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Abstract: Double perovskites are known for their special structures which can be utilized as catalyst
electrode materials for electrochemical water splitting to generate carbon-neutral hydrogen energy.
In this work, we prepared lanthanide series metal-doped double perovskites at the M site such as
M2NiMnO6 (where M = Eu, Gd, Tb) using the solid-state reaction method, and they were investigated
for an oxygen evolution reaction (OER) study in an alkaline medium. It is revealed that the catalyst
with a configuration of Tb2NiMnO6 has outstanding OER properties such as a low overpotential
of 288 mV to achieve a current density of 10 mAcm−2, a lower Tafel slope of 38.76 mVdec−1, and a
long cycling stability over 100 h of continuous operation. A-site doping causes an alteration in the
oxidation or valence states of the NiMn cations, their porosity, and the oxygen vacancies. This is
evidenced in terms of the Mn4+/Mn3+ ratio modifying electronic properties and the surface which
facilitates the OER properties of the catalyst. This is discussed using electrochemical impedance
spectroscopy (EIS) and electrochemical surface area (ECSA) of the catalysts. The proposed work
is promising for the synthesis and utilization of future catalyst electrodes for high-performance
electrochemical water splitting.

Keywords: electrocatalysis; water splitting; oxygen evolution reaction; double perovskite;
electrochemical properties

1. Introduction

The inadequate reserves of non-renewable fossil fuels such as oil, coal, and gas, which
have created environmental problems, have forced us to search for alternative energy
sources that could be extracted from renewable natural resources like water, the sun, and
wind. Hydrogen is considered to be an alternative energy source to fossil fuels because
of its excellent properties such as carbon neutrality during the combustion process, high
energy density, sustainability, high efficiency, and environmental friendliness [1–4]. It can
be produced in many different ways, such as natural gas reforming (thermal process),
steam-methane reforming, biomass mass and coal gasification, and electrochemical water
splitting. Among these, electrocatalysis (electrochemical water splitting) is one of the clean-
est and most inexpensive ways to produce hydrogen from abundantly available water [5–8].
It is a simple process of splitting water into molecular oxygen and hydrogen using catalytic
electrodes via an electrolysis process. It consists of an anode and cathode, where oxygen
evolution reactions (OERs) and hydrogen evolution reactions (HERs) take place, respec-
tively. Among these processes, an OER is considered to be a bottleneck in water splitting
because of its sluggish kinetics, and the requirement of a high overpotential needs to be
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resolved. To overcome this issue, it has become very important to develop a catalytic elec-
trode material with low overpotentials and faster reaction kinetics. Several precious metals
like platinum (Pt), iridium oxide (IrO2), and ruthenium oxide (RuO2) have been studied,
but they suffer the problems of high cost and relative scarcity, limiting their widespread
use [9]. Moreover, many other metal oxides, sulfides, phosphides, and their complexes
based on Ni, Fe, Mo, Co, Cu, and Mn have been investigated for efficient water-splitting
activity [7–15]. However, there are still many challenging issues to overcome like high
overpotential, complicated synthesis processes, low current density, and electrochemical
stability in acidic and alkaline media.

Double perovskites with the general formula A2B1B2O6, in which A2 is lanthanide or
alkali earth metals, B1 and B2 are transition metals positioned at the center of the octahedron
with six coordination oxygen ions, have outstanding chemical and physical properties [16].
It is very important to note that A2B1B2O6 possesses more abundant combinations because
of different electron configurations, flexible band structure, favorable redox behavior, and
different ion radii of B1 and B2, making it favorable for electromagnetism and catalytic
properties [17–19]. Various synthesis routes such as the facile hydrothermal/solvothermal
route, solid-state reaction, and wet chemical sol-gel process have been employed to fabricate
double perovskite oxides [16,20–22]. It has been reported that double perovskite oxides
have better catalytic properties than single perovskite oxides due to the high lattice oxygen,
excellent reproducibility, and synergistic effect between transition metals. Additionally, it
embraces a periodic structure compared with the doped perovskite oxides, which helps to
protect the lattice distortion and improve cycling stability. Thus, the unique structure of the
double perovskite oxides having octahedron unit cells like B1O6 and B2O6 results in a large
number of active sites and a favorable electronic structure, facilitating the charge transfer
process during the electrocatalysis process [23,24]. Additionally, some inorganic lead-free
Mn-based double perovskites have also been investigated for photovoltaic applications and
oxygen storage technology [25,26]. This suggests the multifunctionality of the Mn-based
double perovskites in coping with the growing interest in environmentally friendly earth-
abundant materials for mass production. Nevertheless, there is still scope to improve the
catalytic properties of the double perovskite oxides by tuning the composition and doping
with some other elements in B1 and B2 sites for the acceleration of ion transport. So far,
double perovskite oxides based on M2NiMnO6 (where M = Eu, Gd, Tb) have not yet been
clearly investigated for electrochemical water-splitting properties. Moreover, the A-site
doping does not affect the electronic structure, but it can alter the oxidation or valence
states of the NiMn cations, porosity, and oxygen vacancies.

In this work, we fabricate double perovskite oxides based on M2NiMnO6 (where M
= Eu, Gd, Tb) via solid-state reaction methods and they are used to study water-splitting
properties in terms of the oxygen evolution reaction. The formation of the different double
perovskite structures is well supported by the XRD, XPS, and Raman analyses. It is found
that Tb2NiMnO6 has outstanding OER properties, exhibiting a low overpotential (288 mV
at 10 mAcm−2) and Tafel slope (38.76 mVdec−1). All the catalytic electrodes have excellent
electrochemical stability at different current rates for more than 100 h in an alkaline medium,
suggesting their widespread use in commercial electrolyzers.

2. Experimental Section
2.1. Preparation of the Double Perovskites and Their Characterization

Lanthanide series metal-doped double perovskite M2NiMnO6 (M = Eu, Gd, Tb) com-
pounds were synthesized via the conventional solid-state reaction method. The precursor
materials Europium oxide (Eu2O3), Gadolinium oxide (Gd2O3), Terbium oxide (Tb2O3),
Nickel oxide (NiO), and Manganese oxide (MnO2) (Sigma Aldrich, St. Louis, MI, United
States, Purity > 99%) were taken in proper stoichiometric proportions. The mixture of the
above-mentioned precursors was grounded rigorously using an agate mortar and pestle
followed by calcination at 1100 ◦C for 24 h. The powders were reground and finally sintered
at 1300 ◦C for 48 h. The phase purity and crystallographic structure of the compounds were
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determined by XRD patterns with CuKα radiation (1.5406 Å) and analyzed by Rietveld
refinement using TOPAS software. The morphology and composition were investigated
by Scanning Electron Microscopy (SEM, model No S-4700, made by Hitachi, Hitachi City,
Japan) and X-ray photoelectron spectroscopy (XPS, VersaProbe, PHI 5000). The Raman
measurements of the double perovskite compounds were carried out at room temperature
over the wavenumber range of 100–1500 cm−1 using a Horiba LabRAM HR-(Kyoto, Japan)
800 spectrometer.

2.2. Fabrication of the Catalytic Electrodes and Electrochemical Measurements

The catalytic electrodes were fabricated using the doctor blade technique using slurry
made with the double perovskite materials. Polyvinylidene fluoride (PVDF) was used
as a binder and N-Methyl-2-pyrrolidone (NMP) as a solvent in proper proportions. All
the perovskite films were uniformly coated onto stainless steel substrates with an area of
1 cm2. The prepared electrodes were dried at 60 ◦C overnight to evaporate NMP from
the electrodes and they were further used for electrocatalysis measurements. The electro-
catalysis measurements were carried out using a three-electrode system with electrodes
prepared with perovskite materials as working electrodes, Pt wire as a counter electrode,
and a saturated calomel electrode as a reference electrode. Electrochemical techniques such
as cyclic voltammetry (CV), linear sweep voltammetry (LSV), and chroamperometry (CA)
were used to study the electrocatalysis of the prepared materials in 1 M KOH electrolyte.
All the LSV curves were measured at a scan rate of 5 mVs−1 at room temperature. The
electrochemical stability was obtained using CA at a fixed current density (j) over 100
h. The electrochemical surface area (ECSA) of the electrodes was estimated from the CV
curves measured at different scan rates of 10, 20, 30, 40, 50, 60, 70, 80 90, and 100 mVs−1. All
the measured potentials were further converted to a reversible hydrogen electrode (RHE)
using the standard conversion formula.

3. Results and Discussion

The structural properties of the double perovskite M2NiMnO6 (M = Eu, Gd, Tb) are in-
vestigated via X-ray diffraction (XRD) and Raman spectroscopy measurements. Figure 1a–c
depict the Rietveld-refined XRD patterns of the M2NiMnO6 (M = Eu, Gd, Tb). The diffrac-
tion peaks that appeared in the XRD patterns revealed that all the samples have a mon-
oclinic crystal system with space group P21/n [27]. Rietveld refinement suggests that
with an increase in the atomic number (Eu (63)→Gd (64)→Tb (65)), crystal density in-
creases (7.65→7.86→7.98 g/cm3) and cell volume decreases (222.9→221.6→219.6 Å3). We
provided the structural parameters determined after the Rietveld refinement of the XRD
patterns for M2NiMnO6 (M = Eu, Gd, Tb) in Table S1 (Supporting Information), portraying
the correlation of cell parameters/volume decreases with the change in the ionic radius
of M = Eu, Gd, Tb. The insets of Figure 1a–c represent the atomic arrangements in the
corresponding monoclinic structures. The detailed analysis of the structural properties
of the double perovskites M2NiMnO6 (M = Eu, Gd, Tb) is discussed in our previous re-
port [16]. Moreover, the structural stability of the double perovskite was determined by
estimation of the Goldschmidt tolerance factor (t), which was found to be less than 1 for
all the samples, suggesting outstanding stability of the samples. Moreover, the structural
analysis was also carried out using Raman spectra of all the double perovskites, shown in
Figure 1d. The observed band patterns are the typical characteristics of partially disordered
double perovskite structures [28] The Raman bands observed at the wavelengths of 502.8,
647.2, and 1284.5 cm−1 are associated with the anti-stretching/bending motions, stretching
vibrations, and combination and overtone modes of the fundamental, respectively [28,29].
This suggests the formation of phase-pure double perovskite structures.
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Figure 1. Rietveld refined X-ray diffraction patterns of the double perovskite M2NiMnO6

(M = Eu, Gd, Tb), (a) Eu2NiMnO6, (b) Gd2NiMnO6, (c) Tb2NiMnO6; inset of each figure defines
atomic arrangements in the corresponding monoclinic structures. (d) Overlapping of the Raman
spectra of all three double perovskite catalysts.

Surface morphology is one of the important factors for the electrocatalysis process
which is correlated with the electrochemical surface area (ECSA) of the electrode. It is
noted that the nanostructure morphology can provide a larger surface, facilitating better
electrochemical properties. Figure 2a–c show the scanning electron microscopic (SEM)
images of the slurry-coated double perovskite M2NiMnO6 (M = Eu, Gd, Tb) catalyst.
Eu2NiMnO6 depicts (Figure 2a) compact surface morphology with clusters and pores.
Gd2NiMnO6 (Figure 2b) and Tb2NiMnO6 (Figure 2c) have similar surface morphologies of
the mixed granular structures with different sizes, which are found to be agglomerated in
the form of clusters. Figure 2d shows the elemental mapping images of the representative
Tb2NiMnO6 sample obtained from the energy-dispersive X-ray (EDAX) analysis. It showed
the uniform distribution of all the constituent elements such as Ni (green), Mn (blue), Tb
(pink), and O (yellow) in the sample. Corresponding EDAX spectra and collective elemental
mapping images are shown in Figure S1a,b (Supporting Information).

Surface chemical oxidation states of the double perovskite Tb2NiMnO6 are estimated
using X-ray photoelectron spectroscopy (XPS) analysis. It is noted that the oxidation
states of the catalytic electrode at the surface are very important when undergoing the
actual catalysis process and surface reconstruction. Figure 3a–d show the XPS spectra of
the double perovskite Tb2NiMnO6, whereas its survey spectra are shown in Figure S2
(Supporting Information). The survey spectra verified all the expected elements in the
catalyst. Figure 3a shows deconvoluted core-level Ni 2p XPS spectra, which are further
fitted into six peaks. Ni2p3/2 possesses two peaks at 854.0 and 855.7 eV associated with
the Ni+2 and Ni3+ oxidation states along with one satellite peak, respectively. Similarly,
Ni2p1/2 also has peaks of Ni+2 and Ni3+ at 871.4 and 873.2 eV, respectively, with a satellite
peak at 878.5 eV [30]. The XPS spectra of the Mn 2p (Figure 3b) can be fitted into four
peaks at 641.4 and 653.1, and also 643.2 and 654.8 eV, which are assigned to Mn3+ and
Mn4+, respectively [31]. From the previous study, it has been noted that the surface
oxidation states are distinctly induced by the A-site rare-earth element, suggesting the
superexchange mechanism between Ni2+ and Mn4+. Thus, the ratio of Mn4+/Mn3+ could
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be an effective factor in the OER property of the catalysts. This uncertainty in structural
stability depending on the A-site element may influence the electrochemical properties
of the catalysts. The deconvoluted XPS Tb 4d spectra (Figure 3c) exhibit two peaks at
147.9 and 152.4 eV, which are related to the existence of the Tb3+ and Tb4+ oxidation states,
respectively [32]. Moreover, the O 1s spectra, shown in Figure 3d, have two peaks at 528.7
and 530.6 eV, indicating the exitance of two different oxygen species in the catalyst [33].
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We investigated the oxygen evolution reaction (OER) properties of double perovskite
M2NiMnO6 (M = Eu, Gd, Tb) catalyst electrodes in 1 M KOH electrolyte. Prior to the OER
test, the catalyst electrodes were activated using the cyclic voltammetry (CV) technique
for more than 50 cycles. Once the catalyst electrodes were activated, they were subjected
to OER measurements using linear sweep volumetry (LSV) at a scan rate of 5 mVs−1. All
the LSV curves presented in this work are 90 % iR-corrected. Figure 4a shows LSV curves
of the M2NiMnO6 (M = Eu, Gd, Tb) catalyst electrodes, whereas Figure 4b depicts its
enlarged view. For comparison purposes, an LSV curve of the commercial RuO2 catalyst
was also included along with the studied perovskite catalysts. A systematic change in
the LSV curves with the different A-site rare-earth element doping was detected. It was
observed that the Tb2NiMnO6 exhibited enhanced OER activity compared with that of
the other two catalysts. The estimated overpotentials of all the catalyst electrodes are
reported in Table S2 (Supporting Information). The overpotential of Tb2NiMnO6 was
found to be 288 mV, whereas for the Eu2NiMnO6 and Gd2NiMnO6, it was 334 and 292 mV,
respectively, at a current density of 10 mA cm−1. As we have discussed in the XPS analysis
and also reported in the literature, the enhanced OER properties could be due to the
alteration of the oxidation or valence states of the NiMn cations upon A-site rare-earth
element doping with different ionic radii [34,35]. The OER overpotential observed for the
Tb2NiMnO6 catalyst was also superior to that of previously reported catalysts in 1M KOH
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and NaOH electrolytes including, PrBaCo2O6-δ (360 mV) [36], La2-xSrxNiMnO6 (x = 0.6)
(367 mV) [37], NdBaMn2O5.5 (430 mV) [38], Ba1-xGd1-yLax+yCo2O6+δ (470 mV) [39], and
BaGdCo1.8Fe0.2O6 (477mV) [40].
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The overpotentials at different current densities of 10 and 100 mA cm−1 are presented
in the histograms shown in Figure 4c. It was noted that the trend of OER properties at
higher current densities was similar to that of the lower current density with respect to
the A-site doping. Moreover, the lowest overpotential at higher current densities could be
beneficial to fabricate and compete with industrial-grade electrolyzers. It has been noted
from the literature that the modulated electronic states and surface electronic oxidation
states of the cations are important in enhancing the OER activity of the catalysts [41]. Thus,
the modulated electronic states in the form of oxygen vacancies could enhance the water
adsorption and dissociation kinetics of the intermediates and the active metal sites [42]. In
this study, it was observed that the oxidation states of the Mn cation were modified due to
the A-site doping with various lanthanide series metals. This was determined in terms of
the Mn4+/Mn3+ ratio. The estimated ratio of Mn4+/Mn3+ was found to be 1.02, 0.76, and
1.64 for Eu2NiMnO6, Gd2NiMnO6, and Tb2NiMnO6, respectively. Similar results have been
presented in our previous report, which studied the enhancement of the magnetocaloric
properties of various double perovskites upon lanthanide metal doping. The results suggest
that the Mn4+ oxidation state is dominant in the best-performing Tb2NiMnO6 catalysts
compared with that of the other two catalysts. Thus, the change in the oxidation states
induced by A-site doping of Tb metal indicates the superexchange mechanism of the Ni2+–
O–Mn3+ and Ni2+–O–Mn4+. This superexchange mechanism of the change in the oxidation
state of the metal cations facilitates the OER reaction kinetics, revealing a strong positive
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correlation between the higher oxidation state of the metal ions and OER electrocatalysis.
Hence, the alteration or optimization of the surface oxidation states is an effective strategy
to develop efficient electrocatalysts.
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catalysts measured in 1M KOH electrolyte. (a) iR-corrected OER polarization curves recorded at a
scan rate of 5 mVs−1, along with the LSV for a benchmark RuO2/NF catalyst. Its enlarged view is
shown in (b), (c) overpotentials required to reach a current density of 10 and 100 mAcm−2, (d) Tafel
slopes for the OER.

This is further studied in the form of Tafel slope and electrochemical impedance
spectroscopy analysis (EIS). The Tafel slope is one of the crucial factors associated with
the OER reaction kinetics of the catalyst, suggesting that lowest Tafel slopes have faster
reaction kinetics. It was estimated using the LSV curves shown in Figure 4a. Figure 4d
shows the Tafel plot of the M2NiMnO6 (M = Eu, Gd, Tb) catalyst electrodes, and its values
are presented in Table S2. As expected from the LSV results, the Tb2NiMnO6 exhibited the
lowest Tafel slope of 38.76 mv dec−1 equated with Eu2NiMnO6, Gd2NiMnO6, and some
of the double perovskites reported in the literature [34–38]. Therefore, the lowest Tafel
slope of Tb2NiMnO6 suggests that the catalyst has abundant and faster reaction kinetics.
Additionally, low Tafel values suggest the formation of the surface-adsorbed species well
before the rate-determining steps, indicating the existence of a large number of active sites
on the surface of the electrode.

The enhanced OER properties of the double perovskite catalyst electrodes were evalu-
ated via ECSA and EIS analysis. ECSA was estimated by recording CV curves (Figure S3,
Supporting Information) of all the catalyst electrodes at different scan rates of 10, 20, 30, 40,
50, 60, 70, 80 90, and 100 mVs−1 in non-faradaic regions. The current density obtained at a
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specific voltage of 0.15 V is plotted versus scan, which is shown in Figure 5a. The ECSA of
the catalyst was calculated using Equation (1) [43].

ECSA = Cdl/Cs (1)

where CS is the specific capacitance in an alkaline medium (0.040 mF cm−2 for the KOH
electrolyte) and Cdl is the specific capacitance of the double-layer region. Cdl is the slope of
the curves in Figure 5a, which is found to be 11.36 mF cm−1 higher for the Tb2NiMnO6,
whereas for the Eu2NiMnO6 and Gd2NiMnO6, it is 6.36 and 2.22 mF cm−1, respectively.
Thus, the ECSA values presented in Table S1 (Supporting Information) indicate that the
Tb2NiMnO6 catalyst has the highest ECSA of the 284 cm2, promoting OER properties. The
intrinsic catalytic activity of the electrodes is determined by normalizing the LSV curves via
ECSA values. Figure S4 (Supporting Information) shows the ECSA-normalized LSV curves
of the double perovskite M2NiMnO6 (M = Eu, Gd, Tb) catalysts. Interestingly, upon ECSA
normalization, it was observed that the OER properties of the best-performing Tb2NiMnO6
catalyst were poor compared with that of the Eu2NiMnO6 catalyst, suggesting a major
contribution of the ECSA in the OER enhancement.
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Figure 5. (a) Slope of the capacitive current (∆j) measured at a non-Faradaic voltage region V versus
the scan rate, (b) Nyquist plots recorded at a 0-bias voltage and the inset equivalent circuit diagram
used to fit the curves, (c) chronoamperometric stability curves measured at 10 and 100 mAcm−2 over
100 h, (d) SEM image of the double perovskite Tb2NiMnO6 catalyst electrode after 100 h of OER test
depicting unchanged structural morphology.
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The electronic conductivity of the catalysts was also evaluated using EIS measure-
ments for all the samples. Figure 5b shows the Nyquist plots of the OER catalysts, which
are recorded at zero volt. All the Nyquist plots show a semicircle in the high-frequency
region and a straight line in the low-frequency region, which is associated with the charge
transfer resistance and diffusion coefficient of the electrode, respectively. All the curves
were fitted using an equivalent circuit diagram (inset of Figure 5b) in the Zview impedance
fitting software and its parameters are presented in Table S3 (Supporting Information). As
expected, the Tb2NiMnO6 catalyst had the lowest charge transfer resistance of 16.9 Ω com-
pared with the other two catalysts, suggesting faster reaction kinetics and mass transport
during the OER process.

We also investigated the long-term electrochemical stability of all the double perovskite
catalysts in 1M KOH electrolyte using the chronopotentiometry technique. Figure 5c shows
the chronopotentiometry curves (without iR correction) of the M2NiMnO6 (M = Eu, Gd,
Tb) recorded at two different current densities of 10 and 100 mA cm−1 for 100 h. The
rigorous evolution of the evolved gasses at the cathode and anode was observed during
the stability test measurements. The best-performing catalyst Tb2NiMnO6 maintained
the steady-state low overpotential without deviation at lower current rates, whereas there
were slight fluctuations at high current rates. The fluctuations at high currents were due to
the larger amount of gas generation and a bubbling effect at the electrode surface during
the OER process. Overall, all the studied catalysts were stable over the range, suggesting
excellent structural stability for alkaline electrolyzers. To assert the exceptional stability of
the Tb2NiMnO6 in the alkaline electrolyte, the XRD pattern after the OER test was obtained.
The X-ray diffraction peaks after the OER Figure S5 (Supporting Information) test are well
matching with that of the before test seen in Figure 1c, except an additional peak at 35.76◦

suggesting the outstanding long-term stability of the electrode. Moreover, the additional
peak seen at 35.76◦ is associated with the Fe2O3 phase due to oxidation of the stainless-steel
substrate, which was obvious during the long-term OER test.

The surface morphologies after the OER test also provide useful information about the
stability of the catalyst. The unchanged morphological image is shown in Figure 5d after the
OER test and there is a slight difference in the shape of the LSV curve (Figure S6 Supporting
Information) for Tb2NiMnO6, revealing the outstanding electrochemical stability of the
electrode in the alkaline medium. Moreover, the EDAX and elemental mapping images
after the OER test are shown in Figure 6. From the EDAX analysis (Figure 6a), it is seen that
the Mn content of the catalyst slightly reduced, which was obvious during the catalysis
process. This could be due to the structural changes, surface reconstruction to a catalytically
active state, and dissolution of the electrode during the OER test. Figure 6b depicts the
mixed elemental mapping image for Tb2NiMnO6 after the OER test. We also observed the
existence and uniform distribution of the constituent elements such as Ni (green (Figure 6c),
Mn (blue (Figure 6d), Tb (pink (Figure 6e), and O (yellow) (Figure 6f) in the catalyst after
the OER test. This phenomenon is crucial for the enhancement of the catalytic activity and
its mechanism.
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100 h stability test in KOH electrolyte.

4. Conclusions

In summary, we have utilized electrocatalysts based on lanthanide earth metal-doped
double perovskite M2NiMnO6 (M = Eu, Gd, Tb) for the OER study in an alkaline electrolyte.
It has been evidenced from the structural and electrochemical characterization that A-site
doping with different rare-earth metals with different ionic radii can alter the surface
oxidation or valence states of B2 in double perovskite A2B1B2O6-type perovskites, facilitat-
ing the electrochemical behavior of the materials. The catalyst with the configuration of
Tb2NiMnO6 exhibited the lowest overpotential and Tafel slope of 288 mV (@10 mAcm−2)
and 38.76 mVdec−1, respectively, which surpasses the many double perovskite catalysts
reported in the literature. Moreover, these catalysts are extremely stable in the alkaline
electrode for more than 100 h at different current rates while generating vigorous gasses.
Thus, the strategy presented in this work could be one of the best strategies to fabricate
stable and active catalyst materials.
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