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Abstract: An internal built electric field can suppress the recombination of electron–hole pairs and
distinctly enhance the catalytic activity of a photocatalyst. Novel t-Ag/0.95AgNbO3-0.05LiTaO3 het-
erojunction was prepared by reducing silver nanoparticles (Ag NPs) on the surface of the piezoelectric
powder 0.95AgNbO3-0.05LiTaO3 (0.05-ANLT) using a simple mechanical milling method. The effects
of milling time and excitation source used for the degradation of organic dye by heterojunction
catalysts were investigated. The results demonstrate that the optimized 1.5-Ag/0.05-ANLT hetero-
junction removes 97% RhB within 40 min, which is 7.8 times higher than that of single piezoelectric
catalysis and 25.4 times higher than that of single photocatalysis. The significant enhancement of
photocatalytic activity can be attributed to the synergistic coupling of the surface plasmon resonance
(SPR) effect and the piezoelectric effect.

Keywords: SPR effect; piezoelectric effect; photocatalysis; visible light; decomposition

1. Introduction

The continuous utilization of fossil fuels results in serious environmental pollution
and energy shortage, which blocks the sustainable development of contemporary society.
Among these problems, water pollution has been further exacerbated by the extensive
release of chemical dyes from the textile and printing sectors [1–3]. Photocatalysis ex-
cited by sunlight can decompose organic pollutants in water and provide a low-cost and
environmental friendly solution [4–6]. However, the limited light response of conven-
tional single-component photocatalysts and the high electron–hole pair recombination
rate greatly hinder their quantum efficiency, thereby imposing significant constraints on
their practical applications [7]. Many methods have been proposed to overcome these
disadvantages [8–11]. Due to its ability to broaden the light absorption spectrum and miti-
gate electron–hole recombination, heterojunction has drawn more and more attention in
recent years [12].

Unfortunately, the heterojunction can only drive the photoinduced charges near the
junction region to take part in the photocatalysis reaction, which means that the electron
and hole in the bulk of the semiconductor have been left to recombine. The piezopotential
induced by external stress in piezoelectric has been proven to separate excited charges in
deep regions [13]. For instance, zinc oxide (ZnO) nanowires reduced the recombination of
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electron–hole pairs under external pressure and enhanced the degradation of methylene
blue (MB) [14].

It is hypothesized that the combination of heterojunction and piezopotential could
further enhance the activity of the catalyst. Nevertheless, the piezo-photocatalysis perfor-
mance of common piezoelectric is hindered by the low visible light response from their
large band gap (>3 eV) [15]. Currently, heterostructure construction [16], defect engineer-
ing [17], and chemical modification [18] have been used to enhance the catalytic efficacy of
piezoelectric materials. It is well known that the design of morphotropic phase boundaries
(MPBs) greatly improved the electrical properties of piezoelectric materials [19]. The co-
existence of multiple phases provides more directions for polarization, which facilitates
polarization rotation. The piezoelectric potential is directly determined by the piezoelectric
constant according to the following equation: V = d33 (SYL)/ε0ε, where d33 is the piezo-
electric constant, L is the original thickness, Y is Young’s modulus of the piezoelectric, ε0 is
the permittivity of free space, and ε is the relative dielectric constant. Exceptional piezo-
photocatalytic performance has been observed near the morphotropic phase boundary in
BiPrFeMnO3 nanofibers [20], Sm-doped PMN-PT [21], and KNN [22] powder.

AgNbO3, with a band gap of approximately 2.8 eV, shows notable visible light absorp-
tion [23]. The distinctive d10 electronic structure and plasmonic resonance effect of AgNbO3
make it a versatile catalyst for hydrogen production [24,25] and the degradation of organic
pollutants [26,27]. On the other hand, strong ferroelectric and piezoelectric properties can
be achieved via the formation of a solid solution between AgNbO3 and other ferroelectrics
(Ag1−xKxNbO3 [28], (Ag1−xLix)NbO3 [29], and (1 − x)AgNbO3-xLiTaO3 [30]). In addition,
the manipulation of its ferro/piezoelectric properties has been established as a significant
approach to enhancing the photocatalytic efficacy of AgNbO3 [31,32].

The plasmon resonance effect (SPR) from nano noble metal (Au, Ag, Pt) particles on
surfaces can produce a strong localized electromagnetic field and enhance the efficiency
of electron and hole separation in semiconductors [33,34]. Larger K+ substitution for Ag+

transforms AgNbO3 from an antiferroelectric to a ferroelectric state, building a substantial
internal electric field. Additionally, a minute quantity of metallic silver can be generated at
elevated levels of K+ doping. Combining the SPR and piezoelectric potential, the piezo-
photocatalytic degradation has also been sharply enhanced [35]. At present, the methods
of loading noble metal on semiconductors mainly include piezoelectric electrochemical
deposition [36], photochemical reduction [37], and impregnation [38]. Mechanochemical
synthesis through ball milling can avoid the use of hazardous organic solvents and external
heating, shorten reaction times, and simplify the synthesis process [39]. Silver nanoparticles
(Ag NPs) were deposited onto TiO2 via mechanical ball milling. Compared with pure
TiO2, the degradation rate of methyl orange (MO) dye under UV irradiation by Ag/TiO2
heterojunction has been sharply increased (2.1 times) [40].

Recently, superior catalytic activity (1 − x)AgNbO3-xLiTaO3 solid solution near
the antiferroelectric–ferroelectric (AFE-FE) phase boundary has been reported by our
group [41]. It was found that the color of the fresh solid solution (light yellow) has changed
to dark yellow during dry milling, which indicates that some reaction has occurred.
In this study, t-Ag/0.95AgNbO3-0.05LiTaO3 (hereafter referred to as t-Ag/0.05-ANLT)
piezo-photocatalyst was synthesized through a facile mechanical grinding. The piezo-
photocatalytic degradation of the organic dye of this heterojunction has been investigated.
Within 40 min, the removal rate of RhB by 1.5-Ag/0.05-ANLT heterojunction under light
and ultrasonic vibration was 97%, which was 7.8 times that of piezoelectric catalysis alone
and 25.4 times that of photocatalysis alone.

2. Materials and Methods
2.1. Materials

Analytical-grade niobium pentoxide (Nb2O5, 99%), lithium carbonate (Li2CO3, 98%),
silver oxide (Ag2O, 99.8%), and tantalum pentoxide (Ta2O5, 99.9%), along with ethanol and
rhodamine B (RhB), were procured from Sinopharm Chemical Reagent Corp. (Shanghai,
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China). The chemicals were employed in their original form without additional purification.
Furthermore, all aqueous solutions were prepared using deionized water.

2.2. Preparation of the Samples

In this study, 0.05-ANLT powder was synthesized using a traditional solid-state
reaction technique. In this process, a thorough mixing of Ag2O, Nb2O5, Li2CO3, and Ta2O5
was achieved in anhydrous ethanol for 30 min using a mortar. The resulting powders were
then dried and calcined at a temperature of 900 ◦C for 6 h while maintaining a constant
oxygen flow rate of 5 mL/min.

After that, a grinding process was used to form Ag NPs on the surface of 0.05-ANLT.
Specifically, 0.2 g of 0.05-ANLT solid solution powder was subjected to grinding with
zirconia balls in a mini-mill (MSK-SFM-12M, Hefei Kejing, Hefei, China), with the sample-
to-ball mass ratio of 1:2. The 0.05-ANLT powders ground for 0.5, 1, 1.5, and 2 h were
denoted as 0.5-Ag/0.05-ANLT, 1-Ag/0.05-ANLT, 1.5-Ag/0.05-ANLT, and 2-Ag/0.05-ANLT,
respectively. During the grinding process, it is imperative to shield the sample from light.

2.3. Characterization

Powder X-ray diffraction (PXRD) was utilized to examine the composition of the
milled powder. The measurement was conducted using Cu Ka radiation (Rigaku Corpo-
ration, Tokyo, Japan) with a voltage of 45 kV and a current of 200 mA. Ultraviolet-visible
spectroscopy (UV-vis) measurement was performed using a UV-vis spectrophotometer (Hi-
tachi UV-3600, Tokyo, Japan) equipped with an integrating sphere attachment. To further
investigate the morphology of the samples, transmission electron microscope (TEM) and
high-resolution TEM (HRTEM) (Talos F200X, FEI, Thermo Fisher Scientific, Waltham, MA,
USA) were employed. The photoluminescence (PL) spectra were acquired via fluorescence
spectroscopy (RF-5301PC, Shimadzu, Tokyo, Japan) at a stimulation wavelength of 365 nm.

2.4. Piezo-Photocatalytic Characterization

The piezo-photocatalytic activity of the t-Ag/0.05-ANLT catalyst was assessed through
the degradation of RhB. This evaluation involved the utilization of 300 W Xenon lamp
(CEL-HXF300, CEAULIGHT, Beijing, China), which was equipped with a UV cutoff filter
to produce visible light above 420 nm. An ultrasonic cleaner (40 kHz and 300 W, KQ-
300DE, Kunshan, China) was employed as an ultrasonic source. In this study, 100 mg of
t-Ag/0.05-ANLT powder was dispersed into 100 mL RhB dye solution of 5 mg/L. To attain
adsorption–desorption equilibrium, the mixture was agitated in the absence of light for
one hour. Throughout the degradation process, approximately 3 mL of the solution was
extracted in 10 min intervals and subsequently filtered through a 0.45-µm Millipore filter.
The concentration of RhB was determined using a UV-Vis spectrometer (UVT6, Beijing
Purkinje General Instrument Co., Ltd., Beijing, China) by measuring its characteristic
absorbance at 554 nm. The suspension subjected to ultrasonic vibration was maintained at
room temperature to prevent any heat-induced catalytic effects.

2.5. Detection of Active Species in Catalysis

To unveil the active species engaged in the degradation of RhB dye, radical capture
experiments were conducted. Three distinct scavengers for holes (h+), superoxide ions
(•O2

−), and hydroxyl radicals (•OH), namely triethanolamine (TEOA), benzoquinone (BQ),
and isopropyl alcohol (IPA) were employed correspondingly.

2.6. Electrochemical Performance Test

To measure the photocurrent, electrochemical impedance (EIS) and Mott–Schottky
curve, we employed a conventional three-compartment cell consisting of a working elec-
trode, a Pt wire counter electrode, and a reference electrode saturated with calomel. The
electrolyte solution was 0.1 M Na2SO4. Xenon lamp light source (Zolix HPS-300XA, Beijing,
China) was used to irradiate the electrochemical cell. The current and voltage signals were
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obtained using the I-t program of the electrochemical workstation (Chi660E, Chenhua,
Shanghai, China). EIS measurements were conducted with an AC amplitude of 5 mV in a
frequency range of 10−2 to 105 Hz. The Mott–Schottky curves of the working electrode were
recorded at frequencies of 1000 Hz using the same electrochemical workstation (Chi660E,
Chenhua, Shanghai, China).

3. Results

Figure 1 displays the X-ray diffraction (XRD) patterns of t-Ag NP/0.05-ANLT cata-
lysts. Similar diffraction patterns have been observed for all powders after grinding for
different times. These diffraction peaks match well with the standard card of 0.05-ANLT
solid solution (JCPDS No. 53-0346) [30]. This finding confirms the high crystallinity of
t-Ag/0.05-ANLT powders and indicates that the crystal structure of 0.05-ANLT solid solu-
tion remains unchanged basically after grinding. As reported in the literature, the powder
of 0.05-ANLT is composed of orthorhombic (O) and rhombohedral (R) phases [35]. This
composition has high piezoelectricity. However, the color of the powder is darkened, which
indicates that some Ag might be reduced out [33]. The absence of diffraction peaks corre-
sponding to Ag in the XRD pattern can be attributed to its extremely low concentration,
which falls below the detection limit of X-ray. Further investigation is necessary to validate
the presence of Ag on the surface of the 0.05-ANLT particle.
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Figure 1. XRD patterns of t-Ag NP/0.05-ANLT samples after grinding for different times.

TEM and HRTEM results of 1.5-Ag/0.05-ANLT composite are shown in Figure 2. It
is reported that a smooth and clean surface can be seen in fresh 0.05-ANLT. The size of
the particles varies between 400 and 800 nm [41]. As seen from Figure 2a, the particle size
decreases to 150–500 nm after mechanical grinding for 1.5 h. It should be stressed that some
nanoparticles are uniformly dispersed on the surface of the large one. The lattice fringe
widths of 0.234 nm and 0.277 nm (Figure 2b) correspond to the (111) plane of Ag (JCPDS
No. 04-0783) and the (114) plane of AgNbO3 (JCPDS No. 52-0405), respectively. The size
of Ag NPs is about 7 nm, and they are tightly anchored to the surface of 0.05-ANLT solid
solution particle and form the heterojunction [42].

Generally, the noble metal nanoparticle on the semiconductors will change the light
absorbance of the semiconductor through the surface plasma effect [43,44]. Figure 3a
compares the DRS absorption spectra of 0.05-ANLT powder before and after grinding.
Fresh 0.05-ANLT absorbs UV light up to 450 nm. However, the light absorption from 450 to
700 nm has been enhanced due to Ag nanoparticles on the surface. The increased intensity
of the peak around 650 nm indicates that the Ag content rises [33]. In addition, with the
increase in Ag content, SPR absorption is significantly enhanced. Generally speaking, the
conduction band bottom of AgNbO3 is composed of O 2p and Nb 4d orbitals, but the Nb
4d orbital contributes more. Furthermore, the valence band of the AgNbO3 photocatalyst
consists of O 2p and Ag 4d orbitals, which are motivated and generate electrons and holes
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under visible-light illumination. Hence, the excited state electrons mainly derive from the
Nb 4d orbital of the conduction band [27]. The SPR effect from Ag NPs not only improves
the visible light absorption of 0.05-ANLT but also separates photogenerated carriers, which
might enhance visible light photocatalytic activity [33,45].
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different grinding times.

Furthermore, the band gaps (Eg) of 0.05-ANLT and t-Ag/0.05-ANLT are calculated by
using the following equation [46]:

(Ahυ)2/n ∼ hυ − Eg (1)

where A, hυ, and Eg are the absorbance, the irradiation energy, and the band gap, respec-
tively. In the context of direct and indirect semiconductors, the value of n is 1 for a direct
semiconductor, while 4 is for an indirect semiconductor. As AgNbO3 belongs to a direct-gap
semiconductor [27], the corresponding n value is 1 in present case. The Eg values of the
samples with 0.05-ANLT are approximately 2.87 eV (±0.03), as depicted in Figure 3b. The
band gap energies of 0.05-ANLT samples after grinding for different times of 0.5, 1, 1.5, and
2 h are 2.91 eV (±0.02), 2.94 eV (±0.03), 2.89 eV (±0.04), and 2.93 eV (±0.02). These findings
suggest that the band gap width of 0.05-ANLT specimens exhibits negligible variation
before and after grinding due to the extremely low content of Ag. Clearly, the alteration in
band gap has minimal impact on the catalytic performance of the specimen.

The piezo-photocatalytic degradation performance of t-Ag/0.05-ANLT for RhB under
visible light and ultrasonic vibration was investigated in Figure 4. The results showed
that the degradation rate was negligible without a catalyst, even when ultrasonic vibra-
tion and simulated visible light irradiation were applied. These findings suggest that
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the t-Ag/0.05-ANLT catalyst is crucial for the degradation of RhB. The fresh 0.05-ANLT
decomposes 60% RhB within 40 min. However, compared with pure 0.05-ANLT, all t-
Ag/0.05-ANLT catalysts exhibited higher piezo-photocatalytic degradation rate. The piezo-
photocatalytic degradation rates of 0.05-ANLT were 60%, 64%, 89%, 97%, and 68% after
mechanical milling for 0.5, 1, 1.5, and 2 h, respectively. Among them, the 1.5-Ag/0.05-ANLT
catalyst exhibits the best piezo-photocatalytic performance. Obviously, the t-Ag/0.05-ANLT
heterojunction effectively enhances piezoelectric photocatalytic performance.
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(c) Degradation reaction rate constants of t-Ag/0.05-ANLT piezo-photocatalyst. (d) UV-vis spec-
tral absorption of RhB for 1.5-Ag/0.05-ANLT under the irradiation of light and ultrasound.

The photocatalytic degradation of RhB follows first-order kinetics [47]. The kinetic
equation can be represented as follows:

ln(C0/C) = kt (2)

where k denotes the apparent pseudo-first-order rate constant (min−1), C represents the
concentration of the organic dye at time t (mol L−1), and C0 signifies the initial concentration
of the organic dye (mol L−1). The degradation of the dye leads to the decoloration of the
RhB solution. Figure 4b shows the degradation kinetic data, and the rate constants (k
values) can be determined according to Equation (2). Figure 4c shows that the piezo-
photocatalytic reaction rate constants of 0.05-ANLT after grinding for 0, 0.5, 1.0, 1.5, and
2.0 h are 0.02325 min−1, 0.02571 min−1, 0.54470 min−1, 0.08434 min−1 and 0.02772 min−1,
respectively. The proper amount of Ag NPs on the surface enhances piezo-photocatalytic
performance. However, further increase in Ag NPs may induce a shielding phenomenon,
impeding the penetration of light radiation into 0.05-ANLT, leading to marked reduction
in catalytic efficacy [48]. Figure 4d shows the absorbance spectra of RhB degraded by the
1.5-Ag/0.05-ANLT heterojunction. The gradual decrease in the absorption peak at 554 nm
in Figure 4d indicates that RhB has been degraded.

Degradation experiments under single light irradiation, single vibration irradiation,
and the co-excitation of light and ultrasonic vibration were conducted to unveil the syner-
getic effect of photocatalysis and piezocatalysis. Figure 5a shows the degradation efficiency
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of RhB dye by 1.5-Ag/0.05-ANLT sample. After visible light irradiation for 40 min, only
13% RhB has been decomposed. Within the same time, the degradation rate increased
to 35% under ultrasonic vibration. However, most RhB (97%) could be degraded under
coexcitation of light and vibration. Figure 5b compares their kinetic rate constants (k). The
degradation constants (k) of photocatalysis and piezocatalysis for RhB were 0.00332 min−1

and 0.01082 min−1, respectively. However, the bicatalysis rate constant sharply increased to
0.08434 min−1. It is suggested that a strong synergetic effect is responsible for this distinct
improvement, similar with Au/AgNbO3 [32] and Aux/BaTiO3 [49].
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To examine the university of the degradation capability of the 1.5-Ag/0.05-ANLT
catalyst, MB and MO solutions were also degraded by 1.5-Ag/0.05-ANLT. As illustrated in
Figure 6a, the degradation efficiencies of RhB, MB, and MO reached 97%, 96%, and 89%,
respectively, within 40 min. Compared with MO, 1.5-Ag/0.05-ANLT has slightly higher
degradation efficiency for RhB and MB dyes because their negatively charged surfaces
readily adsorb the cationic dyes [50]. The degradation rate constants shown in Figure 6b for
RhB and MB are 0.08434 min−1 and 0.08311 min−1, which was slightly higher than that for
MO (0.07521 min−1). The result indicates that 1.5-Ag/0.05-ANLT can quickly decompose
different dyes and work as a promising piezo-photocatalyst.
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The PL emission occurs when electron–hole pairs recombine in semiconductor. The
higher PL intensity indicates the stronger carrier recombination and lower photocatalytic
activity [51]. In this study, 0.05-ANLT and 1.5-Ag/0.05-ANLT exhibit similar emission
bands from 400 to 650 nm in Figure 7a. The higher intensity of the PL peak for 0.05-ANLT
indicates the stronger recombination of the electron and hole. By contrast, the separation
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of charge carriers has been improved in 1.5-Ag/0.05-ANLT. The charge separation in
photocatalysts could also be characterized by its current under light irradiation [52]. In
Figure 7b, the photocurrent of the 1.5-Ag/0.05-ANLT heterojunction is higher than that
of the fresh 0.05-ANLT, confirming its enhanced charge carrier separation. To further
elucidate the rationale behind the enhanced piezo-photocatalytic activity, Nyquist curves
have been employed to evaluate the charge migration resistance. Generally, a smaller
semicircle diameter signifies lower charge transfer resistance. Figure 7c suggests that the
1.5 h-Ag/0.05-ANLT composite exhibits a smaller semicircle diameter. The Mott–Schottky
in Figure 7d demonstrates that all samples belong to n-type semiconductors [53]. The
flat-band potential of the 1.5 h-Ag/0.05-ANLT composite at the x-axis intercept is −0.951 V,
more negative than that of the 0.05-ANLT composite (−0.905 V). A higher flat band potential
corresponds to the stronger reducible ability of 1.5 h-Ag/0.05-ANLT composite [54].
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In general, the ECB for n-type semiconductors is 0.1–0.3 eV lower than the flat-band po-
tential value [55–58]. As Figure 7d shows, ECB values for 0.05-ANLT and 1.5 h-Ag/0.05-ANLT
are −0.805 (vs. NHE) and −0.851 V (vs. NHE), respectively. The Eg of 0.05-ANLT is approxi-
mately 2.87 eV (±0.03) in Figure 3b. The band gap of 0.05-ANLT samples after grinding for
1.5 h is 2.89 eV (±0.04). Based on the formula ECB = EVB − Eg [59], the EVB of 0.05-ANLT and
1.5 h-Ag/0.05-ANLT are 2.065 V and 2.039 V, respectively. These values are comparable with
the literature [26,32].

The stability of the catalyst is very important in practical applications. The results
in Figure 8 demonstrate that the t-Ag/0.05-ANLT piezo-photocatalyst still can degrade
88% RhB after four recycles. This result implies that the heterojunction shows acceptable
stability. On the other hand, Yu et al. found that the XRD pattern of Ag/AgNbO3 by the
combustion method before and after photoreduction does not change and concluded that
this composite catalyst is stable in solution under light irradiation [60]. A similar process
might happen in the present case, which indicates the notable stability of our catalyst.

To identify the active species in the piezo-photocatalytic reaction and reveal its reaction
mechanism, a series of degradation experiments of RhB have been conducted with the
addition of different scavengers. Figure 9 shows that the degradation of RhB is 97%
in the absence of any scavengers. However, a great reduction in the degradation rate
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has been observed (35%, 28% and 14%) after the addition of IPA, BQ and TEOA. Since
triethanolamine (TEOA) captures h+, it indicates that h+ functions as the most important
active specie in the present case. However, •OH and •O2

− also play important roles during
piezo-photocatalysis of RhB.
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Table 1 presents some typical catalytic degradation performances of AgNbO3-based
composite catalysts for RhB. The reaction rate constant of t-Ag/0.05-ANLT piezo-photocatalyst
surpasses other AgNbO3-based photocatalytic materials.

Table 1. Typical photocatalytic performances of AgNbO3-based catalyst.

Ferroelectric
Materials Pollutants Excitation

Source
Concentration of

Pollutant k × 10−3 (min−1) Ref.

Ag/AgNbO3 RhB Visible light 5.0 mg/L 44.70 [60]
Ag2O/AgNbO3 RhB Visible light 5.0 mg/L 30.56 [27]

AgNbO3/AgSbO3 RhB Visible light 2.5 mg/L 46.66 [61]
0.05-ANLT RhB Visible light + 300 W ultrsonic 5.0 mg/L 26.66 [41]

t-Ag/0.05-ANLT RhB Visible light + 300 W ultrsonic 5.0 mg/L 84.34 This work

According to the active species experiment, the potential piezo-photocatalytic mecha-
nism of t-Ag/0.05-ANLT can be proposed in Figure 10. AgNbO3 is an n-type semiconductor
(conduction band bottom −0.805 V; valence band top 2.045 V) [26,62]. Ag has a higher
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work function (4.62 eV) than AgNbO3 (4.485 eV) [31,63]. When Ag NPs are coupled with
0.05-ANLT, the Schottky barrier forms at the metal-semiconductor interface. Upon illumi-
nation, visible light causes a collective oscillation of electrons within the Ag NPs on the
surface of the t-Ag/0.05-ANLT heterojunction, which enhances visible light absorption
(Figure 3) [60]. The hot electrons with high energy surpass the Schottky barrier, migrate
to the conduction band of t-Ag/0.05-ANLT and leave holes in Ag Nps, suppressing the
recombination of electrons and holes [32]. In addition, the piezoelectric potential under
ultrasonic vibration tilts the conduction and valence bands of the 0.05-ANLT catalyst and
drives electrons and holes to the opposite direction [64]. This modification, in turn, de-
creases the barrier height for hot electrons to transition to the semiconductor (Figure 10b).
The photogenerated e− and h+ in the t-Ag/0.05-ANLT solid solution are effectively sep-
arated [23]. After that, electrons on the conduction band of t-Ag/0.05-ANLT reduces O2
to •O2

−, while h+ on the top of the valance band forms highly active •OH [65]. h+, •O2
−

and •OH effectively degrade the adsorbed organic dyes. Additionally, Ag NPs transfer the
hot electrons to 0.05-ANLT, and thus the induced charge carriers are separated efficiently.
Simultaneously, Ag NPs also act as a “fast channel”, facilitating the electron migration to
the Ag/dye solution interface. All these greatly boost the generation of reactive radicals
and enhance the photocatalytic performance [48]. Hence, the notable augmentation in
the catalytic performance of 1.5-Ag/0.05-ANLT heterostructure should be ascribed to the
contribution of the SPR effect of Ag NP and the piezoelectric potential of 0.05-ANLT.
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Figure 10. Schematic illustration of the coupled plasmonic and piezo-photocatalytic process in
the t-Ag/0.05-ANLT heterostructure. (a) t-Ag/0.05-ANLT under visible light irradiation; (b) t-
Ag/0.05-ANLT under the excitation of visible light and ultrasonic.

4. Conclusions

Novel t-Ag NP/0.05-ANLT composite was successfully constructed using a facile
mechanical milling method. Milling time has an important impact on the catalytic per-
formance of a heterostructure. The optimized composition decomposes 97% RhB within
40 min. The SPR effect from Ag NP enhances visible light absorption of heterojunction.
The decomposition activity of the optimal composition under the coexcitaion of ultrasonic
and visible light has been increased by 6.8 and 24.4 times than bare piezocatalysis and pho-
tocatalysis. The injection of hot electrons from Ag NP and piezopotential from piezoelectric
0.05-ANLT greatly promotes the separation of photoinduced electron and hole, which are
responsible for the distinct enhancement of catalytic activity.
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