source of clean energy. It plays a significant
role in addressing the challenges posed by the energy and environmental crises [1–3].
Numerous TE materials are currently under exploration for power generation and solid-
state cooling applications, leveraging the Seebeck and Peltier effects, respectively [4],
such as skutterudites [5], half-Heusler compounds [6], Zintl phases [7], chalcogenides [8],
oxides [9,10], and high-entropy alloys [11]. Commonly, the conversion efficiency of TE
materials is assessed using the dimensionless figure of merit, ZT = S2σT/κ, where S, σ,
T, and κ stand for the Seebeck coefficient, electrical conductivity, absolute temperature
in Kelvin, and total thermal conductivity (comprising lattice part κlat and electronic part
κele), respectively [12,13]. Actually, achieving high conversion efficiency (η) necessitates
a higher power factor (PF = S2σ) and/or lower κ [14–20]. Unfortunately, it is difficult to
simultaneously optimize the S, σ, and κele in the given TE material due to their strong
coupling effects [12,21]. Nevertheless, κlat stands as the sole independently regulated TE
parameter, leading to extensive research over the last two decades [16,17,19].

Copper-based chalcogenides have garnered significant attention because of their
relatively favorable electrical transport and low thermal transport properties [22–25]. In ad-
dition, thermoelectric minerals like germanites, colusites, tetrahedrites, and other materials
also have rather high ZT values [26–28]. Among them, the Cu3SbSe4 compound is a p-type
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semiconductor, featuring a narrow band gap of ~0.29 eV [29,30]. More importantly, its com-
ponents are earth-abundant, inexpensive, non-toxic, and environmentally friendly [31,32].
However, its high κ and low σ, stemming from low carrier concentration and mobility,
present challenges that hinder its practical use. Extensive efforts have been implemented to
enhance the TE performance of Cu3SbSe4, including elemental doping [33–37], band engi-
neering [38–40], and nanostructure modification [41,42]. These approaches have potential
in improving the carrier concentration of (n), S, or κlat, and thus leading to an appealing
figure of merit. Although high n can enhance σ, it has a negative impact on S and result
in an increase in κele. The TE performance of Cu3SbSe4 falls significantly short of that of
Cu-based chalcogenides due to these two inherent issues. On one side, the narrow energy
band gap of ~0.29 eV leads to bipolar diffusion, causing deterioration in electrical proper-
ties [29,30]. On the other side, the high thermal conductivity (κlat) inherently arises from its
composition comprising lightweight elements and a diamond-like structure [25]. In other
words, optimizing carrier concentration alone proves challenging in further enhancing the
TE performance.

The formation of a solid solution via elemental alloying is an effective strategy for
depressing the κlat and thereby enhancing the TE performance. For example, Skoug
et al. demonstrated that the substitution of Ge on Sn sites can lead to the formation of
Cu2Sn1−xGexSe3 solid solutions, synergically optimizing the TE properties [43]. Jacob
et al. reported that a high ZTmax value of ~0.42 was obtained in the Cu2Ge(S1−xSex)3
system via Se alloying [44]. Wang et al. enhanced the TE properties of Cu2Ge(Se1−xTex)3 by
incorporating Te on the Se site, resulting in a ZTmax of ~0.55, which was 62% higher than that
of the matrix [45]. The afore-mentioned research give us an idea that the Cu3Sb(Se1−xSx)4
solid solution is an effectively strategy for enhancing the thermoelectric performance
of the Cu3SbSe4 compound via S alloying. Moreover, the development of TE materials
with more cost-efficient constituent elements is of significant importance for large-scale
practical applications.

Herein, we present the synthesis and thermoelectric characterization of the
Cu3Sb(Se1−xSx)4 solid solutions with x covering the whole range from 0 to 1. The re-
sults demonstrate that the Cu3SbSe4-Cu3SbS4 solid solutions exhibit an extremely high
Seebeck coefficient and ultralow thermal conductivity. Firstly, S alloying can widen the
band gap, alleviating the bipolar effect. Additionally, S substitution in the lattice can signif-
icantly increase the carrier effective mass, leading to a remarkably high Seebeck coefficient
of ~730 µVK−1. Moreover, the κlat can be significantly depressed owing to point defect
scattering and Umklapp scattering, thus obtaining a minimum κlat of ~0.50 Wm−1K−1.
Consequently, the multiple effects of S alloying boost the TE performance of the Cu3SbSe4-
Cu3SbS4 solid solution, and a maximum ZT value of ~0.72 at 673 K is obtained for the
Cu3SbSe2.8S1.2 sample.

2. Experimental Procedures
2.1. Synthesis

The Cu3Sb(Se1−xSx)4 solid solutions with varying S content (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, and 1) were synthesized by vacuum melting and plasma-activated sintering
(Ed-PAS III, Elenix Ltd., Zama, Japan). Concretely, the synthesis was divided into two
steps. The first step was to synthesize the primary powders. Firstly, the starting materials,
consisting of high-purity components (Cu: 99.99 wt.%; Sb: 99.99 wt.%; Se: 99.999 wt.%; S:
99.99 wt.%) corresponding to the nominal composition of Cu3Sb(Se1−xSx)4 (x = 0–1), were
carefully sealed in the quartz tube under high vacuum conditions (<10−3 Pa). Afterwards,
the sealed tubes were incrementally heated to 1173 K with a controlled rate of 20 K/h and
maintained at 1173 K for a duration of 12 h. Following a holding period, the tubes were
cooled down with a relatively low rate of 10 K/h until reaching 773 K, and finally the
samples were quenched into water. Subsequently, the acquired quenched ingots underwent
direct annealing at 573 K for a period of 48 h to facilitate the uniformity of chemical
compositions. After this step, the obtained ingots were finely pulverized using an agate
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mortar to produce uniform powders. The second step was to synthesize the target samples.
The resultant powders were then introduced into a graphite die of Ø12.7 mm in diameter
and treated using the PAS technique at 673 K for a duration of 5 min while applying an
axial pressure of 50 MPa. In detail, the sintering temperature reached to 523 K after an
activation time of 10 s under the activation voltage of 20 V and the activation current of
300 A, and then the current was manually adjusted to increase by a rate of 1.5 K/s to reach
the desired sintering temperature of 673 K after 225 s; the temperature was then held for
300 s. Ultimately, the samples were furnace-cooled to room temperature.

2.2. Characterization

The X-ray diffraction (XRD) patterns for the Cu3Sb(Se1−xSx)4 (x = 0–1) solid solutions
were conducted using a Bruker D8 advance instrument, which was equipped with Cu
Kα radiation (λ = 1.5418 Å). Lattice parameters were refined using the Rietveld method,
employing the HighScore Plus computer program for analysis. The morphologies and com-
positions of the afore-mentioned solid solutions were performed by a Nova NanoSEM450
(FESEM) and a JEM-2010F (HRTEM), equipped with a detector of energy-dispersive X-ray
spectroscopy (EDS).

2.3. Thermoelectric Property Measurements

The as-sintered cylinders were processed into bars of 10 mm × 2 mm × 2 mm and
disks of Ø12.7 mm × 2 mm. The bars were used for concurrently measuring σ and S by the
commercial measuring system (LINSEIS, LSR-3) under a helium atmosphere, spanning a
temperature range from room temperature to 673 K. Thermal conductivity was calculated
using the equation of κ = DCpρ. Herein, the D, Cp, and ρ stand for the thermal diffusivity,
specific heat, and density, respectively. The disks were used for simultaneously measuring
D and Cp by utilizing a Laser Flash apparatus of Netzsch (LFA-457) under a static argon
atmosphere. The ρ of the Cu3Sb(Se1−xSx)4 (x = 0–1) solid solutions were conducted using
Archimedes’ methods. The relative densities, in relation to the theoretical density of
5.86 g cm−3, have been provided in Table S1. The n (carrier concentration) and µ (carrier
mobility) of the afore-mentioned solid solutions at 300 K were performed using the Hall
effect system (LAKE SHORE, 7707 A) according to the van der Pauw method under a
magnetic field strength of 0.68 T.

3. Results and discussion
3.1. Crystal Structure

The crystal structures and phase compositions for the Cu3Sb(Se1−xSx)4 (x = 0–1)
samples were performed by XRD. Figure 1a shows the crystal structure of tetragonal
Cu3SbSe4, with blue, gray, and green atoms representing Cu, Sb, and Se, respectively. As
displayed in Figure 1b, the major diffraction peaks of the pristine sample (x = 0) are fully
indexed to the zinc-blende-based tetragonal structure (I-42m space group) of Cu3SbSe4
(JCPDS No. 85-0003) without any detectable impurities [29]. With increasing S content
(0 < x < 1), a continuous shift of the (112) diffraction peak towards higher angles can be seen
(Figure 1c), demonstrating that S atoms replace Se at the Se site to form Cu3Sb(Se1−xSx)4
solid solutions. The shift in the diffraction peak can be ascribed to the smaller radius of S2−

(1.84 Å) in comparison to Se2− (1.98 Å) [46]. For x = 1, the XRD peaks match the pattern of
Cu3SbS4 (JCPDS No. 35-0581) [47].

The Rietveld refinement profiles of the Cu3Sb(Se1−xSx)4 (x = 0.3) samples based on
the famatinite crystal structure are shown in Figure 1d. The data of the final agreement
factors (Rp, Rwp, and Rexp) of Cu3Sb(Se1−xSx)4 (x = 0–1) samples are listed in Table S2. The
lattice parameter exhibits a linear decrease with increasing S concentration, and closely
follows the expected Vegard’s law relationship [48] (Figure 1e), indicating the formation of
Cu3SbSe4-Cu3SbS4 solid solutions.
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3.2. Microstructure

The morphologies and chemical compositions of the Cu3Sb(Se1−xSx)4 (x = 0.3) sample
were characterized by a SEM equipped with an EDS detector (Figure 2). As presented
in Figure 2a,b, the SEM images of fracture surfaces (x = 0.3) indicated that they were
isotropic materials. The nanopores (marked by the blue dotted circles) were observed on
the fracture surface due to the Se/S volatilization of the synthesis process of the sample
(Figure 2a), which can contribute to blocking the transport of mid-wavelength phonons [47].
To investigate the composition of the sample, we observed its polished surface (Figure 2c).
According to the EDS elemental mapping (Figure 2d–h), the four constituent elements were
uniformly distributed with no distinct micro-sized aggregations. This was combined with
a back-scattered electron (BSE) image and elemental ratios (%), where Cu, Sb, Se, and S
were present in proportions of 40.07:12.68:31.26:15.59 (as depicted in Figure S1), which
demonstrated the formation of the Cu3SbSe4-Cu3SbS4 (x = 0.3) solid solution.

The morphologies and compositions of Cu3Sb(Se1−xSx)4 (x = 0.3) were further in-
vestigated at nanoscale using high-resolution TEM (HRTEM) (Figure 3). The TEM im-
ages demonstrated that many nanophases were distributed in the sample, and elemental
mapping taking over the entire region revealed that the four constituent elements (Cu,
Sb, Se, and S) were uniformly dispersed within the Cu3SbSe4-Cu3SbS4 solid solution
(Figures 3a and S2). As presented in Figure 3b, the grain boundary (indicated by blue dot
lines) could be clearly observed in the sample. Meanwhile, as shown in Figure 3b,c, the
crossed fringes, with interplanar spacing of 3.26 Å and 1.99 Å corresponded to the (112)
and (204) planes of Cu3SbSe4, respectively [49]. Additionally, the SAED pattern taken from
the Figure 3c along the [110] zone axis is displayed in Figure 3d. The ordered diffraction
spots can be indexed to the (002), (110), and (112) planes of Cu3SbSe4, whose interplanar
spacings are 5.64 Å, 4.06 Å, and 3.26 Å, respectively [50].
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3.3. Charge Transport Properties

To explore the effects of S alloying on the TE properties of the Cu3Sb(Se1−xSx)4 (x = 0–1)
solid solutions, the charge transport properties were conducted. The temperature depen-
dence of electrical conductivity (σ) of the Cu3Sb(Se1−xSx)4 (x = 0–1) solid solutions is
displayed in Figure 4a. The pristine Cu3SbSe4 exhibited a monotonous increase in σ with
rising temperature, demonstrating characteristic behavior of a non-degenerate semicon-
ductor. For the x > 0.2 samples, the samples showed a transition from non-degenerate
semiconductors to a partially degenerate regime [51]. The σ exhibited an initial decrease
followed by an increase, with the minimum value occurring at ~473 K, indicating its asso-
ciation with bipolar conduction [38,52]. The σ of S alloying samples increased with the S
contents until x = 0.3, after which it started to decrease with a higher S content. Notably,
the σ improved from ~4.6 S/cm of pristine Cu3SbSe4 to ~42 S/cm of x = 0.3 solid solution
at room temperature, arising from the augmented carrier concentration (Table S1). It is
worth noting that the solid solutions with high S content (x > 0.5) had lower σ compared
to the pristine Cu3SbSe4, which was ascribed to the reduced n (carrier concentration) and
diminished µ (carrier mobility). Furthermore, due to the intensified lattice vibration at
elevated temperatures, the solid solutions exhibited lower σ than the pristine sample at
high temperatures, indicating that the intensified lattice vibration in the solid solutions at
elevated temperatures hindered the carrier migration [40,53].
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Figure 4. Temperature-dependent (a) electrical conductivity σ; (b) Seebeck coefficient S, the inset is
Eg; (c) Pisarenko relationship with m* in this work compared with other works at room temperature.
The indigo and red broken line represent the Pisarenko relationship with m* ~ 0.68 and 1.4 me,
respectively. (d) power factor S2σ of Cu3Sb(Se1−xSx)4 (x = 0–1) samples.
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Figure 4b illustrates the temperature-dependent S of the Cu3Sb(Se1−xSx)4 (x = 0–1)
samples. The p-type semiconductor behavior of solid solutions, characterized by dominant
hole carriers, was evidenced by the positive S value observed across the entire tempera-
ture range.

Notably, the S value of the samples exhibited an initial ascent followed by a subsequent
descent as the temperature rose, ultimately reaching its zenith at ~473 K. This behavior can
be attributed to the influence of the bipolar effect [54]. The maximum S of ~730 µVK−1

was obtained from the x = 0.6 solid solution. We calculated the Eg of the Cu3Sb(Se1−xSx)4
(x = 0–1) samples with the formula: Eg = 2eSmaxT, where Eg, e, Smax, and T represent the
band gap, elementary charge, maximal Seebeck coefficient, and the associated temperature,
respectively [55]. The calculated Eg for the pristine Cu3SbSe4 of ~0.30 eV aligned well with
the reported literature [36,56]; the results are displayed in Figure S3. Consequently, the
introduction of alloyed S played a role in enlarging Eg from ~0.30 eV to ~0.69 eV, thus
widening the band gap to alleviate the bipolar effect. For the semiconductors, we note that
the increase in S (|S|) was directly proportional to the carrier effective mass and n−2/3. We
calculated the Pisarenko relation between |S| and n (indigo and red dashed lines with
m* ~ 0.68 and 1.4 me, respectively) based on the single parabolic band model (SPB), as
follows [57,58]:

S =
8π2k2

B
3e}2 m ∗ T

( π

3n

)2/3
(1)

where kB, h̄ represent the Boltzmann constant, and Planck constant, respectively. The
calculated m* was significantly enhanced from 0.68 for pristine Cu3SbSe4 to 5.03 me for the
x = 0.6 sample (Table S1). As seen in Figure 4c, the calculated m* based on S (experimental
values) of Cu3Sb(Se1−xSx)4 (x = 0.1–1) samples were above the Pisarenko line. Furthermore,

the m* depended directly on the Eg (}
2k2

B
2m∗ = E

(
1 + E

Eg

)
), where E the energy of electron

states), which deviated from a single Kane band model [21,59,60], thus confirming the large
S was related to Eg and m*. Consequently, the decreased carrier concentration (x > 0.5) and
increased m*, resulted in the significant enhancement of S.

The temperature dependence of the power factors (S2σ) of the Cu3Sb(Se1−xSx)4
(x = 0–1) samples are presented in Figure 4d. The S2σ of Cu3SbSe4-Cu3SbS4 solid so-
lutions exhibited a similar temperature-dependent behavior as the electrical conductivity
(σ). The temperature-dependent trend observed in the S2σ was mirrored in the behavior of
the σ for the Cu3SbSe4-Cu3SbS4 solid solutions. Owing to their relatively elevated σ and S
values, these samples demonstrated larger S2σ values compared to the pristine Cu3SbSe4,
particularly within the lower temperature range. Notably, the x = 0.3 sample achieved a
larger S2σ value than the other samples, and the peak S2σ value of Cu3SbSe2.8S1.2 sample
was ~670 µW m−1 K−2 at 673 K.

3.4. Thermal Transport Properties

The temperature dependence of the thermal transport properties of the Cu3Sb(Se1−xSx)4
(x = 0–1) solid solutions are presented in Figure 5 and Figure S4. Obviously, the κtot de-
creased with increasing temperature, mainly attributed to the increased scattering by lattice
vibrations at elevated temperatures [8,40,53] (Figure 5a). For instance, the κtot of pristine
Cu3SbSe4 decreased from ~3.11 Wm−1K−1 at 300 K to ~1.03 Wm−1K−1 at 673 K. Similarly,
the κtot of the x = 0.5 sample decreased from ~1.37 Wm−1K−1 at 300 K to ~0.52 Wm−1K−1

at 673 K. Generally, the κlat can be obtained by subtracting the electronic part (κele) from the
κtot using the Wiedeman–Franz relationship (the details are displayed in Supplementary
Material) [61,62]:

κ ele = Lσ T (2)

where L is the Lorenz number and it can be expressed as Equation (3) [63,64]:

L = 1.5 + exp
[
−|S|
116

]
(3)
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The calculated L values of the Cu3Sb(Se1−xSx)4 (x = 0–1) samples ranged from 1.5 to
1.6 W Ω K−2, and the results are listed in Figure S5. Owing to the enhanced carrier
concentration (x < 0.6), the κele showed a slight increase at low temperature after S alloying,
as described in Figure 5b. The κlat of the Cu3Sb(Se1−xSx)4 (x = 0–1) samples is plotted in
Figure 5c, indicating a significant decrease within the measured temperature range after
S alloying.

To explore the effects of S alloying on the phonon scattering and the significant
reduction in κlat, the κlat of the Cu3Sb(Se1−xSx)4 (x = 0–1) compounds was evaluated at
room temperature by the Debye–Callaway model. The primary scattering mechanisms
under consideration were point defect scattering and Umklapp scattering. Then, the κlat of
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the pristine (κpristine
lat ) and S-alloyed (κlat) Cu3SbSe4 compounds could be computed based

on the Debye–Callaway model [48,65,66]:

κlat

κ
pristine
lat

=
arctan(u)

u
, u2 =

π2θDΩ
hv2 κ

pristine
lat Γ (4)

where u, θD, Ω, h, and ν represent the scaling parameter, Debye temperature, volume per
atom, Planck constant, and average speed of sound, respectively (herein, θD = 131 K and
ν= 1991.2 m/s [46]). Γ is the imperfection scale parameter, which is associated with the Γm
(mass fluctuation) and Γs (strain field fluctuation) [67]:

Γ = Γm + Γs = x(1− x)

[(
∆M
M

)2
+ ε

(
∆r
r

)2
]

(5)

where x, ∆M/M and ∆r/r are the S concentration in one molecular, the relative change of
atomic mass, and atomic radius owing to the replacement of Se with S, respectively. The ε
value can be computed using the following formula [68]:

ε =
2
9

(
6.4γ

(
1 + υp

)
1−υp

)2

(6)

where, γ and υp are the Grüneisen parameter and Poisson ratio, respectively (here, γ = 1.3 [46]
and υp = 0.35 [69]).

The values of Γm and Γs for the Cu3Sb(Se1−xSx)4 compounds are presented in Table S3.
Figure 5d shows how the scattering parameters Γm and Γs changed with varying Se-alloying
levels. It was observed that Γm was smaller than Γs when the S content x ≤ 0.6, indicating
that the Γs (strain field fluctuation) contributed greatly to the drop of κlat. As for the
x > 0.6 samples, the Γm (mass fluctuation) was the dominant. It is commonly accepted
that the atomic radius of S is different from that of the Se atom, inducing a localized
lattice distortion and leading to local field fluctuations that hinder the propagation of
heat-carrying phonons [70,71]. However, with increasing S content, the mass fluctuation
gradually became the dominant factor. The experimental κlat closely aligned with the curve
calculated by the Callaway model (Figure 5e), suggesting that point defects made a great
contribution to suppress the κlat in the Cu3Sb(Se1−xSx)4 solid solutions [48]. For a more
comprehensive evaluation of our results, a comparison of the our κlat data with the recently
reported values of Cu3SbSe4 are illustrated in Figure 5f [33,34,36,38,39]. Remarkably, the
Cu3Sb(Se1−xSx)4 (x = 0.5) sample achieved an outstandingly low κlat of ~0.50 W m−1 K−1

at 673 K.

3.5. Figure of Merit (ZT)

The temperature-dependent ZT of the Cu3Sb(Se1−xSx)4 (x = 0–1) samples are illus-
trated in Figure 6a. With the benefit of the collaborative enhancement of electrical and
thermal transport properties, the x = 0.3 sample attained a maximum ZT value of ~0.72 at
673 K, which was 44% higher than that of pristine Cu3SbSe4. To further analyze our
TE properties, the comparison of the ZTmax of the Cu3SbSe4-based materials is given
in Figure 6b [33–40,72]. Obviously, our ZTmax of 0.72 was higher than that of other
Cu3SbSe4-based materials, such as Cu3Sb0.97In0.03Se4 ~0.5, Cu3Sb0.985Ga0.015Se4 ~0.54,
Cu3SbSe3.99Te0.01 ~0.62, Cu3Sb0.92Sn0.08S3.75Se0.25 ~0.67, Cu2.95Sb0.96Ge0.04Se4 ~0.70, and
Cu2.95Sb0.98Sn0.02Se4 ~0.7 and is comparable to the ZT values for Cu3Sb0.98Bi0.02Se3.99Te0.01
~0.76 and Cu3Sb0.91Sn0.03Hf0.06Se4 ~0.76. Although the Cu3Sb(Se1−xSx)4 (x = 0–1) sam-
ples had relative low ZT values in comparison with other high-performance TE materials,
further enhancements of the ZT values can potentially be achieved by tuning the carrier
concentration, dual-incorporation, and/or introducing band engineering.
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4. Conclusions

In summary, a series of Cu3SbSe4-Cu3SbS4 solid solutions were synthesized by vacuum
melting and plasma-activated sintering (PAS) techniques, and the effects of S alloying
on TE performance were investigated. S alloying can widen the band gap, effectively
alleviating the bipolar effect. Additionally, the S (Seebeck coefficient) was significantly
improved because of the increased m*. Furthermore, the substitution of S for Se in Cu3SbSe4
lattice led to noticeable local distortions, yielding large strain and mass fluctuations to
suppress the κlat, thus decreasing the κlat and κtot to ~0.50 Wm−1K−1 and ~0.52 Wm−1K−1

at 673 K, respectively. Consequently, a peak ZT value of ~0.72 was obtained at 673 K for
the Cu3Sb(Se1−xSx)4 (x = 0.3) sample. Based on these results, it is speculated that further
improvement in the figure of merit of Cu3Sb(Se1−xSx)4 solid solutions can be obtained by
enhanced electrical transport properties. Our research offers a new strategy to develop
high-performance TE materials in solid solutions via elemental alloying.
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