Antifungal Activity and Molecular Mechanisms of Copper Nanoforms against Colletotrichum gloeosporioides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of and Preparation of Copper Nanoforms
2.3. Characterization of Synthesized Copper Nanoforms
2.3.1. X-ray Diffraction
2.3.2. Field-Emission Scanning Electron Microscopy (FE-SEM): Energy-Dispersive X-ray Spectroscopy (SEM-EDS)
2.3.3. Dynamic Light Scattering
2.4. Preparation of Fungal Culture
2.5. Effect of Copper Nanoforms on Fungal Growth and Structure
2.6. Chemical Composition of Fungus
2.7. Preparation of Cell-Sized Lipid Vesicles
2.8. Observation of Membrane Dynamics
2.9. Detection of Melanin Production
3. Results and Discussion
3.1. Characterization of Copper Nanoforms
3.1.1. XRD
3.1.2. Energy Dispersive X-ray Spectroscopy (EDS)
3.1.3. Field-Emission Scanning Electron Microscope (FE-SEM)
3.2. Effect of Copper Nanoforms on Fungal Growth and Microstructure of Mycelia
3.2.1. Effect of Copper Nanoforms on Fungal Growth
3.2.2. Micrographs Fungus after Exposure to Copper Nanoforms
3.3. Interaction of Copper Nanoforms with Fungus: Mechanisms
3.3.1. FTIR Analysis of the Interaction of Copper Nanoforms with Fungus
3.3.2. Aggregation and Localization of Copper Nanoforms in Lipid Vesicles
3.3.3. Spatio-Temporal Membrane Dynamics Induced by Copper Nanoforms
3.3.4. Production of Melanin by Fungus
4. General Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, G.; Wang, X. Effect of Ionic Strength on Freeze–Thaw Stability of Glycosylated Soy Protein Emulsion. J. Am. Oil Chem. Soc. 2020, 98, 891–901. [Google Scholar] [CrossRef]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater. 2015, 16, 53. [Google Scholar] [CrossRef]
- Samanta, T.; Cheeni, V.; Das, S.; Roy, A.B.; Ghosh, B.C.; Mitra, A. Assessing Biochemical Changes during Standardization of Fermentation Time and Temperature for Manufacturing Quality Black Tea. J. Food Sci. Technol. 2015, 52, 2387–2393. [Google Scholar] [CrossRef]
- El-Batal, A.I.; Al-Hazmi, N.E.; Mosallam, F.M.; El-Sayyad, G.S. Biogenic Synthesis of Copper Nanoparticles by Natural Polysaccharides and Pleurotus ostreatus Fermented Fenugreek Using Gamma Rays with Antioxidant and Antimicrobial Potential towards Some Wound Pathogens. Microb. Pathog. 2018, 118, 159–169. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef]
- Ramteke, L.; Gawali, P.; Jadhav, B.L.; Chopade, B.A. Comparative Study on Antibacterial Activity of Metal Ions, Monometallic and Alloy Noble Metal Nanoparticles Against Nosocomial Pathogens. Bionanoscience 2020, 10, 1018–1036. [Google Scholar] [CrossRef]
- Broglie, J.J.; Alston, B.; Yang, C.; Ma, L.; Adcock, A.F.; Chen, W.; Yang, L. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles. PLoS ONE 2015, 10, e0141050. [Google Scholar] [CrossRef]
- Rani, R.; Kumar, H.; Salar, R.K.; Purewal, S.S. Antibacterial activity of copper oxide nanoparticles against gram-negative bacterial strain synthesized by reverse micelle technique. Int. J. Pharm. Res. Dev. 2014, 6, 72–78. [Google Scholar]
- Pazos-Ortiz, E.; Roque-Ruiz, J.H.; Hinojos-Márquez, E.A.; López-Esparza, J.; Donohué-Cornejo, A.; Cuevas-González, J.C.; Espinosa-Cristóbal, L.F.; Reyes-López, S.Y. Dose-Dependent Antimicrobial Activity of Silver Nanoparticles on Polycaprolactone Fibers against Gram-Positive and Gram-Negative Bacteria. J. Nanomater. 2017, 2017, 4752314. [Google Scholar] [CrossRef]
- Yang, N.; Guo, H.; Cao, C.; Wang, X.; Song, X.; Wang, W.; Yang, D.; Xi, L.; Mou, X.; Dong, X. Infection Microenvironment-Activated Nanoparticles for NIR-II Photoacoustic Imaging-Guided Photothermal/Chemodynamic Synergistic Anti-Infective Therapy. Biomaterials 2021, 275, 120918. [Google Scholar] [CrossRef]
- Yuan, P.; Ding, X.; Yang, Y.Y.; Xu, Q.-H. Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection. Adv. Healthc. Mater. 2018, 7, e1701392. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef]
- Wang, Z.; Li, N.; Zhao, J.; White, J.C.; Qu, P.; Xing, B. CuO Nanoparticle Interaction with Human Epithelial Cells: Cellular Uptake, Location, Export, and Genotoxicity. Chem. Res. Toxicol. 2012, 25, 1512–1521. [Google Scholar] [CrossRef]
- Vanwinkle, B.A.; de Mesy Bentley, K.L.; Malecki, J.M.; Gunter, K.K.; Evans, I.M.; Elder, A.; Finkelstein, J.N.; Oberdörster, G.; Gunter, T.E. Nanoparticle (NP) Uptake by Type I Alveolar Epithelial Cells and Their Oxidant Stress Response. Nanotoxicology 2009, 3, 307–318. [Google Scholar] [CrossRef]
- Cronholm, P.; Midander, K.; Karlsson, H.L.; Elihn, K.; Wallinder, I.O.; Möller, L. Effect of Sonication and Serum Proteins on Copper Release from Copper Nanoparticles and the Toxicity towards Lung Epithelial Cells. Nanotoxicology 2011, 5, 269–281. [Google Scholar] [CrossRef]
- Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E. Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress. Small 2012, 8, 3326–3337. [Google Scholar] [CrossRef]
- Laha, D.; Pramanik, A.; Laskar, A.; Jana, M.; Pramanik, P.; Karmakar, P. Shape-Dependent Bactericidal Activity of Copper Oxide Nanoparticle Mediated by DNA and Membrane Damage. Mater. Res. Bull. 2014, 59, 185–191. [Google Scholar] [CrossRef]
- Dong, H.; Yang, K.; Zhang, Y.; Li, Q.; Xiu, W.; Ding, M.; Shan, J.; Mou, Y. Photocatalytic Cu2WS4 Nanocrystals for Efficient Bacterial Killing and Biofilm Disruption. Int. J. Nanomed. 2022, 17, 2735–2750. [Google Scholar] [CrossRef]
- Oussou-Azo, A.F.; Nakama, T.; Nakamura, M.; Futagami, T.; Vestergaard, M.C.M. Antifungal Potential of Nanostructured Crystalline Copper and Its Oxide Forms. Nanomaterials 2020, 10, 1003. [Google Scholar] [CrossRef]
- Sharma, N.; Phan, H.T.T.; Yoda, T.; Shimokawa, N.; Vestergaard, M.C.; Takagi, M. Effects of Capsaicin on Biomimetic Membranes. Biomimetics 2019, 4, 17. [Google Scholar] [CrossRef]
- Vestergaard, M.C.; Morita, M.; Hamada, T.; Takagi, M. Membrane Fusion and Vesicular Transformation Induced by Alzheimer’s Amyloid Beta. Biochim. Biophys. Acta 2013, 1828, 1314–1321. [Google Scholar] [CrossRef]
- Vestergaard, M.; Hamada, T.; Takagi, M. Using Model Membranes for the Study of Amyloid Beta: Lipid Interactions and Neurotoxicity. Biotechnol. Bioeng. 2008, 99, 753–763. [Google Scholar] [CrossRef]
- Hasan, M.; Karal, M.A.S.; Levadnyy, V.; Yamazaki, M. Mechanism of Initial Stage of Pore Formation Induced by Antimicrobial Peptide Magainin 2. Langmuir 2018, 34, 3349–3362. [Google Scholar] [CrossRef]
- Sakamoto, K.; Morishita, T.; Aburai, K.; Ito, D.; Imura, T.; Sakai, K.; Abe, M.; Nakase, I.; Futaki, S.; Sakai, H. Direct Entry of Cell-Penetrating Peptide Can Be Controlled by Maneuvering the Membrane Curvature. Sci. Rep. 2021, 11, 31. [Google Scholar] [CrossRef]
- Bhat, A.; Huan, K.; Cooks, T.; Boukari, H.; Lu, Q. Probing Interactions between AuNPs/AgNPs and Giant Unilamellar Vesicles (GUVs) Using Hyperspectral Dark-Field Microscopy. Int. J. Mol. Sci. 2018, 19, 1014. [Google Scholar] [CrossRef]
- Walbrück, K.; Kuellmer, F.; Witzleben, S.; Guenther, K. Synthesis and Characterization of PVP-Stabilized Palladium Nanoparticles by XRD, SAXS, SP-ICP-MS, and SEM. J. Nanomater. 2019, 2019, 4758108. [Google Scholar] [CrossRef]
- Lamprell, H.; Mazerolles, G.; Kodjo, A.; Chamba, J.F.; Noël, Y.; Beuvier, E. Discrimination of Staphylococcus Aureus Strains from Different Species of Staphylococcus Using Fourier Transform Infrared (FTIR) Spectroscopy. Int. J. Food Microbiol. 2006, 108, 125–129. [Google Scholar] [CrossRef]
- Lefier, D.; Hirst, D.; Holt, C.; Williams, A.G. Effect of Sampling Procedure and Strain Variation in Listeria Monocytogenes on the Discrimination of Species in the Genus Listeria by Fourier Transform Infrared Spectroscopy and Canonical Variates Analysis. FEMS Microbiol. Lett. 1997, 147, 45–50. [Google Scholar] [CrossRef]
- Ishii, K.; Hamada, T.; Hatakeyama, M.; Sugimoto, R.; Nagasaki, T.; Takagi, M. Reversible Control of Exo- and Endo-Budding Transitions in a Photosensitive Lipid Membrane. ChemBioChem 2009, 10, 251–256. [Google Scholar] [CrossRef]
- Fernandes, B.; Matamá, T.; Guimarães, D.; Gomes, A.; Cavaco-Paulo, A. Fluorescent Quantification of Melanin. Pigment Cell Melanoma Res. 2016, 29, 707–712. [Google Scholar] [CrossRef]
- Saad, N.A.; Dar, M.H.; Ramya, E.; Naraharisetty, S.R.G.; Narayana Rao, D. Saturable and Reverse Saturable Absorption of a Cu2O–Ag Nanoheterostructure. J. Mater. Sci. 2019, 54, 188–199. [Google Scholar] [CrossRef]
- Yang, Z.; Cingarapu, S.; Klabunde, K.J. Synthesis of Magnesium Oxychloride Nanorods with Controllable Morphology and Their Transformation to Magnesium Hydroxide Nanorods via Treatment with Sodium Hydroxide. J. Sol-Gel Sci. Technol. 2010, 53, 359–365. [Google Scholar] [CrossRef]
- Prabhu, B.M.; Ali, S.F.; Murdock, R.C.; Hussain, S.M.; Srivatsan, M. Copper Nanoparticles Exert Size and Concentration Dependent Toxicity on Somatosensory Neurons of Rat. Nanotoxicology 2010, 4, 150–160. [Google Scholar] [CrossRef]
- Menichetti, A.; Mavridi-Printezi, A.; Mordini, D.; Montalti, M. Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. J. Funct. Biomater. 2023, 14, 244. [Google Scholar] [CrossRef]
- Zapotoczny, S.; Jurkiewicz, A.; Tylko, G.; Anielska, T.; Turnau, K. Accumulation of Copper by Acremonium Pinkertoniae, a Fungus Isolated from Industrial Wastes. Microbiol. Res. 2007, 162, 219–228. [Google Scholar] [CrossRef]
- Salman, A.; Tsror, L.; Pomerantz, A.; Moreh, R.; Mordechai, S.; Huleihel, M. FTIR Spectroscopy for Detection and Identification of Fungal Phytopathogenes. Spectroscopy 2010, 24, 261–267. [Google Scholar] [CrossRef]
- Girometta, C.; Dondi, D.; Baiguera, R.M.; Bracco, F.; Branciforti, D.S.; Buratti, S.; Lazzaroni, S.; Savino, E. Characterization of Mycelia from Wood-Decay Species by TGA and IR Spectroscopy. Cellulose 2020, 27, 6133–6148. [Google Scholar] [CrossRef]
- Aguilar-Méndez, M.A.; San Martín-Martínez, E.; Ortega-Arroyo, L.; Cobián-Portillo, G.; Sánchez-Espíndola, E. Synthesis and Characterization of Silver Nanoparticles: Effect on Phytopathogen Colletotrichum Gloesporioides. J. Nanopart. Res. 2011, 13, 2525–2532. [Google Scholar] [CrossRef]
- Thakker, J.N.; Dalwadi, P.; Dhandhukia, P.C. Biosynthesis of Gold Nanoparticles Using Fusarium oxysporum f. sp. cubense JT1, a Plant Pathogenic Fungus. ISRN Biotechnol. 2013, 2013, 515091. [Google Scholar] [CrossRef]
- Yoon, K.-Y.; Hoon Byeon, J.; Park, J.-H.; Hwang, J. Susceptibility Constants of Escherichia coli and Bacillus subtilis to Silver and Copper Nanoparticles. Sci. Total Environ. 2007, 373, 572–575. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecules and Surface Forces, 2nd ed.; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Sakhtianchi, R.; Minchin, R.F.; Lee, K.-B.; Alkilany, A.M.; Serpooshan, V.; Mahmoudi, M. Exocytosis of Nanoparticles from Cells: Role in Cellular Retention and Toxicity. Adv. Colloid Interface Sci. 2013, 201–202, 18–29. [Google Scholar] [CrossRef]
- Dullah, S.; Hazarika, D.J.; Goswami, G.; Borgohain, T.; Ghosh, A.; Barooah, M.; Bhattacharyya, A.; Boro, R.C. Melanin Production and Laccase Mediated Oxidative Stress Alleviation during Fungal-Fungal Interaction among Basidiomycete Fungi. IMA Fungus 2021, 12, 33. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vestergaard, M.C.; Nishida, Y.; Tran, L.T.T.; Sharma, N.; Zhang, X.; Nakamura, M.; Oussou-Azo, A.F.; Nakama, T. Antifungal Activity and Molecular Mechanisms of Copper Nanoforms against Colletotrichum gloeosporioides. Nanomaterials 2023, 13, 2990. https://doi.org/10.3390/nano13232990
Vestergaard MC, Nishida Y, Tran LTT, Sharma N, Zhang X, Nakamura M, Oussou-Azo AF, Nakama T. Antifungal Activity and Molecular Mechanisms of Copper Nanoforms against Colletotrichum gloeosporioides. Nanomaterials. 2023; 13(23):2990. https://doi.org/10.3390/nano13232990
Chicago/Turabian StyleVestergaard, Mun’delanji C., Yuki Nishida, Lihn T. T. Tran, Neha Sharma, Xiaoxiao Zhang, Masayuki Nakamura, Auriane F. Oussou-Azo, and Tomoki Nakama. 2023. "Antifungal Activity and Molecular Mechanisms of Copper Nanoforms against Colletotrichum gloeosporioides" Nanomaterials 13, no. 23: 2990. https://doi.org/10.3390/nano13232990
APA StyleVestergaard, M. C., Nishida, Y., Tran, L. T. T., Sharma, N., Zhang, X., Nakamura, M., Oussou-Azo, A. F., & Nakama, T. (2023). Antifungal Activity and Molecular Mechanisms of Copper Nanoforms against Colletotrichum gloeosporioides. Nanomaterials, 13(23), 2990. https://doi.org/10.3390/nano13232990