Deep-Ultraviolet Transparent Electrode Design for High-Performance and Self-Powered Perovskite Photodetector
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Preparation of ITO Thin Films
2.3. Preparation of UV Photodetector
2.4. Characterizations and Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, L.H.; Chen, Q.M.; Zhang, Z.X.; Wu, D.; Yuan, H.; Li, Y.Y.; Qarony, W.; Lau, S.P.; Luo, L.B.; Tsang, Y.H. Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019, 6, 1901134. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhai, G.; Zheng, Z.; Lian, L.; Liu, H.; Zhang, D.; Gao, J.; Zhai, T.; Zhang, J. Solution-processed solar-blind deep ultraviolet photodetectors based on strongly quantum confined ZnS quantum dots. J. Mater. Chem. C 2018, 6, 11266–11271. [Google Scholar] [CrossRef]
- Ding, M.; Zhao, D.; Yao, B.; Li, Z.; Xu, X. Ultraviolet photodetector based on heterojunction of n-ZnO microwire/p-GaN film. RSC Adv. 2015, 5, 908–912. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, W.; Lin, R.; Huang, F. High-sensitive and fast response to 255 nm deep-UV light of CH3NH3PbX3 (X = Cl, Br, I) bulk crystals. R. Soc. Open Sci. 2018, 5, 180905. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Han, J.S.; Choi, J.; Kim, S.Y.; Jang, H.W. Halide perovskites for applications beyond photovoltaics. Small Methods 2018, 2, 1700310. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Hu, Y.; Gu, H. Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review. Sensors 2018, 18, 2072. [Google Scholar] [CrossRef]
- Garcia de Abajo, F.J.; Hernández, R.J.; Kaminer, I.; Meyerhans, A.; Rosell-Llompart, J.; Sanchez-Elsner, T. Back to normal: An old physics route to reduce SARS-CoV-2 transmission in indoor spaces. ACS Nano 2020, 14, 7704–7713. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight, UV-radiation, vitamin D and skin cancer: How much sunlight do we need? In Sunlight, Vitamin D and Skin Cancer; Springer: New York, NY, USA, 2008; pp. 1–15. [Google Scholar]
- Ball, D.W. Field Guide to Spectroscopy; Spie Press: Bellingham, WA, USA, 2006; Volume 8. [Google Scholar]
- Xie, C.; Lu, X.T.; Tong, X.W.; Zhang, Z.X.; Liang, F.X.; Liang, L.; Luo, L.B.; Wu, Y.C. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater. 2019, 29, 1806006. [Google Scholar] [CrossRef]
- Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.A.; Aplin, D.; Park, J.; Bao, X.; Lo, Y.-H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-Y.; Ge, C.-W.; Wang, J.-Z.; Zhang, T.-F.; Wu, Y.-C.; Liang, F.-X. Single-layer graphene-TiO2 nanotubes array heterojunction for ultraviolet photodetector application. Appl. Surf. Sci. 2016, 387, 1162–1168. [Google Scholar] [CrossRef]
- Hu, L.; Yan, J.; Liao, M.; Wu, L.; Fang, X. Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. Small 2011, 7, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Xing, J.; Ge, C.; Liu, H.; Liu, P.; Hao, H.; Dong, J.; Zheng, Z.; Gao, H. Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD. J. Phys. D Appl. Phys. 2016, 49, 425105. [Google Scholar] [CrossRef]
- Sheng, X.; Yu, C.; Malyarchuk, V.; Lee, Y.H.; Kim, S.; Kim, T.; Shen, L.; Horng, C.; Lutz, J.; Giebink, N.C. Silicon-Based Visible-Blind Ultraviolet Detection and Imaging Using Down-Shifting Luminophores. Adv. Opt. Mater. 2014, 2, 314–319. [Google Scholar] [CrossRef]
- Khan, M.F.; Ahmed, F.; Rehman, S.; Akhtar, I.; Rehman, M.A.; Shinde, P.A.; Khan, K.; Kim, D.-K.; Eom, J.; Lipsanen, H.; et al. High performance complementary WS2 devices with hybrid Gr/Ni contacts. Nanoscale 2020, 12, 21280–21290. [Google Scholar] [CrossRef]
- Elahi, E.; Khan, M.F.; Rehman, S.; Khalil, H.W.; Rehman, M.A.; Kim, D.-K.; Kim, H.; Khan, K.; Shahzad, M.; Iqbal, M.W.; et al. Enhanced electrical and broad spectral (UV-Vis-NIR) photodetection in a Gr/ReSe2/Gr heterojunction. Dalton Trans. 2020, 49, 10017–10027. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Jiang, Y.; Jiang, Y.; Guo, Y.; Liu, Y.; Nakamura, E. Chemical formation and multiple applications of organic–inorganic hybrid perovskite materials. J. Am. Chem. Soc. 2018, 141, 1406–1414. [Google Scholar] [CrossRef]
- Wang, W.; Xu, H.; Cai, J.; Zhu, J.; Ni, C.; Hong, F.; Fang, Z.; Xu, F.; Cui, S.; Xu, R. Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film. Opt. Express 2016, 24, 8411–8419. [Google Scholar] [CrossRef] [PubMed]
- Ka, I.; Gerlein, L.F.; Asuo, I.M.; Nechache, R.; Cloutier, S.G. An ultra-broadband perovskite-PbS quantum dot sensitized carbon nanotube photodetector. Nanoscale 2018, 10, 9044–9052. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Armin, A.; Nagiri, R.C.R.; Burn, P.L.; Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 2015, 9, 106–112. [Google Scholar] [CrossRef]
- Ding, J.; Fang, H.; Lian, Z.; Lv, Q.; Sun, J.-L.; Yan, Q. High-performance stretchable photodetector based on CH3NH3PbI3 microwires and graphene. Nanoscale 2018, 10, 10538–10544. [Google Scholar] [CrossRef]
- Asuo, I.M.; Fourmont, P.; Ka, I.; Gedamu, D.; Bouzidi, S.; Pignolet, A.; Nechache, R.; Cloutier, S.G. Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small 2019, 15, 1804150. [Google Scholar] [CrossRef] [PubMed]
- Perumal Veeramalai, C.; Yang, S.; Zhi, R.; Sulaman, M.; Saleem, M.I.; Cui, Y.; Tang, Y.; Jiang, Y.; Tang, L.; Zou, B. Solution-Processed, Self-Powered Broadband CH3NH3PbI3 Photodetectors Driven by Asymmetric Electrodes. Adv. Opt. Mater. 2020, 8, 2000215. [Google Scholar] [CrossRef]
- Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G.J.; Azimi, H.; Brabec, C.J.; Stangl, J.; Kovalenko, M.V.; et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 2015, 9, 444–449. [Google Scholar] [CrossRef]
- Wang, H.; Haroldson, R.; Balachandran, B.; Zakhidov, A.; Sohal, S.; Chan, J.Y.; Zakhidov, A.; Hu, W. Nanoimprinted perovskite nanograting photodetector with improved efficiency. ACS Nano 2016, 10, 10921–10928. [Google Scholar] [CrossRef]
- Boyd, C.C.; Cheacharoen, R.; Leijtens, T.; McGehee, M.D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 2018, 119, 3418–3451. [Google Scholar] [CrossRef]
- Lin, D.; Liu, J.; Haroldson, R.; Moon, J.; Li, Z.; Zakhidov, A.; Hu, W.; Gu, Q. High-Performance Directly Patterned Nanograting Perovskite Photodetector with Interdigitated Electrodes. Adv. Opt. Mater. 2022, 10, 2201516. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Kim, S.; Bark, C.W. Solution-processed and self-powered photodetector in vertical architecture using mixed-halide perovskite for highly sensitive UVC detection. J. Mater. Chem. A 2021, 9, 1269–1276. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Bark, C.W. Self-Powered UVC Photodetector Based on Europium Metal–Organic Framework for Facile Monitoring Invisible Fire. ACS Appl. Mater. Interfaces 2022, 14, 45573–45581. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Z.; Pan, H.; Chen, J.; Wang, Y.; Qu, Q.; Zhang, D.; Li, M.; Lu, Y.; He, Y. High-performance Ga2O3/FTO-based self-driven solar-blind UV photodetector with thickness-optimized graphene top electrode. J. Mater. Res. Technol. 2023, 22, 2174–2185. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, X.; Tai, Y.; Zhou, J.; Li, H.; Li, Z.; Wang, R.; Zhang, J.; Zhang, Y.; Ge, W.; et al. Recent advances in nanofiber-based flexible transparent electrodes. Int. J. Extreme Manuf. 2023, 5, 032005. [Google Scholar] [CrossRef]
- Wang, S.; Wu, C.; Wu, F.; Zhang, F.; Liu, A.; Zhao, N.; Guo, D. Flexible, transparent and self-powered deep ultraviolet photodetector based on Ag NWs/amorphous gallium oxide Schottky junction for wearable devices. Sens. Actuator A Phys. 2021, 330, 112870. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, M.; Qi, X.; Li, H.; Zhang, Y.F.; Li, Z.; Peng, Z.; Yang, J.; Qian, L.; Xu, Q.; et al. Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing. Adv. Mater. 2021, 33, 2007772. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, H.; Zhu, X.; Peng, Z.; Zhang, G.; Yang, J.; Wang, F.; Zhang, Y.F.; Sun, L.; Wang, R.; et al. Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet. Adv. Sci. 2022, 9, 2105331. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Su, Y.; Shi, H.; Li, P.; Zhao, N.; Ye, J.; Wang, S.; Liu, A.; Chen, Z.; Li, C. Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn: Ga2O3 pn junction. ACS Nano 2018, 12, 12827–12835. [Google Scholar] [CrossRef] [PubMed]
- Vitoratos, E.; Sakkopoulos, S.; Dalas, E.; Paliatsas, N.; Karageorgopoulos, D.; Petraki, F.; Kennou, S.; Choulis, S.A. Thermal degradation mechanisms of PEDOT: PSS. Org. Electron. 2009, 10, 61–66. [Google Scholar] [CrossRef]
- Nardes, A.M.; Kemerink, M.; De Kok, M.; Vinken, E.; Maturova, K.; Janssen, R. Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Org. Electron. 2008, 9, 727–734. [Google Scholar] [CrossRef]
- Cao, W.; Li, J.; Chen, H.; Xue, J. Transparent electrodes for organic optoelectronic devices: A review. J. Photonics Energy 2014, 4, 040990. [Google Scholar] [CrossRef]
- Chen, D.; Fan, G.; Zhang, H.; Zhou, L.; Zhu, W.; Xi, H.; Dong, H.; Pang, S.; He, X.; Lin, Z.; et al. Efficient Ni/Au mesh transparent electrodes for ITO-free planar perovskite solar cells. Nanomaterials 2019, 9, 932. [Google Scholar] [CrossRef]
- Liu, W.-W.; Chai, S.-P.; Mohamed, A.R.; Hashim, U. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. J. Ind. Eng. Chem. 2014, 20, 1171–1185. [Google Scholar] [CrossRef]
- Mazur, M.; Pastuszek, R.; Wojcieszak, D.; Kaczmarek, D.; Domaradzki, J.; Obstarczyk, A.; Lubanska, A. Effect of thickness on optoelectronic properties of ITO thin films. Circuit World 2022, 48, 149–159. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Sabah, F.A.; Abdulgafour, H.; Alsadig, A.; Sulieman, A.; Alkhoaryef, M. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results Phys. 2019, 13, 102159. [Google Scholar] [CrossRef]
- Schulz, P.; Tiepelt, J.O.; Christians, J.A.; Levine, I.; Edri, E.; Sanehira, E.M.; Hodes, G.; Cahen, D.; Kahn, A. High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 2016, 8, 31491–31499. [Google Scholar] [CrossRef]
- Seok, H.-J.; Ali, A.; Seo, J.H.; Lee, H.H.; Jung, N.-E.; Yi, Y.; Kim, H.-K. Zno: Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells. Sci. Technol. Adv. Mater. 2019, 20, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Tonui, P.; Oseni, S.O.; Sharma, G.; Yan, Q.; Mola, G.T. Perovskites photovoltaic solar cells: An overview of current status. Renew. Sustain. Energy Rev. 2018, 91, 1025–1044. [Google Scholar] [CrossRef]
- Tran, M.H.; Nguyen, T.M.H.; Bark, C.W. Facile fabrication of low-defect spinel zinc ferrite oxide thin film for high-performance ultraviolet photodetector. J. Alloys Compd. 2023, 970, 172422. [Google Scholar] [CrossRef]
- Zhang, Z.-X.; Li, C.; Lu, Y.; Tong, X.-W.; Liang, F.-X.; Zhao, X.-Y.; Wu, D.; Xie, C.; Luo, L.-B. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J. Phys. Chem. Lett. 2019, 10, 5343–5350. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, F.; Zhang, P.; Wang, Y.; Chen, H.; Li, J.; Wu, J.; Chen, L.; Chen, Z.D.; Li, S. Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoresponse. Nanoscale 2019, 11, 2871–2877. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.I.; Bark, C.W.; Choi, H.W. Study on a Mixed-Cation Halide Perovskite-Based Deep-Ultraviolet Photodetector. Coatings 2023, 13, 248. [Google Scholar] [CrossRef]
- Hong, S.B.; Choi, H.W. A Study on UVC Photodetector Using Mixed-Cation Perovskite with High Detection Rate as Light-Absorption Layer. Nanomaterials 2022, 12, 1185. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Garner, S.M.; Bark, C.W. Metal Electrode-Free Halide Perovskite-Based Flexible Ultraviolet-C Photodetector with Large Area. Nanoscale Res. Lett. 2022, 17, 94. [Google Scholar] [CrossRef]
- Choi, G.I.; Choi, H.W. A study to improve the performance of mixed cation–halide perovskite-based UVC photodetectors. Nanomaterials 2022, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.M.H.; Lee, S.K.; Kim, S.; Bark, C.W. Practical demonstration of deep-ultraviolet detection with wearable and self-powered halide perovskite-based photodetector. ACS Appl. Mater. Interfaces 2021, 13, 57609–57618. [Google Scholar] [CrossRef]
- Yang, J.; Kang, W.; Liu, Z.; Pi, M.; Luo, L.-B.; Li, C.; Lin, H.; Luo, Z.; Du, J.; Zhou, M.; et al. High-performance deep ultraviolet photodetector based on a one-dimensional lead-free halide perovskite CsCu2I3 film with high stability. J. Phys. Chem. Lett. 2020, 11, 6880–6886. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.; Li, H.; Zhu, Z.; Zhang, Y.; Yu, L.; Xu, J.; Jiang, Y. Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3–Cs4PbBr6) films. J. Phys. Chem. Lett. 2018, 9, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Aldalbahi, A.; Li, E.; Rivera, M.; Velazquez, R.; Altalhi, T.; Peng, X.; Feng, P.X. A new approach for fabrications of SiC based photodetectors. Sci. Rep. 2016, 6, 23457. [Google Scholar] [CrossRef] [PubMed]
- Jehad, A.K.; Fidan, M.; Ünverdi, Ö.; Çelebi, C. CVD graphene/SiC UV photodetector with enhanced spectral responsivity and response speed. Sens. Actuator A Phys. 2023, 355, 114309. [Google Scholar] [CrossRef]
- Basir, A.; Alzahrani, H.; Sulaiman, K.; Muhammadsharif, F.F.; Abdullah, S.M.; Mahmoud, A.Y.; Bahabry, R.R.; Alsoufi, M.S.; Bawazeer, T.M.; Ab Sani, S.F. A novel self-powered photodiode based on solution-processed organic TPD: Alq3 active layer. Mater. Sci. Semicond. Process. 2021, 131, 105886. [Google Scholar] [CrossRef]
- Alzahrani, H.; Sulaiman, K.; Mahmoud, A.Y.; Bahabry, R.R. Ultrasensitive self-powered UV photodetector based on a novel pn heterojunction of solution-processable organic semiconductors. Synth. Met. 2021, 278, 116830. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Target material | ITO (90 wt.% In2O3: 10 wt.% SnO2) |
Substrate | Quartz |
Working pressure (mTorr) | 50 |
Sputtering power (W) | 50 |
Gas flow rate (SCCM) | Ar:O2 = 30:1.2 |
Sputtering time (second) | 150, 300, 600, and 900 |
Substrate temperature | Room temperature |
Post-annealed temperature/time | 450 °C/1 h |
Device Structure | Light (nm) | Bias (V) | Responsivity (mA/W) | Detectivity (Jones) | On/Off Ratio | Ref./Year |
---|---|---|---|---|---|---|
ITO/perovskite/spiro-OMeTAD/Au | 254 | 0 | 250.98 | 4.71 × 1012 | 1.05 × 104 | This study |
PH1000/SnO2/perovskite/spiro-OMeTAD/Au | 254 | 0 | 5.64 | 4.03 × 1011 | [51]/2023 | |
ITO/SnO2/perovskite/spiro-OMeTAD/Au | 254 | 2 | 50.8 | 4.47 × 1013 | [52]/2022 | |
PH1000/perovskite/spiro-OMeTAD/PEDOT: PSS | 254 | 0 | 7.16 | 5.2 × 1011 | 9.57 × 103 | [53]/2022 |
ITO/perovskite/ITO | 254 | −2 | 5.07 | 5.49 × 1011 | [54]/2022 | |
PEDOT: PSS/SnO2/perovskite/spiro-OMeTAD/Au | 254 | 0 | 4.92 | 7.57 × 1010 | 337.14 | [55]/2021 |
ITO/perovskite/spiro-OMeTAD/Au | 254 | 0 | 52.68 | 4.65 × 1011 | 103 | [29]/2021 |
Si/SiO2/perovskite/Au | 265 | 3 | 22.1 | 1.2 × 1011 | 22 | [56]/2020 |
Perovskite/FTO/TiO2/perovskite/spiro-OMeTAD/Ag | 254 | 0 | 49.4 | 1.2 × 1012 | [57]/2018 | |
Si/Au/SiC/Pt | 250 | 10 | 180 | 68.75 | [58]/2016 | |
Cr/Au/4H-SiC/graphene/SiO2/Cr/Au | 285 | 0 | 90 | 2.95 × 1012 | [59]/2023 | |
ITO/PEI/Eu-MOF/PEDOT:PSS/Au | 254 | 0 | 0.24 | 1.015 × 1010 | 107.33 | [30]/2022 |
ITO/PEDOT:PSS/TPD:Alq3/Al | 365 | 0 | 0.522 | 3.11 × 1010 | [60]/2021 | |
ITO/PEDOT:PSS/NPD:Alq3/LiF/Al | 365 | 0 | 1.07 | 1.04 × 1011 | 1.3 × 105 | [61]/2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.M.H.; Tran, M.H.; Bark, C.W. Deep-Ultraviolet Transparent Electrode Design for High-Performance and Self-Powered Perovskite Photodetector. Nanomaterials 2023, 13, 2979. https://doi.org/10.3390/nano13222979
Nguyen TMH, Tran MH, Bark CW. Deep-Ultraviolet Transparent Electrode Design for High-Performance and Self-Powered Perovskite Photodetector. Nanomaterials. 2023; 13(22):2979. https://doi.org/10.3390/nano13222979
Chicago/Turabian StyleNguyen, Thi My Huyen, Manh Hoang Tran, and Chung Wung Bark. 2023. "Deep-Ultraviolet Transparent Electrode Design for High-Performance and Self-Powered Perovskite Photodetector" Nanomaterials 13, no. 22: 2979. https://doi.org/10.3390/nano13222979
APA StyleNguyen, T. M. H., Tran, M. H., & Bark, C. W. (2023). Deep-Ultraviolet Transparent Electrode Design for High-Performance and Self-Powered Perovskite Photodetector. Nanomaterials, 13(22), 2979. https://doi.org/10.3390/nano13222979