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Abstract: Water toxicity, one of the major concerns for ecosystems and the health of humanity,
is usually attributed to inorganic anions-induced contamination. Particularly, cyanide ions are
considered one of the most harmful elements required to be monitored in water. The need for
cyanide sensing and monitoring has tempted the development of sensing technologies without
highly sophisticated instruments or highly skilled operations for the objective of in-situ monitoring.
Recent decades have witnessed the growth of noble metal nanomaterials-based sensors for detecting
cyanide ions quantitatively as nanoscience and nanotechnologies advance to allow nanoscale-inherent
physicochemical properties to be exploited for sensing performance. Particularly, noble metal
nanostructure e-based optical sensors have permitted cyanide ions of nanomolar levels, or even lower,
to be detectable. This capability lends itself to analytical application in the quantitative detection of
harmful elements in environmental water samples. This review covers the noble metal nanomaterials-
based sensors for cyanide ions detection developed in a variety of approaches, such as those based on
colorimetry, fluorescence, Rayleigh scattering (RS), and surface-enhanced Raman scattering (SERS).
Additionally, major challenges associated with these nano-platforms are also addressed, while future
perspectives are given with directions towards resolving these issues.

Keywords: water toxicity; cyanide sensing; noble metal nanomaterials; surface plasmon resonance;
fluorescence; surface-enhanced Raman scattering; Rayleigh scattering

1. Introduction

A cyanide ion has the acutest toxicity among inorganic anions and needs to be mon-
itored due to its fatally harmful effects on ecosystems involving humans. This chemical
is deadly poisonous with particular regard to the respiratory, cardiovascular, and ner-
vous systems of mammals, including humans, leading to the death of living organs after
exposure at a low dose for only a few minutes [1–3]. It comprises a carbon atom (C)
triple-bonded with a nitrogen atom (N) through a negative charge (C≡N−). Cyanides that
are naturally found both in the biological and geological world are produced by many
plants as a spontaneous shield against pests [4–8]. However, industrial activities discharge
exceedingly vast amounts of cyanides, such as in metallurgy, electroplating, manufacturing
of plastics/organic reagents, mining, fumigation, and photographic development [9].

The default guideline values to protect drinking water have been set to (76 nM)
2 µg L−1 and (0.15 µM) 4 µg L−1, in the New Zealand and Australian Environmental
and Conservation Councils, respectively [10,11]. The United State Environmental Pro-
tection Agency (USEPA) has set the highest allowable amounts of cyanides in drinking
water at (7.6 µM) 200 µg L−1 [12]. The European Union has set a lower level of (1.9 µM)
50 µg L−1 of cyanides in environmental water [13]. Furthermore, the Drinking Water Man-
agement Act in The Republic of Korea has set the level for cyanides at less than (0.39 µM)
10 µg L−1 as the drinking water standard [14]. With these guidelines concerning cyanides,
ecosystem protection urgency has led to the development of sensor devices capable of
quantitatively detecting it, with a detection limit of sub-µg L−1 in water. Several analytical
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sensing technologies have been developed for the detection of cyanide anions, such as
those based on electrochemistry, chemiluminescence, titration, potentiometry, voltammetry,
fluorescence/colorimetry with organic molecules and metal complexes, gel-based visual
detection, etc. [1,2,9,15–20]. Several review articles have been published for the wide
range of methodologies developed for cyanides detection [4], such as for the fluorometer-
and colorimeter-based detection with organic molecules and metal complexes [5] and the
gel-based visual detection of cyanides [3].

Among the methodologies reported, the optical chemosensors for cyanides detection,
such as those based on colorimetry, fluorescence, Rayleigh scattering (RS), and surface-
enhanced Raman scattering (SERS), have gathered continuous attention due to their ad-
vantages, including convenient and/or simple operation, miniaturized device fabrication,
inexpensive sensing operation, high sensitivity with adequate specificity and real-time
detection capability [21–25].

Advances in nanotechnologies and nanoscience have allowed the fabrication of var-
ious nanostructured materials with intrinsic morphologies, such as the nanoparticles
(NPs) of copper/silver/gold (CuNPs/AgNPs/AuNPs) [26–35], and the nanoclusters
(NCs) of the metals (CuNCs/AgNCs/AuNCs) [30,31]. For sensing strategies, analyte-
induced changes of the physicochemical properties near those nanoparticles are designed
to alter their opto-chemical response. Such local changes include the occurrence of
conglomeration/anti-conglomeration [27,28], morphology modification [17,19], optical
refractive index change [36–39], and the introduction of external dipole coupling [39,40].

Metal nanoparticles have been involved in optical sensing platforms, including those
based on colorimetry [27,28], surface plasmon resonance [41–44], fluorescence [45–47],
RS [48], and SERS tactics [49,50]. These sensing devices have produced reasonably good
sensitivity in detecting analytes with adequate specificity, whereas the high reproducibility
of the sensor signals remains a challenge due to limited control over the uniformity of
nanoparticle size to date. The fact that the metals of the nanomaterials chemically react
with cyanides through the so-called Elsner reactions can be exploited to design optical
chemosensors that can detect cyanides quantitatively [16,17]. This chemical reaction, that
produces metal-cyano complexes in an oxygenated environment, can be combined with
the nanoparticle properties that govern optical properties, such as resonance spectroscopy,
fluorescence, and elastic/inelastic light-scattering spectroscopy.

This paper focuses on the review of the metal nanostructure-based optical chemosen-
sors that have been developed for the analytical detection of cyanides, such as those utiliz-
ing the plasmonic MNPs-based colorimetry, plasmonic MNPs-enhanced elastic/inelastic
scattering (RS and SERS), and metal nanoclusters (NCs)-based fluorescence sensors. Plas-
monic colorimetry uses the morphological changes of MNPs in the particle accretion that
follows the cyanide-metal interaction. The fluorescence-based nanosensors for detecting
cyanide ions are reviewed, with approaches that employ cyanide-induced effects such as
fluorescent probe etching, metal-cyano complex formation, inner-filter effect (IFE), and
Förster resonance energy transfer (FRET). RS and SERS approaches with plasmonic MNPs
are reviewed, with a focus on the quantitative detection of cyanide through NPs conglomer-
ation. Lastly, we offer the conclusions of the review with an outlook for noble MNPs-based
optical chemosensors for cyanide detection. Scheme 1.
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Scheme 1. Schematic representation for the optical chemosensors for cyanide anion.

2. Plasmonic Nanomaterials-Based Colorimetric Sensors for Cyanide Ions

Colorimetry-based sensors make use of color changes caused by the development of
physicochemical assemblies, morphological changes, and chemical reactions [49]. Generally,
the quantification of various potential analytes was successfully accomplished using a vari-
ety of organic and biological colorimetric probes. However, the use of organic and biological
colorimetric probes was limited by frequently challenging synthesis procedures, difficult
fabrication processes, expensive/highly technical determination techniques, and the re-
quirement for extremely expensive chemical reagents [3,5,51,52]. Therefore, easy, realistic,
selective, and sensitive colorimetric probes for the quantization of toxic/biological analytes
from problematic samples are required. To overcome this issue, plasmonic nanomaterials-
based colorimetric sensing analysis for potentially important toxic and biological analytes
is very interesting, due to the simple preparation and easy operation [51–55].

2.1. AgNPs-Based Colorimetric Sensors for Cyanide Ions

With surface plasmon resonance, AgNPs exhibit optical absorbance coefficients larger
than other MNPs of a similar size and shape due to the smaller magnitude of the imaginary
component of the permittivity of silver, combined with a sufficiently large magnitude of
its real component (as a negative value). This feature leads to a narrower peak in the
plasmon-induced optical absorbance spectrum with a higher quality (Q) factor, favoring
higher sensitivity for visual color changes [56–59].

S. Hajizadeh et al. [60] reported the high sensitivity and specificity for sensing cyanide
ions in water using sodium dodecyl sulfate (SDS) -functionalized AgNPs with naked-
eye visual observation. The presence of the cyanide ions caused the plasmonic optical
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response of SDS-AgNPs to be reduced, in turn decreasing the color contrast, resulting
in a colorless state. This colorimetric sensor showed the linear relationship between
plasmonic absorbance and the cyanide ion concentration in the range of 16.7–133.3 µM at the
wavelength 394 nm. The SDS-AgNP-based approach obtained the cyanide detection limit
of 1.8 µM and was exploited for its application in cyanide detection in dam water samples.

N. Pourreza and co-workers [61] presented an approach for eco-friendly, in-situ syn-
thesis of AgNPs embedded in flexible and transparent bacterial cellulose nanopapers for
cyanide ion detection. In this technique, adsorbed Ag+ ions on bacterial nanofibers were
reduced by the hydroxyl radical of cellulose nanopapers; the reducing agent generated
the bio-nanocomposite, i.e., the embedded AgNPs in transparent nanopapers (ESNPs).
ESNPs allowed incremental amounts of cyanide ions to cause a strong hypsochromic shift
in the absorbance peak. This appeared to be due to cyanide ion-induced etching of the
AgNP surface; the subsequent alteration of the plasmon resonance resulted in the shift.
This sensor was further applied to real water samples, such as those from industry and
the environment.

H. Hatam et al. [62] reported the super specific and highly sensitive colorimetric
method for quantifying cyanide ions in environmental water samples using plasmonic
AgNPs embedded in a transparent agarose matrix. This sensor displayed a wide linear
range of the signal versus cyanide ion concentrations from 1.5 to 120 µM, with a detection
limit of 0.69 µM. This sensor also presented remarkable selectivity for detecting cyanide
ions against various other inorganic anions of concentrations exceeding 50 times that of
cyanide ions.

K.F. Princy et al. [63] studied the colorimetric and fluorescent turn-on sensing of
cyanide ions in a water medium using seaweed (marine macroalgae) facilitated biosynthe-
sized AgNPs. The bioactive substances in the seaweed extract acted as reducing agents
as well as stabilizing agents for AgNPs. Insertion of cyanide ions caused the color of the
seaweed AgNPs colloid to change from brown to colorless due to a decrease of plasmonic
absorbance at the wavelength of 414 nm with concomitant fluorescence. This fluorescence
turned on as the size of AgNPs became small enough to reach the Fermi wavelength of an
electron (0.5 nm), thus being referred to as AgNCs that acted as fluorescent probes. This
technique was used to detect cyanide ions in environmental water samples with its device
integrated with a test strip for real-time sensing of cyanide ions.

P. Paul and co-workers [64] synthesized the rosmarinic acid AgNPs for the colorimetric
sensing of cyanide ions in environmental water samples. The redox reaction that took place
on the surface of the nanoparticles, which was mediated by cyanide ions and reduced
dissolved oxygen into ROS (O2 to O2

−, O2
2− etc.), and oxidized silver (Ag0) into Ag+, was

the subject of the sensing mechanistic pathway that was investigated by this nanosensor.
Thus, Ag+ reacted with cyanide to form a water-soluble AgCN complex and with O2

−

establishing Ag2O. This annihilation of AgNPs triggered a color alteration from yellow
to colorless, with fading of the plasmonic absorbance peak (band). For portable usage,
agarose-based test strips were merged by arresting the rosmarinic acid-AgNPs onto the
agarose test strip and was effectively utilized for the determination of cyanide ions in a
water medium. The majority of the AgNP-based cyanide ion chemosensors may have been
altered by the chemical interaction between the cyanide ions and AgNPs in an oxygenated
environment (Figure 1) [65,66]. In addition, AgNP-based colorimetric detection of cyanide
anions is summarized in Table 1, showing that most of the methodologies obtained an
LOD of less than or almost equal to that permitted by WHO regarding cyanide levels in
drinking water.
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Figure 1. Probable sensing mechanism for AgNP-based colorimetric sensor for cyanide anion.

2.2. AuNP-Based Colorimetric Sensors for Cyanide Ions

AuNPs have been widely used in several scientific fields in recent decades, especially
analytical chemistry, making them one of the most widely accepted nanostructured ma-
terials [67,68]. Due to their high extinction coefficient and interparticle interaction based
SPR band, AuNPs are the appropriate material for colorimetric nanoprobes for the optical
detection of cyanide anions in entirely water-based settings. According to A. Pal et al. [69],
pink-colored stable AuNPs were produced photochemically in an aqueous Triton X-100
(TX-100) solution and used for spectrophotometric cyanide anion quantification. TX-100-
AuNPs’ colorimetric properties in combination with their SPR band cause cyanide addition
to be reduced; at the endpoint of the experiment, it becomes colorless. This sensor was
used to find cyanide anions in samples of industrial effluent.

Adenosine triphosphate (ATP)-functionalized AuNPs with copper-phenanthroline
ensemble-based naked-eye visual sensing of cyanide anion was shown by M.H. Kim
and colleagues [70]. With the ligand-exchange method used by this sensor, a chemical
change results from the replacement of one ligand with another. As a result, cyanide
interacts with AuNPs in the presence of copper-phenanthroline, which may disrupt AuNPs
dispersion. Due to the cyanide anion’s chemical reaction with this nanoprobe, the SPR band
and colorimetric response were observed. The W.-L. Tseng research team [71] described
using polysorbate-40 (PS-40) coated AuNPs to colorimetrically detect cyanide, endogenous
biological cyanide, and hydrogen cyanide in plants harboring cyanogenic glycosides. The
cyanide anion was successfully detected in loquat kernels, cassava roots, and peach kernels
using this nanosensor. Chitosan-AuNP film was used by C. Radhakumary’s research
group to assess cyanide ions in biological (blood) and water samples [72]. Similar to the
colloidal chitosan-AuNP solution, this chitosan-AuNPs film had an SPR band at 534 nm.
Surprisingly, this nanosensor provides for quick, naked-eye detection of cyanide ions at
levels equivalent to or higher than 2 µg L−1. In addition, the researchers claim that their
nanosensor was a low-cost, portable, and simple-to-use method for the on-site monitoring
of actual water and biological samples, commonly used in underdeveloped nations where
access to sophisticated apparatus is constrained.

In order to produce a quick and simple colorimetric detection of cyanide anions in real
water samples, Ilanchelian, et al. [73] employed AuNPs functionalized with β-cyclodextrin
(β-CD). This optical chemosensor has a detection limit of roughly 93 nM, and a broad linear
range between 4.5 and 99 µM. This approach also included a highly stable cotton swab
for user convenience. β-CD Cotton swabs coated with AuNPs display good sensitivity to
the cyanide anion. When a cotton swab covered with β-CD-AuNPs was examined under
a scanning electron microscope and then immersed in a 99 µM solution of cyanide, its
color rapidly changed from wine red to colorless (Figure 2). Using stimuli-responsive poly
(N,N-dimethylamino ethyl methacrylate (PDA) modified AuNPs, Z. Alinejad, et al. [74]
demonstrated a simple naked-eye visual method for the detection of cyanide anion in a
wide linear range. However, this nanosensor worked best at pH = 9. PDA-AuNPs easily
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interact with cyanide anions through chemical interaction, being decomposed into smaller
particles. A drop in the SPR peak at 530 nm and a shift in the colloidal dispersion’s color
from wine-red to colorless were reliable indicators that the chemical reaction was being
followed effectively using colorimetric reflection.
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Figure 2. (a) β-CD AuNPs coated cotton swab (i), reaction with a concentration of 99 µmol dm−3 of
CN− ions changes the color from wine red to colorless (ii), and (b) FE-SEM image clearly showing
that the AuNPs were embedded in the cotton swab (red circles). Reproduced from Ref. [73] with
permission from the Royal Society of Chemistry.

M. Budlayan and colleagues [75] discovered the potential colorimetric detection of
cyanide anion in natural water samples. Here, PVA-chitosan-coated AuNPs were used to
produce a thin film. When the cyanide ions reacted with the AuNP coating, the thin film’s
color changed from red to colorless. The naked eye could see it well. This nanosensor
provides a strong substitute for a quick, label-free, and generous approach to detecting
cyanide for environmental on-site monitoring and water pollution mitigation. The same
Elsner reaction is followed by all AuNP-based sensing techniques (Figure 3e). Based on this
Elsner reaction, numerous research teams created compounds that functionalized AuNPs
and used them to quantify the amount of cyanide in ecological water samples [76–78].
Typically, UV-vis absorbance, HR-TEM, colorimetric images, and mass spectral data have
been employed in cyanide detection procedures (Figure 3).
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Figure 3. Colorimetric response (a) and SPR band changes (b) of AuNPs with increasing concentra-
tions of cyanide (the a-to-w curves for 0 to 99 µM with a 4.5 µM step), HR–TEM images of AuNPs
without (c) and with (d) cyanide anion, the probable mechanistic pathway of cyanide detection by
AuNPs (e), and mass spectral data (f) for AuNPs with cyanide anion. (a–e) reproduced from Ref. [73]
with permission from the Royal Society of Chemistry. (f) reproduced from Ref. [79] with permission
from Elsevier.

2.3. CuNP-Based Colorimetric Sensors for Cyanide Ions

In comparison with other precious metals like Ag and AuNPs, CuNPs have significant
electrical, optical, and conductivity properties. The main problem with CuNPs is that they
are quickly oxidized, resulting in copper oxide nanoparticles. Similar to Ag and AuNPs,
CuNPs equally display the SPR absorption peak in the visible area [29,80]. CuNPs are
produced cost-effectively and are widely utilized in the SPR-linked colorimetric detection
of cyanide anions. In situ production of an inventive bio-nano composite with “embedded
CuNPs in nanocellulose film (ECNPs-NC)” was described by Pouzesh, et al. [81] and used
in the detection of cyanide. The synthetic bio-nano composite (ECNPs-NC) film offers
greater promise as a practical and affordable optical chemosensor for measuring the level
of very deadly cyanide anions in water samples. The SPR band intensity varied linearly
with changes in cyanide anion concentration, with an LOD of 0.015 µg mL−1 and a range of
0.25 to 0.40 µg mL−1. This method is efficient, but it has several drawbacks, including the
lengthy process that is required due to multiple preparatory steps, challenging processes,
and the necessity for issues with monitoring the uniform size distribution of the CuNPs in
the NC film. During surface functionalization with various molecules, AuNPs exhibit the
highest stability amid other nanoparticles such as AgNPs and CuNPs [49,67,68]. Moreover,
such stability of AgNPs appears to be higher than that of CuNPs.
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2.4. Core–Shell Nanoparticles-Based Colorimetric Sensors for Cyanide Ions

To date, using bimetallic plasmonic core–shell nanostructured materials, cyanide can
be detected with high sensitivity in a simple sensing format [82]. The SPR absorbance
peak of plasmonic core–shell NPs will alter due to changes in the shell–to–core width
relation caused by cyanide anion. According to Zeng, et al. [83], cyanide anion detection
utilizing Au@Ag core–shell NPs provides a sensitive colorimetric platform. The ratio of the
core–shell dimension has a significant impact on the SPR band of Au@Ag core–shell NPs,
which is also highly penetrating to cyanide etching (Figure 4). This nanosensor illustrates
the linear cyanide concentration range of about 0.4–100 µM with an LOD of 0.4 µM. These
Au@Ag core–shell NPs are self-possessed in agarose gels as transportable “test strips”
(Figure 4c). The potential of these test strips is for cyanide quantitative detection as well
as semi-colorimetric quantitative analysis. However, the author made it clear that this
gel-based reaction happened considerably more slowly than it did in the solution medium.
This nanosensor favors the specific detection of cyanide anions against other inorganic
anions. This may be due to cyanide’s slower rate of dispersion in these test strips. Using
Ag@Au core–shell NPs, the same research team [79] developed cyanide anion colorimetric
detection. Ag@Au core–shell NPs demonstrate an excellent linear connection between the
decreased SPR band at 520 nm and cyanide concentrations between 0.4 and 32 µM, with a
detection limit of 0.16 µM. These core–shell NPs were functionalized with PS-40, and the
PS 40-Ag@Au NPs had great salt stability, making them useful for the detection of cyanide
in sewage water samples using complex media.
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Figure 4. Schematic representation (a) for colorimetric detection of cyanide by Ag@Au core–shell
NPs. Absorbance spectra (b) of the Au@Ag core/shell NPs with the increasing cyanide; the inset
in (b) represents the corresponding HR–TEM images of the Au@Ag core/shell NPs treated with
different amounts of cyanide. Agarose gel “test strips” (c) for the colorimetric detection of ultrapure,
tap, sea, industrial, and lake water samples spiked with different concentrations of cyanide by Au@Ag
core/shell NPs. (a) reproduced from Ref. [79] with permission from Elsevier. (b,c) reproduced from
Ref. [83] with permission from the Royal Society of Chemistry.
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Successful Au@Au-Ag yolk–shell NP synthesis and colorimetry sensing for the cyanide
anions in a complex matrix was accomplished by Zeng’s research group [84]. According
to the authors, this technique had a quick reaction time and reached equilibrium in less
than 3 min, which aided in proper functioning. Additionally, a computer program and
smartphone app were also designed to provide accurate and timely results information
for the determination of cyanide anions. To quickly monitor the cyanide in an aqueous
medium, Zhang and co-workers [85] created a colorimetric nanoprobe based on Au@Ag
core/shell NRs. When plasmonic metals were suspended in a colloidal solution containing
cyanide, the aspect ratio of Au@Ag core/shell NRs was changed. This caused the SPR
band to weaken and shift hypsochromically, and the color of the NRs also changed. In
contrast to the spherical core–shell NPs-based technology, the current core/shell NRs-based
nanosensor completes the reaction in less than a minute, demonstrating the efficiency
of this approach. The ability to measure the amount of cyanide anion in ambient water
samples was added to this optical nanosensor. The core–to–shell dimensional ratio of the
plasmonic core–shell NPs was altered by successively etching the shells and cores with
cyanide ions, which significantly changed the color along with the SPR band and made
ultrasensitive visual sensors easier to use [86].

2.5. Anisotropic Plasmonic Nanomaterials-Based Colorimetric Sensors for Cyanide Ions

Anisotropic plasmonic nanomaterials (nanorods, nanoplates, nanotubes, nanocubes,
nano boxes, and nanopyramids) are considered more effective for naked eye-based visual
sensors than their isotropic plasmonic counterparts, due to advantages such as a broadly
adjustable spectral peak of the SPR absorbance and controllability of color contrast [87].
These advantages allow for the development of naked-eye visual techniques that can
provide a larger detection range of analyte concentration, superior sensitivity in analyte
sensing, and visual determination based on higher color contrast. Gold nanorods (AuNRs)
were developed by Lee’s research team [88] based on feasible colorimetric nano-assays
for the detection of cyanide anions. This method is dependent on the SPR band analysis,
which heavily depends on the aspect ratio of AuNRs. Additionally, the diagonal faces
of AuNRs are selectively etched by the cyanide anion, which results in a reduction in
their size–to–height ratio, a corresponding blue shift in an SPR band, and a color change
from peacock blue to pink. This nanosensor demonstrates a cyanide detection range of
1.65 nM to 0.5 mM, with a detection limit of around 0.5 nM. Additionally, this approach
was expanded for use with natural water samples.

The novel cyanide sensing optical technique described by Wang and co-workers [89]
is based on unmodified Ag–Au alloy nano boxes that etch in the presence of cyanide anion,
giving an SPR frequency shift associated with the analyte concentration. This technique
demonstrated that local cyanide dosage alterations in HeLa cells and zebrafish embryos
may be detected with nanomolar sensitivity. This sensor also demonstrates that use of
Au-Ag nano-box enabled high sensitivity of a reliable sensing device for mapping biogenic
and anthropogenic cyanide contaminations in vivo and in vitro.

Sasikumar and Ilanchelian [90] established a specific colorimetric methodology for
chemosensory detection of cyanide anions using gold nanobipyramids (AuNBPs). With
increasing cyanide anion addition, the optical density affecting the AuNBPs’ longitudinal
LSPR peak drastically dropped with a hypsochromic shift. The low concentration of
cyanide anion may also be detected with the naked eye using these absorbance-spectrum
fluctuations along with a visible color change from wine red to pale red. This sensing
strategy exhibits high specificity for detecting cyanide anions over other inorganic anions.
Additionally, this approach was extended to include the use of cyanide anions in actual
water samples. Anisotropic plasmonic materials-based colorimetric sensors for cyanide
anions also follow the Elsner reaction-based sensing mechanism [87–90].
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2.6. The Colorimetric Sensors for Cyanide Ions Using Plasmonic Nanoparticles with
Peroxidase Activity

The peroxidase-like activity could combine with plasmonic nanoparticles to form reli-
able and effective chemosensors [91]. Based on analyte-induced shielding of the peroxidase-
like activity of cysteamine-decorated AuNPs, Dan et al. [92] built a sensitive and targeted
colorimetric platform for cyanide anions. The 3,3′,5,5′-tetramethylbenzidine (TMB) was
oxidized by H2O2 with the cysteamine-decorated AuNPs in the presence of cyanide anions,
providing blue-colored reactive oxidized TMB (oxTMB) with an absorbance maximum
at the wavelength of 652 nm. The quantitative sensing of cyanide anions was enabled
by detecting the changes in the absorption maxima at 652 nm. This nanosensor relied on
an Elsner reaction-based sensing mechanism, with a limit of detection of 0.33 µM. This
technique could apply to real water samples for quantitative sensing of cyanide ions.

2.7. Noble Metal Nanomaterials-Based Rayleigh Scattering Sensors for Cyanide Ions

Rayleigh scattering (RS) is an elastic scattering of light with scatterers (e.g., molecules)
of a size much smaller than the wavelength of incident light. The RS results in scattered
light with a wavelength the same as the incident wavelength [93,94]. Light-induced
resonant oscillation of electrons on the metallic nanostructure surface also scatters light in
the RS manner, leading to resonant absorbance of incident light energy at the scattering
wavelengths, so-called resonant absorbance, such as that found in the SPR of noble metal
nanoparticle surfaces [37,39,94–96].

T. Madrakian research group [97] reported extreme-trace cyanide detection with high
specificity and sensitivity using SPR-based light scattering with AgNP-doped magnetic
nanoparticles (Ag/Fe3O4). This composite nanoprobe reacted quickly with cyanide ions,
leading to reduction in the RS intensity. This enabled cyanide concentration to be detected
quantitively by measuring reduced RS intensity in a certain range and this technique
could be applicable to spiked water. Moreover, Lionberger et al. [98] synthesized the three
different sizes (14, 40, and 80 nm) of polysorbate 40 stabilized-AuNPs and applied the
colorimetric and RS scattering-based sensing of cyanide anions in real water samples. The
nanoprobe with 40 nm size turned out to be the most sensitive for cyanide sensing. This
nanoprobe, integrated with a portable instrument, could be suitable as a field-deployable,
fast diagnostic method.
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Table 1. Analytical merits of plasmonic metal nanoparticles based colorimetric sensors.

Materials Advantages Disadvantages LOD Real Samples Ref.

SDS-AgNPs Simple fabrication
Highly selective — 1.8 µM Dam water [50]

ESNPs Merged with nanofiber Less selective
2-mercaptobenzothiazole is interfering 0.46 µM Pond, tap, and industrial water [51]

Agrose-AgNPs Highly selective Short linear range 0.69 µM Sea and river waters [52]

Seaweed-AgNPs Highly selective Merged with test strips Highly selective merged with test strips 1 µM River water [53]

Rosmarinic Acid-AgNPs Merged with agarose test strips Iodine is interfering 0.01 µM Tap and drinking water [54]

Photochemical AgNPs Highly sensitive
Fluorescence-based detection. Sulfide is interfering 2 µM Pond and river water [55]

TX-100-AuNPs Highly selective
Compared with traditional cyanide sensors No portable usage 0.15 µM Wastewater [69]

ATP-AuNPs Highly selective
The analytical application was not done.
This method worked on specific pH only.
30 min incubation time

14 µM — [70]

PS-40 AuNPs Highly selective No portable usage 0.5 µM Water samples, Cassava roots [71]

Chitosan-AuNPs Highly selective
Portable usage Less detection limit 2.3 µM Water and blood samples [72]

β-CD AuNPs

Highly selective
Portable usage
Merged with cotton swab
Rapid

— 93 nM Real water samples [73]

PDA-AuNPs Highly selective
Wide linear range pH selective 4.6 µM Water samples [74]

PVA-chitosan AuNPs
Highly selective
Thin film
Portable usage

Time-consuming for thin film making
No analytical application 0.1 µM — [75]

Citrate-AuNPs
Highly selective
Portable usage
Merged with filter paper

— 7.68 µM Tap and creek water samples [76]
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Table 1. Cont.

Materials Advantages Disadvantages LOD Real Samples Ref.

ECNPs-NC film-CuNPs
Highly selective
Portable usage
Cellulose fiber

Time-consuming for cellulose fiber making 0.58 µM Water samples [81]

Au@Ag core–shell NPs
Highly selective
Portable usage
Merged with test strips

— 0.4 µM Tap, sea, lake, and industrial
water samples [83]

PS 40-Ag@Au core–shell NPs Highly selective No portable usage 0.16 µM Drinking water [79]

Au@Au–Ag yolk-shell NPs
Highly selective
Rapid
Merged with smartphone and computer programs.

Complicated synthetic procedure for NPs — Tap and bond water [84]

Au@Ag core/shell NRs Rapid
Highly selective

No portable usage
Complicated synthetic procedure for NPs 0.5 µM — [85]

AuNRs Highly selective No portable usage 0.5 nM Tap, pond, and wastewater [88]

Au-Ag nanoboxes Highly selective
Wide range of Applications A skilled person was need for NPs synthesis 1 nM Cell line detection [89]

AuNBPs Highly selective No portable usage 1.58 nM Tap, drinking, and seawater [90]

Cysteamine- AuNPs Highly selective No portable usage
External reagents need for this tactic 0.33 µM Real water samples [92]
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3. Noble Metal Nanomaterial-Based Fluorescence Sensors

The second pattern of the optical approach is the spectrofluorometric technique, which
has several advantages over other methods, including high selectivity and sensitivity,
reduced sensing time, adaptability for online monitoring, and ease of sensing operation.
This technique was reported to identify attention-required substances, such as drugs and
chemicals [30,50]. It is necessary to select the specific substance utilized as a luminous
material and to set the procedures for monitoring changes in the fluorescence spectrum.
These two issues were the main challenges to fluorescence sensing technologies [99,100].
For the detection of dangerous substances and pharmaceuticals, several researchers have
extensively employed organic compounds and dyes as fluorophores. Organic fluorophores
dissolvable only by organic solvents are not suitable for practical sample analysis as they
are harmful to the environment and humans. They also suffer from other drawbacks such
as photobleaching, autofluorescence, spectrally broad emission with red tailoring, and nar-
row excitation spectra [101–103]. To solve these problems, size-modulated nanostructured
materials such as metal nanoclusters (MNC) were used as fluorescence-based chemosen-
sors. Advantages of the MNC, the fluorescent metal nanostructure, included superior
photostability, low toxicity, and ultrafine size, making them alternatives to conventional
fluorophores for detecting cyanide anions [50,104,105].

3.1. AgNC-Based Fluorescence Sensors for Cyanide Ions

Atomically specific MNCs are extremely small units with core sizes lower than 2 nm,
and they are in between the plasmonic MNPs and the atomic regime [106]. Such MNCs
exhibit incredibly unique optical and electrical properties, such as a highly emissive feature,
molecule-like energy structure, and tremendous catalytic activity [107]. Due to their
extraordinary physiochemical characteristics, such as their ultra-small size and excellent
emissive qualities, AgNCs stand out among the noble MNCs. Such characteristics provide
reliable optical methods for producing fluorophores for chemo-sensing and bioimaging
applications [108]. Deoxyribonucleic acid (DNA)-stabilized AgNCs were described by
Peng et al. [109] as a fluorescent probe for the precise and targeted detection of cyanide
anions in natural water samples. The emissive character of DNA-AgNCs may be seriously
affected by the presence of cyanide anion. The Elsner reaction with ground state complex
formation serves as the sensing mechanism for this fluorescent module, which can detect
the cyanide anion in a linear range of 0.10 to 0.35 µM with an LOD of 25.6 nM.

3.2. AuNC-Based Fluorescence Sensors for Cyanide Ions

The specialized forms of gold nanomaterials known as photoluminescent AuNCs or
gold nanodots (AuNDs), with diameters less than 3 nm, did not exhibit an SPR absorbance
band in the visible region but exhibit photoluminescence in the viewable to near-infrared
(NIR) area [110]. AuNCs have been used to develop intriguing optical chemo-sensing and
imaging nanomaterials with a wide Stokes shift, prolonged luminescence lifetime, good
photostability, biocompatibility, and acceptable stability [111]. Liu et al. [112] showed for
the first time a red-emissive nanosensor based on BSA-stabilized AuNCs for exceptionally
sensitive and selective cyanide anion quantification in a water-only medium. This technique
focused on the emission quenching of the AuNCs caused by cyanide anion etching. This
nanosensor’s remarkable specificity was due to the fact that other inorganic anions did
not scratch the BSA-AuNC surface. Various naturally occurring water samples, such as
tap water, groundwater, lake water, and pond water, that were spiked with cyanide anions
were evaluated using this detection method.

Dong et al. [113] reported a straightforward fluorescence assay for the very precise
cyanide sensing of lysozyme-templated AuNCs. The lysozyme-AuNCs developed using
this approach have an average size of around 4 nm and exhibit a prominent red color
emission peak at 650 nm when excited at 370 nm. The emissive properties of lysozyme-
AuNCs were linearly diminished by cyanide ion concentrations in the range of 5 to 120 µM
with an LOD of 0.19 µM. The same research team [114] published a study on the innovative
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and ecologically secure L-amino acid oxidase-capped AuNCs with red fluorescence for
the detection of cyanide anions. The authors observed a notable emission quenching at
630 nm (excitation at 510 nm) in AuNCs in the presence of the cyanide anion. With an
LOD of 0.18 µM, this fluorescent sensor provided two linear correlations between cyanide
concentrations and AuNC emission intensities; for instance, in the ranges of 3.2 to 34 µM
and 38.1 to 104 µM.

The fabrication of innovative, highly photoluminescent trithiocyanuric acid AuNDs as
the cyanide-detecting probe was reported by Vasimalai et al. [115]. The authors state that
this method overcomes limitations of other preparative protocols in terms of cost, difficulty,
timing, and environmental risk, and enables the growth of extremely potent luminescent
AuNDs in less than 10 min at ambient conditions, with emission maxima at 623 nm and a
considerable Stokes shift (213 nm). The emission nature of the synthesized AuNDs was
suppressed and a significant hypsochromic shift was established by gradually increasing
the cyanide concentration in a colloidal dispersion. This chemosensor showed a well-fitted
linear connection for cyanide concentrations between 0.29 and 8.87 µM with an LOD of
150 nM. The ovalbumin-stabilized AuNCs were described as cyanide-selective colorimetric
and fluorescence probes by the Ilanchelian research group [116]. In this method, the authors
modify the surface functionalizing protein ovalbumin instead of lysozyme with the method
described above [107]. This nanosensor exhibits excellent sensitivity (Figure 5a) with
specificity for cyanide detection against other inorganic anions. (Figure 5b). Ovalbumin
was also fairly economical compared with other proteins, such as lysozyme and bovine
serum albumin.
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Figure 5. Sensitivity (a) outcomes for the AuNCs with increasing concentrations of cyanide anions.
The a-to-p curves represent the cases of adding cyanide ion concentration from 0 to 7.5 µM with
0.5 µM step. The inset shows AuNCs without (i) and with (ii) the addition of cyanide anions.
Selectivity (b) results for AuNCs in the presence of various potential inorganic anions; the inset
shows corresponding colorimetric (i) and fluorescence color changes under daylight and UV light,
respectively. Figure reproduced from Ref. [116] with permission from the American Chemical Society.

Based on Yang et al. [117], a nanosensor made of double-emissive AuNCs (DE-AuNCs)
supported by hyperbranched polyethyleneimine was designed for ratiometric detection of
cyanide ions via outward valency-state-driving etching. The red-fluorescence AuNCs with
a high surface Au(I) content can be easily etched by cyanide anion, but the blue-fluorescence
AuNCs with a nearly neutral charm can resist cyanide. As a consequence, this ratiometric
sensor displays an emissive color change with an LOD of 10 nM. By measuring the amount
of cyanide in urine and river water samples, this DE-AuNC-based fluorescent platform’s
analytical potential was examined.
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Hu et al. [118] described the ratiometric emission method for cyanide determina-
tion by blue-emissive carbon dots (CDs) and bright-red-emissive AuNCs. The two flu-
orescent nanoprobes were electrospun onto a nanofibrous membrane to provide the
core–shell assembly of CDs/AuNCs-polyvinyl alcohol@cellulose for the on-site measure-
ment of this method. The ratiometric fluctuation in the emissive nature of nanofiber
resulted from the red emission of AuNCs being diminished, while the blue emissive
nature of CDs remained unaffected upon chemical interaction with cyanide. This ratiomet-
ric nanosensor provided a cyanide LOD of 0.15 µM, which is significantly less than the
WHO norms. The cost-effective, simple fabrication and emerging utility of CDs/AuNCs-
polyvinylalcohol@cellulose nanofiber-based evaluation strips were emphasized. They are
also useful in the early stages of cyanide anion sensing analysis in water samples. Ac-
cording to the previously stated idea [118], Wang et al. [119] developed the ratiometric
fluorescence probe for the detection of cyanide anions. The Elsner reaction (Figure 6) is the
primary mechanism used in the majority of AuNC-based fluorescence sensing of cyanide
anion quantification [120–122]. In general, the results of HR-TEM were utilized to show
that the surface of AuNCs had been etched by cyanide anion, and mass spectrometry was
used to confirm the formation of Au(CN)2

−. The cyanide sensors based on fluorescent
metal nanoclusters and their detecting mechanisms are displayed in Table 2.
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3.3. Copper Nanocluster-Based Fluorescence Sensors for Cyanide Ions

Recent years have shown a lot of attention paid primarily to the distinct photolumi-
nescent characteristics of CuNCs. Agreeable physiochemical characteristics of CuNCs with
a core size of less than 2 nm connect CuNPs to atomic and molecular features [31,98,123].
CuNCs still seem to have significant problems, namely rapid oxidation, and a low quantum
yield [31,104]. According to Safieh Momeni et al. [124], blue-colored emissive CuNPs
can be used as a fluorophore for the very sensitive detection of the cyanide anion over
other inorganic anions. This work emphasizes the high-yield production of blue emissive
CuNPs with ascorbic acid as a protecting, reducing, and stabilizing agent without any
extra reagents. Additionally, the presence of cyanide significantly reduced the luminous
properties of CuNPs, which was a result of the strong chemical interaction between cyanide
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and CuNPs. This nanosensor showed a decent linear association of cyanide content in the
range of 0.5–18 µM with an LOD of 0.37 µM, and this method was successfully used to
quantify the cyanide anion in actual water samples.

By employing target-triggered emission quenching of thiosalicylic acid stabilized-
CuNCs nanoassay, Jinshun Cang and colleagues [125] developed the double-sensing assay
for the measurement of cyanide and nitrite anions. Due to the pH sensitivity of this optical
chemosensor, nitrite detection was carried out in an acidic medium, whereas cyanide
detection was done in an alkaline medium as the cyanide etching occurred more effectively
in an alkaline medium than an acidic one. This technique was successfully applied to
analyze samples of lake water. Fei Sun’s research group [126] reported on CuNCs with
and without salicylaldehyde molecules for multi-cations and toxic cyanide anion sensing
in real water samples and biological fluids. With rising quantities of cyanide anions,
the fluorescence properties of CuNCs are routinely improved in this sensing technique.
In this case, the aldehyde group was responsible for the nucleophilic attack of cyanide.
As a result, CuNCs’ emissive properties were improved, and this approach showed an
LOD of 0.51 M. This nanosensor was further developed for biological applications, such
as for detecting cyanide ions in cancer cells. CuNC-based cyanide sensing techniques
also follow the mechanism of metal-cyano complex production by cyanide etching of NC
surfaces [124–126].

3.4. Bimetallic Nanocluster-Based Fluorescence Sensors for Cyanide Ions

Recently, bimetallic nanoclusters have gained more attention than single metallic
nanoclusters due to their composition-dependent properties. Study on bi-metallic NCs
has gained public awareness because of the improved optical characteristics, stability,
biocompatibility, and photostability. Surprisingly, different bi-metallic NC descriptions
continue to be more effective for chemosensors, bio-imaging, and drug delivery [127,128].
Lu Tian et al. [129] fabricated the bright-orange color emissive Au/Ag bimetallic NCs
for cyanide anion sensing in real water samples. In this method, Au/Ag bimetallic NCs
were produced in an egg-white albumin matrix with the use of a microwave. These bright
Au/Ag bimetallic NC-based sensors produced an even more astonishingly robust reaction
to the cyanide anion with quick, exact, and ultra-sensitive properties, and it adheres
to the Elsner reaction-based sensing mechanism. The authors assert that their findings
demonstrate the environmental friendliness and wide application potential of these Au/Ag
bimetallic NCs for emerging applications, such as the measurement of bioimaging and
environmental contamination.

Table 2. Analytical parameters of metal nanoclusters-based fluorescence sensors.

Materials Sensing Mechanism Linear Range LOD Real Samples Ref.

DNA-AgNCs

Fluorescence quenching of DNA-Ag
NCs was a static fluorescence
quenching caused by the interaction
of cyanide

0.10–0.35 µM 25.6 nM River water [109]

BSA-AuNCs Elsner reaction-based
emission quenching 0.20–9.6 µM 200 nM

Ground, tap, pond,
and lake water
samples

[112]

Lysozyme-AuNCs Elsner reaction-based
emission quenching 5–120 µM 190 nM — [113]

L-Aminoacid-AuNCs Elsner reaction-based
emission quenching 2.3–34 µM 180 nM River and tap

water samples [114]
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Table 2. Cont.

Materials Sensing Mechanism Linear Range LOD Real Samples Ref.

AuNDs Elsner reaction-based
emission quenching 0.29–8.87 µM 150 nM Natural water samples [115]

Ovalbumin-AuNCs Elsner reaction-based
emission quenching 0.5–7.5 µM 68 nM Tap, drinking, and

dam water samples [116]

DE-Au NCs Cyanide etching of AuNCs surface 0.02–1 µM 10 nM Water and
urine samples [117]

CDs/AuNCs-
polyvinylalcohol@
cellulose

Elsner reaction-based ratiometric
emission quenching 0.2–20 µM 0.15 µM Tap water [118]

CDs-AuNCs Elsner reaction-based ratiometric
emission quenching 12.5–75 µM — Food and

drink samples [119]

Lysozyme-NP-AuNCs Elsner reaction-based ratiometric
emission quenching 3–100 µM 1 µM Tap water and soil [120]

BSA-Ce3+-AuNCs
Elsner reaction-based ratiometric
emission quenching 0.1–15 µM 50 nM Drinking and pond

water samples [121]

CuNPs
Metal-cyano complex formation and
strong interaction between
nanoprobe and analyte

0.5–18 µM 0.37 µM River water [124]

Thiosalicylic acid
-CuNCs

Metal-cyano complex formation and
strong interaction between
nanoprobe and analyte

0.01–1 µM 5 nM Lake water [125]

Salicylaldehyde-
CuNCs

Nucleophilic addition of
salicylaldehyde groups in CuNCs
by cyanide

— 0.51 µM Bio-imaging [126]

Au/Ag bimettalic NCs Elsner reaction-based
emission quenching 0.5–50 µM 138 nM Real water samples

and live cell imaging [129]

3.5. Fluorescence Using Fluorophores Coupled with Plasmonic Nanoparticles for Cyanide Ions

The combination of fluorophores (organic/inorganic molecules, carbon dots, semicon-
ductor quantum dots (QDs) with graphene quantum dots and plasmonic NPs has emerged
as one of the most exciting platforms for fluorometry-based sensors. This combination
can produce a new type of composite fluorescent material with a distinct structure and
excellent photochemical and photophysical properties [130,131]. Table 3 provides a sum-
mary of these remarkable optical responses that enable the development of a novel class
of optical chemosensors for cyanide anion. Li Shang et al. [132] reported a highly specific
and sensitive luminescent tactic for sensing cyanide with the support of luminophore-
coupled NPs. Rhodamine B is the prototype luminophore used in this approach because it
is highly photostable, water-soluble, fluorescent, and positively charged. With a high FRET
process, rhodamine B may have electrostatically connected with the negatively charged
citrate-capped AuNPs. The efficient FRET and the IFE mechanism between rhodamine
B-functionalized AuNPs result in their weak fluorescence. AuNPs were progressively
dissolved in the presence of cyanide anions, and as a result, rhodamine B’s emission nature
was restored and the damage caused by the AuNPs was identified. Cyanide anions were
then quantified from this emission recovery. This chemosensor has an 80 nM LOD and a
linear range of cyanide concentration from 0.15 to 45 µM. Several research groups have
developed fluorescence detection of cyanide by various luminophore (organic/inorganic
molecules) functionalized plasmonic NPs [133–137] in accordance with the principle out-
lined above [132].

Rezaei research group [138] fabricated the fluorescence turn-on cyanide detection
based on semiconductor cadmium telluride (CdTe) QD-coupled AgNPs as a fluorophore.
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This nanosensor was also found to operate in a ‘turn-on’ manner, which is typically more
sensitive than a ‘turn-off’ pathway. Cyanide concentrations may be found linearly ranging
from 0.01 to 2.5 µg/mL in CdTe QD-functionalized AgNP-based experiments. Additionally,
this technique was used to analyze samples of human serum and wastewater. For the
purpose of detecting and visualizing endogenic cyanide anions, Lili Wang et al. [139]
demonstrated a simple nanosensor employing graphene quantum dots conjugated with
AuNPs. This cyanide identification technique may attain an LOD of 0.52 µM without any
interference from associated indications from a biological matrix, thanks to the fluorescence
quenching efficacy of two-photon GQDs with AuNPs. This nanoprobe also found cyanide
in plant tissues, which can be investigated using the bio-imaging method. The highly
emissive nitrogen-doped carbon dots with plasmonic MNPs (Ag and AuNPs)-involved
detector for cyanide anions based on the IFE technique were described by Zhang and
coworkers [140]. Surface of the MNPs can be etched by the addition of cyanide anions to
fluorophore-conjugated MNPs, resulting in a decrease in absorbance and the restoration
of the IFE-reduced fluorescence. This method produced an LOD of 2 µM of cyanide with
the measurement time of 20 min in actual water samples. Majority of the strategies for
fluorescence detection of cyanide anions using fluorophore-functionalized plasmonic MNP
used a similar IFE/FRET quenching process, from which metal-cyano formation produces
fluorescence turn-on by an emission recovery mechanism [132–142] (Figure 7).
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Table 3. Analytical factors of fluorophore-functionalized plasmonic metal nanoparticles.

Materials Sensing Mechanism Linear Range LOD Real Samples Ref.

Rhodamine B-AuNPs

AuNPs made IFE process-based
emission quenching-cyanide etching
AuNPs surface followed by
fluorescence recovery

0.15–45 µM 80 nM — [132]

PF-AgNPs

AgNPs made IFE process-based
emission quenching-cyanide etching
AgNPs surface followed by
fluorescence recovery

0.5–600 µM 0.25 µM Tap water [133]

Polyfluorene
with AuNPs

Fluorescence of polymer quenched by
AuNPs turned on, then the more
stable Au(CN)2

− were formed
0.05–130 µM —

Groundwater, tap
water, boiled water,
and lake
water samples

[134]

Polyacetylene-AuNPs
Fluorescence of polymer quenched by
Au NPs turned on, then the more
stable Au(CN)2

− were formed
— —

Groundwater, tap
water, boiled water,
and lake water

[135]

BSA-FITC-Au NPs

BSA-AuNPs made IFE process-based
emission quenching-cyanide etching
AuNPs surface followed by
fluorescence recovery

0–10 µM 1 µM Pond, sea, and tap
water samples [136]

FITC-PS-40-Au NPs

PS-AuNPs made IFE process-based
emission quenching-cyanide etching
AuNPs surface followed by
fluorescence recovery

0–50 µM 0.1 µM Tap, river, drinking,
and seawater samples [137]

CdTe QDs-AgNPs
Fluorescence of QDs quenched by
AgNPs turned on, then the more
stable Ag(CN)2

− were formed
0.38–96 µM 0.15 nM Serum and

wastewater samples [138]

GQDs-AuNPs

AuNPs made FRET process-based
emission quenching-cyanide etching
AuNPs surface followed by
fluorescence recovery

1–200 µM 0.52 µM Plant tissues [139]

CDs-Au and AgNPs

MNPs surface can be etched by
cyanide, bringing on absorbance
decrease and regenerating the
IFE-reduced fluorescence

1–100 µM 2 µM Serum and
water samples [140]

N,S, GQDs-AgNPs

AgNPs made IFE process-based
emission quenching-cyanide etching
AgNPs surface followed by
fluorescence recovery

10–500 µM 0.52 µM Tap water samples [141]

Fluorophore- DNA
CuNPs

Nano lamp was constructed on the
basis of the optical interaction
between CuNPs and the fluorophore
and the highly effective etching effect
of cyanide on CuNPs

2.5–20 µM 1.96 µM Live cell imaging [142]

4. Noble Metal Nanomaterials-Based SERS Sensors for Cyanide Ions

The SERS effect results from the use of the appropriate MNPs placed in proximity
to Raman active molecules (ions) under an excitation light source [143]. Typical SERS
substrates have the roughened surface made of metals such as Ag/Cu/Au. The SERS
technique requires the adsorption of the analyte molecules onto the SERS substrate. Upon
adsorption onto the SERS surface, the Raman signal of the analyte is enhanced, and the
resultant signal intensity is comparable to that obtained by fluorescence. To detect the
cyanide anion, many researchers have coated the surface of the SERS substrate with the
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plasmonic MNPs and applied them as a SERS probe [143–146]. D. Senapati et al. [147]
reported an AuNP-based SERS nanosensor for cyanide ion detection at the level of parts
per trillion and for studying cyanide anion–AuNPs interaction. After the mixing of cyanide
anion with AuNPs in 2 min, the authors clearly observed three bands in the SERS data: an
Au-C stretching frequency around -370 cm−1 owing to the construction of Au-C≡N bond;
an Au-C≡N bending frequency around ~300 cm−1; and a solid Raman peak at 2154 cm−1,
attributed to the pure C≡N stretching frequency [148]. The SERS peak around 2154 cm−1

was enhanced after the addition of cyanide anions, which is due to the well-known Elsner
reaction. Furthermore, this plasmonic nanomaterials-based SERS nanoprobe was utilized
to quantify cyanide concentration in real water samples (Figure 8). Based on this principle,
many research groups developed the AuNP-based SERS probe and applied the cyanide
determination in water [149,150].
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Z. Cheng’s research group [151] fabricated the Ag nanoplate as a SERS probe for
detecting cyanide. This nanoarray was constructed by employing an electro-deposition
technique with a reduced current density. Such a nano-array was an excellent SERS
substratum, with structural stability, repeatability, and good activity because of the sphere-
shaped structure. After adding cyanide anions, the signal of the SERS peak was enhanced
at around ~2140 cm−1 corresponding to C≡N. It was possible to calculate the quantity of
cyanide anions using these increased parameters. The LOD detected by this nanosensor
was 0.1 parts per billion. Several research teams have reported using different molecular-
functionalized AgNPs as SERS substrates for cyanide detection at trace levels [152,153].

5. Conclusions and Outlooks

In this review, we concentrated on the previously reported optical sensing techniques
based on nanostructured noble metal materials for detecting cyanide ions. The four different
types of nanosensors, SPR-based colorimetric probes, spectrofluorimetric methods, SERS,
and RS nanosensors, have been assembled. The real-time application capacity of the
noble metal nanomaterials-based sensing techniques in environmental water samples has
been identified. These methods enabled the cyanide ion detection with super-specificity,
ultra-sensitivity in a simple format.

Noble metal nanomaterials-based cyanide sensors are especially useful, since it might
be difficult to access modern facilities with cutting-edge technology and qualified workers.
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Until now, optical sensors used in this field have mostly relied on morphological alterations
and the subsequently induced color changes. Although metal nanostructured materials-
based sensors provide a variety of advantages for quantifying cyanide ions, they still need
to be further developed and overcome the challenges, namely, as in the following:

E The very active characteristics and poor self-stability of metal nanostructured materi-
als frequently limit the functionality of complex actual systems, making the nanosen-
sors more proof-of-concept devices, especially for the aggregation-based colorimetric
sensing technique.

E Scientists should give special consideration to synthesizing novel, highly stable noble
metal nanostructured materials and to developing new modification techniques to
expand the functionality and analytical usage for real samples to satisfy the determina-
tion requirements for cyanide ions in problematic environments, such as wastewater,
seawater, biological samples, and food additives.

E Another key aspect of nanosensors is specificity. To effectively boost sensing specificity,
development strategies should use the proper surface-functionalizing ligands, as well
as designing new, rapid ligands with high selectivity for cyanide ions.

E The next challenge is always the rapid on-site detection of cyanide ions. For quicker
and more effective devices, with profitable industrial applications for cyanide an-
ion monitoring, useful nanosensors should be integrated and combined with test
strips, cotton swaps, gels, microfluidic/paper chips, membranes, smartphones, image
processing techniques, and other technologies and strategies.

Author Contributions: Conceptualization, H.J.; methodology, R.R., K.S. and S.K.; software, R.R. and
K.S.; formal analysis, R.R. and K.S.; data curation, R.R., K.S. and S.K.; validation, H.J.; writing—
original preparation, R.R. and H.J.; writing—review and editing, H.J.; visualization, R.R.; supervision,
H.J.; project administration, H.J.; funding acquisition, H.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No. NRF-2021M3H4A3A02086939).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AgNCs silver nanoclusters
AgNPs silver nanoparticles
ATP adenosine triphosphate
AuNBPs gold nanobipyramids
AuNCs gold nanoclusters
AuNDs gold nanodots
AuNPs gold nanoparticles
AuNRs gold nanorods
BSA bovine serum albumin
CDs carbon dots
CuNCs copper nanoclusters
CuNPs copper nanoparticles
DE double emissive
DNA deoxyribonucleic acid
FITC fluorescein isothiocyanate
FRET fluorescence resonance energy transfer
GQDs graphene quantum dots
HR-TEM high resolution transmission electron microscope
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IFE inner filter effect
LOD limit of setection
LSPR localized surface plasmon resonance
MNCs metal nanoclusters
MNPs metal nanoparticles
NC nanocellulose
NCs nanoclusters
NIR near infrared
nm nanometer
nM nanomolar
NPs nanoparticles
PDA N,N-dimethylaminoethyl methacrylate
PF poly(9,9-bis(40-sulfnoatobutyl)fluorene-co-alt-1,4-phenylene
PS-40 polysorbate 40
PVA poly(vinyl alcohol)
QDs Quantum dots
RS Raleigh scattering
SDS sodium dodecyl sulfate
SERS surface-enhanced Raman scattering
SPR surface plasmon resonance
TMB 3,3′,5,5′-tetramethylbenzidine
TX-100 Triton X-100
USEPA United State Environmental Protection Agency
UV ultra violet
WHO World Health Organization
β-CD-β- cyclodextrin
µM micromolar
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