A Novel High Temperature Fuel Cell Proton Exchange Membrane with Nanoscale Phase Separation Structure Based on Crosslinked Polybenzimidazole with Poly(vinylbenzyl chloride)
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
2.2.1. Synthesis of Semi-Aromatic Polybenzimidazole (DPBI)
2.2.2. Preparation of Crosslinked DPBI-xPVBC Membranes
2.3. Characterization and Measurements
2.3.1. Structure Characterization and Morphology
2.3.2. Gel Fraction Measurement
2.3.3. PA Doping Content and Proton Conductivity
2.3.4. Mechanical Property
2.3.5. Oxidative Stability
2.3.6. Fuel Cell Test
3. Results and Discussion
3.1. Structure Characterization of DPBI and DPBI-xPVBC
3.2. Performance Analysis of the Crosslinked DPBI-xPVBC Membranes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bose, S.; Kuila, T.; Nguyen, T.X.H.; Kim, N.H.; Lau, K.-t.; Lee, J.H. Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog. Polym. Sci. 2011, 36, 813–843. [Google Scholar] [CrossRef]
- Fang, J.; Lin, X.; Cai, D.; He, N.; Zhao, J. Preparation and characterization of novel pyridine-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. J. Membr. Sci. 2016, 502, 29–36. [Google Scholar] [CrossRef]
- Jeske, M.; Ellenberg, C.; Soltmann, C.; Wilhelm, M.; Grathwohl, G. Synthesis of polysiloxane based proton conducting membranes for the HT-PEMFC and their use in membrane-electrode-assemblies. J. New Mater. Electrochem. Syst. 2008, 11, 31–36. [Google Scholar]
- Kim, S.-K.; Kim, K.-H.; Park, J.O.; Kim, K.; Ko, T.; Choi, S.-W.; Pak, C.; Chang, H.; Lee, J.-C. Highly durable polymer electrolyte membranes at elevated temperature: Cross-linked copolymer structure consisting of poly (benzoxazine) and poly (benzimidazole). J. Power Source 2013, 226, 346–353. [Google Scholar] [CrossRef]
- Sun, P.; Li, Z.; Dong, F.; Wang, S.; Yin, X.; Wang, Y. High temperature proton exchange membranes based on cerium sulfophenyl phosphate doped polybenzimidazole by end-group protection and hot-pressing method. Int. J. Hydrogen Energy 2017, 42, 486–495. [Google Scholar] [CrossRef]
- kumar, G.G.; Kim, A.R.; Nahm, K.S.; Yoo, D.J.; Elizabeth, R. High ion and lower molecular transportation of the poly vinylidene fluoride-hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications. J. Power Source 2010, 195, 5922–5928. [Google Scholar] [CrossRef]
- Aili, D.; Cleemann, L.N.; Li, Q.; Jensen, J.O.; Christensen, E.; Bjerrum, N.J. Thermal curing of PBI membranes for high temperature PEM fuel cells. J. Mater. Chem. 2012, 22, 5444–5453. [Google Scholar] [CrossRef] [Green Version]
- Asensio, J.A.; Sánchez, E.M.; Gomez-Romero, P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem. Soc. Rev. 2010, 39, 3210–3239. [Google Scholar] [CrossRef] [PubMed]
- Dahe, G.J.; Singh, R.P.; Dudeck, K.W.; Yang, D.; Berchtold, K.A. Influence of non-solvent chemistry on polybenzimidazole hollow fiber membrane preparation. J. Membr. Sci. 2019, 577, 91–103. [Google Scholar] [CrossRef]
- Giffin, G.A.; Galbiati, S.; Walter, M.; Aniol, K.; Ellwein, C.; Kerres, J.; Zeis, R. Interplay between structure and properties in acid-base blend PBI-based membranes for HT-PEM fuel cells. J. Membr. Sci. 2017, 535, 122–131. [Google Scholar] [CrossRef]
- Hergenrother, P.M. The use, design, synthesis, and properties of high performance/high temperature polymers: An overview. High Perform. Polym. 2003, 15, 3–45. [Google Scholar] [CrossRef]
- Park, J.; Wang, L.; Advani, S.G.; Prasad, A.K. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs. Electrochim. Acta 2014, 120, 30–38. [Google Scholar] [CrossRef]
- Ryu, S.K.; Vinothkannan, M.; Kim, A.R.; Yoo, D.J. Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120–160 °C. Energy 2022, 238, 121791–121799. [Google Scholar] [CrossRef]
- Choe, E.W. Catalysts for the preparation of polybenzimidazoles. J. Appl. Polym. Sci. 1994, 53, 497–506. [Google Scholar] [CrossRef]
- Iwakura, Y.; Uno, K.; Imai, Y. Polyphenylenebenzimidazoles. J. Polym. Sci., Part A Gen. Pap. 1964, 2, 2605–2615. [Google Scholar] [CrossRef]
- Vogel, H.; Marvel, C. Polybenzimidazoles, new thermally stable polymers. J. Polym. Sci. 1961, 50, 511–539. [Google Scholar] [CrossRef]
- Hazarika, M.; Jana, T. Proton exchange membrane developed from novel blends of polybenzimidazole and poly (vinyl-1, 2, 4-triazole). ACS Appl. Mater. Interfaces 2012, 4, 5256–5265. [Google Scholar] [CrossRef]
- Li, X.; Ma, H.; Wang, P.; Liu, Z.; Peng, J.; Hu, W.; Jiang, Z.; Liu, B. Construction of high-performance, high-temperature proton exchange membranes through incorporating SiO2 nanoparticles into novel cross-linked polybenzimidazole networks. ACS Appl. Mater. Interfaces 2019, 11, 30735–30746. [Google Scholar] [CrossRef]
- Liao, J.; Yang, J.; Li, Q.; Cleemann, L.N.; Jensen, J.O.; Bjerrum, N.J.; He, R.; Xing, W. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions. J. Power Source 2013, 238, 516–522. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Y.; Liu, P.; Gao, L.; Che, Q.; He, R. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochim. Acta 2015, 160, 281–287. [Google Scholar] [CrossRef]
- Aili, D.; Yang, J.; Jankova, K.; Henkensmeier, D.; Li, Q. From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides. J. Mater. Chem. A 2020, 8, 12854–12886. [Google Scholar] [CrossRef]
- Yang, J.; He, R.; Che, Q.; Gao, X.; Shi, L. A copolymer of poly [2, 2′-(m-phenylene)-5, 5′-bibenzimidazole] and poly (2, 5-benzimidazole) for high-temperature proton-conducting membranes. Poly. Int. 2010, 59, 1695–1700. [Google Scholar] [CrossRef]
- Berber, M.R.; Nakashima, N. Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions. J. Membr. Sci. 2019, 591, 117354–117363. [Google Scholar] [CrossRef]
- Kang, Y.; Zou, J.; Sun, Z.; Wang, F.; Zhu, H.; Han, K.; Yang, W.; Song, H.; Meng, Q. Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2013, 38, 6494–6502. [Google Scholar] [CrossRef]
- Borjigin, H.; Stevens, K.A.; Liu, R.; Moon, J.D.; Shaver, A.T.; Swinnea, S.; Freeman, B.D.; Riffle, J.; McGrath, J.E. Synthesis and characterization of polybenzimidazoles derived from tetraaminodiphenylsulfone for high temperature gas separation membranes. Polymer 2015, 71, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-C.; Chen, P.-Y.; Lee, S.-W.; Liou, G.-L.; Chen, C.-J.; Lan, Y.-H.; Chen, K.-H. Synthesis of soluble polybenzimidazoles for high-temperature proton exchange membrane fuel cell (PEMFC) applications. React. Funct. Polym. 2016, 108, 122–129. [Google Scholar] [CrossRef]
- Eaton, P.E.; Carlson, G.R.; Lee, J.T. Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. J. Org. Chem. 1973, 38, 4071–4073. [Google Scholar] [CrossRef]
- Li, X.; Ma, H.; Shen, Y.; Hu, W.; Jiang, Z.; Liu, B.; Guiver, M.D. Dimensionally-stable phosphoric acid–doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells. J. Power Source 2016, 336, 391–400. [Google Scholar] [CrossRef]
- Arbi, H.M.; Yadav, A.A.; Anil Kumar, Y.; Moniruzzaman, M.; Alzahmi, S.; Obaidat, I.M. Polypyrrole-Assisted Ag Doping Strategy to Boost Co(OH)2 Nanosheets on Ni Foam as a Novel Electrode for High-Performance Hybrid Supercapacitors. Nanomaterials 2022, 12, 3982. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, K.-S. Fuel cell membrane characterizations. Polym. Rev. 2015, 55, 330–370. [Google Scholar] [CrossRef]
- Chang, Z.; Pu, H.; Wan, D.; Liu, L.; Yuan, J.; Yang, Z. Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells. Polym. Degrad. Stab. 2009, 94, 1206–1212. [Google Scholar] [CrossRef]
- Henkensmeier, D.; Cho, H.-R.; Kim, H.-J.; Kirchner, C.N.; Leppin, J.; Dyck, A.; Jang, J.H.; Cho, E.; Nam, S.-W.; Lim, T.-H. Polybenzimidazolium hydroxides-structure, stability and degradation. Polym. Degrad. Stab. 2012, 97, 264–272. [Google Scholar] [CrossRef]
- Li, Q.; Rudbeck, H.C.; Chromik, A.; Jensen, J.O.; Pan, C.; Steenberg, T.; Calverley, M.; Bjerrum, N.; Kerres, J. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. J. Membr. Sci. 2010, 347, 260–270. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, C.; Lin, H.; Zhang, G.; Ni, J.; Wang, J.; Wang, S.; Na, H. High-temperature water-free proton conducting membranes based on poly (arylene ether ketone) containing pendant quaternary ammonium groups with enhanced proton transport. J. Power Source 2011, 196, 9331–9338. [Google Scholar] [CrossRef]
- Yang, J.; Aili, D.; Li, Q.; Cleemann, L.N.; Jensen, J.O.; Bjerrum, N.J.; He, R. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly (Vinylbenzyl Chloride) for Fuel Cell Applications. ChemSusChem 2013, 6, 275–282. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, H.; Scanlon, E.; Ramanathan, L.; Choe, E.-W.; Rogers, D.; Apple, T.; Benicewicz, B.C. High-temperature polybenzimidazole fuel cell membranes via a sol-gel process. Chem. Mater. 2005, 17, 5328–5333. [Google Scholar] [CrossRef]
- Krishnan, N.N.; Konovalova, A.; Aili, D.; Li, Q.; Park, H.S.; Jang, J.H.; Kim, H.-J.; Henkensmeier, D. Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells. J. Membr. Sci. 2019, 588, 117218–117225. [Google Scholar] [CrossRef]
- Hu, M.; Ni, J.; Zhang, B.; Neelakandan, S.; Wang, L. Crosslinked polybenzimidazoles containing branching structure as membrane materials with excellent cell performance and durability for fuel cell applications. J. Power Source 2018, 389, 222–229. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Cleemann, L.N.; Jensen, J.O.; Pan, C.; Bjerrum, N.J.; He, R. Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications. Adv. Energy Mater. 2013, 3, 622–630. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.; Liu, Z.; Peng, J.; Shi, C.; Hu, W.; Jiang, Z.; Liu, B. Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells. J. Power Source 2018, 393, 99–107. [Google Scholar] [CrossRef]
- Liu, C.; Khan, S.B.; Lee, M.; Kim, K.I.; Akhtar, K.; Han, H.; Asiri, A.M. Fuel cell based on novel hyper-branched polybenzimidazole membrane. Macromol. Res. 2013, 21, 35–41. [Google Scholar] [CrossRef]
- Villa, D.C.; Angioni, S.; Barco, S.D.; Mustarelli, P.; Quartarone, E. Polysulfonated Fluoro-oxyPBI Membranes for PEMFCs: An Efficient Strategy to Achieve Good Fuel Cell Performances with Low H3PO4 Doping Levels. Adv. Energy Mater. 2014, 4, 1220–1225. [Google Scholar] [CrossRef]
- Krishnan, N.N.; Joseph, D.; Duong, N.M.H.; Konovalova, A.; Jang, J.H.; Kim, H.-J.; Nam, S.W.; Henkensmeier, D. Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells. J. Membr. Sci. 2017, 544, 416–424. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, H.; Gao, L.; Wang, J.; Xu, Y.; He, R. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2018, 43, 3299–3307. [Google Scholar] [CrossRef]
- Üregen, N.; Pehlivanoğlu, K.; Özdemir, Y.; Devrim, Y. Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. Int. J. Hydrogen Energy 2017, 42, 2636–2647. [Google Scholar] [CrossRef]
- Krishnan, N.N.; Lee, S.; Ghorpade, R.V.; Konovalova, A.; Jang, J.H.; Kim, H.-J.; Han, J.; Henkensmeier, D.; Han, H. Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell. J. Membr. Sci. 2018, 560, 11–20. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Li, X.; Peng, J.; Hu, W.; Liu, B. Toward enhanced conductivity of high-temperature proton exchange membranes: Development of novel PIM-1 reinforced PBI alloy membranes. Chem. Commun. 2019, 55, 6491–6494. [Google Scholar] [CrossRef] [PubMed]
Membrane | ADC /% | σ/mS cm−1 (160 °C) | Tensile Strength/MPa | Elongation (%) |
---|---|---|---|---|
Dry DPBI | 0 | - | 58.7 ± 2.2 | 9.2 ± 2.4 |
110%PA@DPBI | 110 | 19.4 ± 0.1 | 14.2 ± 1.1 | 261.0 ± 1.0 |
Membrane | ADC (%) | Svolume (%) | Tensile Strength (MPa) | Elongation (%) |
---|---|---|---|---|
PA@DPBI | 237 ± 3 | 111 ± 12 | 7.00 ± 0.4 | 269 ± 28.3 |
PA@DPBI-10PVBC | 227 ± 3 | 83 ± 2 | 15.0 ± 2.4 | 118 ± 22.1 |
PA@DPBI-20PVBC | 231 ± 3 | 81 ± 1 | 11.2 ± 1.0 | 26.3 ± 16.2 |
PA@DPBI-30PVBC | 221 ± 3 | 76 ± 3 | 8.00 ± 0.5 | 6.30 ± 0.9 |
Membrane | ADLs | ADC (%) | Conductivity (mS cm−1) | OCV (V) | Power Density (mW cm−2) | Fuel Gas | Temperature (°C) | Ref. |
---|---|---|---|---|---|---|---|---|
DPBI-10PVBC | 235 | 49 (160 °C) | 0.94 | 405 | H2/O2 | 160 | This work | |
SC-B-OPBI-10 | 223 | 44 (180 °C) | 0.88~0.94 | 404 | H2/air | 160 | [38] | |
CrL-4.6%F6 PBI | 13.5 | 115 (160 °C) | 1.00 | 360 | H2/air | 160 | [39] | |
g-PBI-30 | 24.7 | 178 (160 °C) | 0.87 | 383 | H2/O2 | 160 | [40] | |
HB-PBI | 331 | 168 (150 °C) | 0.82 | 346 | H2/O2 | 150 | [41] | |
F6-oxyPBI-2SO3H | 49 (120 °C & 50%RH) | 0.90 | 360 | H2/air | 150 | [42] | ||
m-PBI | 375 | - | 1.00 | 352 | H2/air | 160 | [43] | |
Be3Br-7.5% | 11.6 | 95 (160 °C) | 0.95 | 340 | H2/O2 | 160 | [44] | |
PBI/GO-1 | 10.0 | 130 (165 °C) | 0.95 | 380 | H2/air | 165 | [45] | |
c-6-s-TiO2-PBI-OO | 392 | 98 (160 °C) | 1.00 | 356 | H2/air | 160 | [46] | |
OPBI/PIM-1(10%) | 18.7 | 313 (200 °C) | 0.94 | 438 | H2/O2 | 160 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, E.; Xiao, M.; Han, D.; Huang, S.; Huang, Z.; Liu, W.; Wang, S.; Meng, Y. A Novel High Temperature Fuel Cell Proton Exchange Membrane with Nanoscale Phase Separation Structure Based on Crosslinked Polybenzimidazole with Poly(vinylbenzyl chloride). Nanomaterials 2023, 13, 266. https://doi.org/10.3390/nano13020266
Qu E, Xiao M, Han D, Huang S, Huang Z, Liu W, Wang S, Meng Y. A Novel High Temperature Fuel Cell Proton Exchange Membrane with Nanoscale Phase Separation Structure Based on Crosslinked Polybenzimidazole with Poly(vinylbenzyl chloride). Nanomaterials. 2023; 13(2):266. https://doi.org/10.3390/nano13020266
Chicago/Turabian StyleQu, Erli, Min Xiao, Dongmei Han, Sheng Huang, Zhiheng Huang, Wei Liu, Shuanjin Wang, and Yuezhong Meng. 2023. "A Novel High Temperature Fuel Cell Proton Exchange Membrane with Nanoscale Phase Separation Structure Based on Crosslinked Polybenzimidazole with Poly(vinylbenzyl chloride)" Nanomaterials 13, no. 2: 266. https://doi.org/10.3390/nano13020266
APA StyleQu, E., Xiao, M., Han, D., Huang, S., Huang, Z., Liu, W., Wang, S., & Meng, Y. (2023). A Novel High Temperature Fuel Cell Proton Exchange Membrane with Nanoscale Phase Separation Structure Based on Crosslinked Polybenzimidazole with Poly(vinylbenzyl chloride). Nanomaterials, 13(2), 266. https://doi.org/10.3390/nano13020266