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Abstract: Nanoparticles of NiLaxFe2−xO4 ferrite spinel incorporated in a SiO2 matrix were synthe-
sized via a sol-gel method, followed by annealing at 200, 500, and 800 ◦C. The resulting materials
were characterized via XRD, AFM, and BET techniques and evaluated for photocatalytic activity. The
XRD diffractograms validate the formation of a single-phase cubic spinel structure at all temperatures,
without any evidence of secondary peaks. The size of crystallites exhibited a decrease from 37 to
26 nm with the substitution of Fe3+ with La3+ ions. The lattice parameters and crystallite sizes
were found to increase with the rise in La3+ content and annealing temperature. Isotherms were
employed to calculate the rate constants for the decomposition of malonate precursors to ferrites and
the activation energy for each ferrite. All nanocomposites have pores within the mesoporous range,
with a narrow dispersion of pore sizes. The impact of La content on sonophotocatalytic activity was
evaluated by studying Rhodamine B degradation under visible light irradiation. The results indicate
that the introduction of La enhances nanocomposite performance. The prepared Ni-La ferrites may
have potential application for water decontamination.

Keywords: nickel–lanthanum ferrite; crystalline phase; specific surface; sonophotocatalysis

1. Introduction

Nickel ferrite (NiFe2O4) stands out as one of the most prominent in the spinel ferrite
class. In bulk, it exhibits a rhombohedrally distorted cubic structure, characterized by an
inverse spinel structure; this arrangement involves an antiparallel spin alignment between
Fe3+ and Ni2+ ions on octahedral sites, while equal Fe3+ ions are positioned at the tetrahedral
sites [1–4]. The unit cell of NiFe2O4 is composed of 32 O2−, 16 Fe3+, and 8 Ni2+ ions. The
oxygen ions form 32 octahedral sites (B-sites) and 64 tetrahedral ones (A-sites). These sites
have the capacity to host a total of 24 cations. Within this inverse spinel structure, an
exclusive occupation of A-sites by Fe3+ ions arises, whereas the B-site is shared by Ni2+

and Fe3+ ions, both demonstrating electron exchange at the octahedral site, highlighting
their unique electrical and magnetic properties [5]. The superior characteristics of nickel
ferrites, such as a low permittivity superparamagnetism and favorable optical band gap (Eg)
values, make them suitable for high-frequency applications [2,4–6]. The incorporation of La3+

ions into spinel ferrites induces a strong spin–orbit coupling of their angular momentum,
resulting in enhanced dielectric properties [7]. The presence of the rare earth ion in the spinel
ferrite contributes to improved densification, electrical resistivity, and reduced eddy current
losses [7]. Their unique properties make them suitable for a wide range of applications such
as photoacoustic imaging, transformer cores, biosensors, high-density storage media, electron
transport devices, hyperthermia, analog devices, imaging, biological field, radio frequency,
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microwave absorbing materials, water treatment, gas sensors, lithium-ion batteries, spin
canting, surface anisotropy, and superparamagnetism [1–4,6].

The properties of Ni-La ferrite nanoparticles are intricately linked to the chosen
synthesis method, which impacts both composition and microstructure [8]. Several syn-
thesis methods are worth mentioning, including ball milling, sol–gel, solid-state reaction,
spray pyrolysis, microemulsion, thermal pyrolysis, hydrothermal, solvothermal, citrate gel
auto-combustion, self-propagating high-temperature synthesis, microwave, or chemical
coprecipitation [1–9]. Sol–gel is arguably the most versatile method, as it requires less time
and offers a reduced cost due to the low temperature requirement; it is highly reproducible,
allowing for a good stoichiometry control that leads to a homogenous, single-phase final
product under normal ambient conditions [1–6]. It is worth mentioning that the annealing
process influences both phases and the increase in crystallite size [10]. The incorporation
of NiLaxFe2−xO4 into a mesoporous SiO2 matrix plays a crucial role in enhancing water
stability, improving biocompatibility, and mitigating the degradation of NiLaxFe2−xO4
nanoparticles [11–14]. The SiO2 coating not only prevents agglomeration by regulating
dipolar attraction between nanoparticles but also facilitates the binding of biomolecules on
the mesoporous SiO2 surface, enabling targeted ligands and drug loading on the nanocar-
rier surface [11–14]. The synthesis of NiLaxFe2−xO4 embedded in the SiO2 matrix following
a sol–gel method involves the mixing of reactants with tetraethyl orthosilicate (TEOS),
forming strong networks with moderate reactivity that allow the incorporation of various
inorganic and organic molecules [11–14]. Simple adjustments in synthesis conditions, such
as pH, time, and annealing temperature, can provide more precise control over nucleation
and particle growth [11–14].

Photocatalytic properties are highly dependent upon parameters such as surface
area, particle size, and concentration of dopants [15]. The photochemical process occurs
at the surface of metal oxides, involving two types of reactions, namely oxidation (result-
ing in positive holes) and reduction (producing negative electrons) [4]. By tuning the
band gap energy (Eg) of ferrites below 3 eV, one can improve upon their photocatalytic
properties [6]. In spite of its oxidation capacity, the use of a wide UV band gap, and
noteworthy photocatalytic activity, to achieve better efficiency proves to be a challenge
due to rapid recombination. Due to their use of visible light, ferrites with lower Eg
values are suitable for applications like wastewater treatment in pollutant degradation [6].
According to Zhang et al. [16], conventional homogeneous photocatalysis is characterized
by inherent drawbacks, including the easy recombination of photo-induced electron–
hole (e−/h+) pairs and light absorption restricted to the ultraviolet region. This study
proposes that the development of heterogeneous photocatalysis has proven to be an
effective strategy for expanding the range of light absorption wavelengths and enhancing
the separation of charge carriers [16]. Another study, by Shah et al. [17], highlights the
inclusion of a new energy level in between the conduction and valence bands of TiO2 and
NiFe2O4, thus facilitating the separation of photoinduced electrons and holes. The inves-
tigation of Zhang et al. [16] emphasizes the stability of a TiO2/Ag/SnO2 photocatalyst
following a methylene blue degradation over four cycles. Ghoneim [18] evaluates the
potential of using Cu0.3Cd0.7CrFeO4 nano-spinel for cost-effective wastewater treatment.
Padmapriya et al. [19] note that the zinc–ferrite nanoparticle photocatalysis depends
on surface area and particle size. Additionally, sonocatalysis, utilizing ultrasound for
pollutant degradation, combines effectively with photocatalysis in the versatile sonopho-
tocatalysis technique [20]. This study explores the synthesis, structural aspects (crystallite
size and lattice parameter), surface characteristics (specific surface area and porosity),
morphology (particle size, roughness, and height), and the sonophotocatalytic performance
of Ni-La ferrites incorporated into SiO2. These nanocomposites were prepared using a
sol–gel method followed by thermal treatment. The crystalline phases, crystallite sizes,
and lattice constants were examined via X-ray diffraction (XRD). The Ni-La-Fe ferrite com-
position was investigated via inductively coupled plasma optical emission spectrometry
(ICP-OES). Specific surface area (SSA) and porosity were determined by analyzing N2
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adsorption–desorption isotherms. Particle attributes, including shape, size, size distribu-
tion, and agglomeration, were characterized using atomic force microscopy (AFM). The
sonophotocatalytic degradation of the samples was evaluated under visible light exposure
with concurrent sonication using a Rhodamine (RhB) solution.

2. Materials and Methods

Ni(NO3)2·6H2O, La(NO3)2·6H2O, Fe(NO3)3·9H2O, 1,3-propandiol (1,3PD), TEOS, and
ethanol were used to synthesize Ni-La ferrites embedded in a SiO2 matrix (50% wt. ferrite,
50% wt. SiO2) using a sol–gel method. Ni:La:Fe molar ratios of 10:1:19 (NiLa0.1Fe1.9O4/SiO2),
10:3:17 (NiLa0.3Fe1.7O4/SiO2), 10:5:15 (NiLa0.5Fe1.5O4/SiO2), 10:7:13 (NiLa0.7Fe1.3O4/SiO2),
10:9:11 (NiLa0.9Fe1.1O4@SiO2), 10:11:9 (NiLa1.1Fe0.9O4@SiO2), and a nitrate:1.3PD:TEOS
molar ratio of 1:1:1 were used. The as-produced sols were maintained at room temperature
for gelation and the process was followed by grinding and drying at 200 ◦C (6 h), heating
at 500 ◦C (6 h), and annealing at 800 ◦C (6 h).

The structural characterization was explored via X-ray diffraction using a Bruker
D8 Advance diffractometer in normal temperature conditions (with CuKα radiation,
λ = 1.5406 Å), running at 40 kV and 40 mA. The content of Ni, La, and Fe in the fer-
rites was confirmed through an inductively coupled plasma optical emission spectrometry
(ICP-OES) using an Optima 5300 DV (Perkin Elmer, Waltham, MA, USA) spectrometer, after
an aqua regia microwave digestion employing a Berghof Speedwave Xpert system. atomic
force microscopy (AFM) was effectuated in AC mode with a JEOL Scanning Probe Micro-
scope 4210 (Jeol Company, Akashima, Japan) using sharp probes (NSC 15 produced by
Mikromasch Company, Watsonville, CA, USA) featuring a resonance frequency of 325 kHz
and a spring constant of 40 N/m. The annealed powders were dispersed in deionized water
to release nanoparticles which were adsorbed on the solid substrate (e.g., glass) as thin
layers. Three different areas of 1 µm2 were scanned for each specimen. The topographic
characteristics were measured using JEOL WinSPM 2.0 processing software (Jeol Company,
Akashima, Japan). The shape and clustering of the particles were examined by depositing
dried sample suspensions onto a copper grid coated with a thin carbon film using a Hitachi
HD-2700 transmission electron microscope (Hitachi, Tokyo, Japan). Specific surface area
(SSA) and porosity parameters (mean pore size and pore size distribution) were calcu-
lated from N2 adsorption–desorption isotherms using the BET method (for SSA) and the
Dollimore–Heal model (for porosity). The isotherms were recorded on a Sorptomatic 1990
instrument (Thermo Fisher Scientific, Waltham, MA, USA). A V570 model UV-VIS-NIR
spectrophotometer (JASCO, Oklahoma City, OK, USA) containing the absolute reflectivity
accessory (ARN-475, JASCO) was used to register the UV–VIS absorption spectra. The
optical band gap was determined from Tauc’s relationship. The sonophotocatalytic effi-
cacy was assessed using a Rhodamine (RhB) solution exposed to visible light within a
Laboratory-Visible-Reactor system, using a 400 W halogen lamp (Osram, Munich, Ger-
many) and an ultrasonic bath. In this experimental setup, 10 mg of catalyst was blended
with a 20 mL solution of 1.0 × 10−5 mol/L RhB in water, and the resulting mixture was
stirred in darkness until adsorption equilibrium was achieved on the catalyst surface. Each
photodegradation test spanned 240 min, with 3.5 mL samples extracted every 60 min for
subsequent analysis. Following catalyst removal, the absorbance of the RhB solution was
measured at 554 nm. Sonophotocatalytic activity was determined based on the degradation
rate. Prior to sonophotodegradation tests, the adsorption of RhB on the nanoparticle surface
was assessed. This involved mixing the photocatalyst with the RhB solution in the dark
for 60 min until adsorption–desorption equilibrium was reached. The photodegradation
of RhB was modeled using the first-order kinetic model, relying on the absorbance data.
To demonstrate the generation of reactive oxygen species (ROS) by the samples, we em-
ployed the EPR Bruker E-500 ELEXSYS X-band spectrometer (Bruker, Billerica, MA, USA)
(9.52 GHz), coupled with the spin trapping technique. The spin trapping reagent used for
this purpose was 5,5-Dimethyl-1-pyrroline N-oxide (DMPO).
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3. Results and Discussion

The XRD patterns of NiLaxFe2−xO4/SiO2 (x = 0.1–1.1) nanocomposites annealed at
200, 500, and 800 ◦C are presented in Figure 1. At 200 ◦C in case of low La content,
the formation of the weakly crystalline Ni-La ferrite phase can be observed (NiFe2O4
(JCPDS card no 89-4927) and La0.14Fe3O4 (JCPDS card no. 75-8137)). The NiFe2O4
(x = 0.1) crystalline phase originates from a combination of Ni’s low oxidation capac-
ity, low melting point, high electronegativity, high thermal expansion coefficient, and high
specific heat capacity [1]. At 200 ◦C, the broad peak observed at 2θ =20–30◦ suggests a
low level of crystallization in the nanocomposites. At 500 and 800 ◦C, the intensity of
the diffraction peaks increases due to a better crystallization of ferrites. The existence of
reflection planes such as (220), (311), (222), (400), (331), (422), (511), and (440) confirms
the distinct phase of Ni-La ferrite, characterized by a face-centered cubic inverse spinel
structure in the Fd-3m space group [1]. All the samples revealed a homogeneous phase
spinel Ni-La ferrite without any impurities being registered in the XRD patterns. The peak
intensity of the (311) peak decreased with the increase in La content and increased with
the increase in thermal treatment temperature. The diffraction peaks sharpen, and their
intensity increases with rising annealing temperatures, which are attributed to pronounced
agglomeration without immediate recrystallization; this process leads to the formation of a
single crystal rather than a polycrystal [21].
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Figure 1. XRD patterns of NiLaxFe2−xO4/SiO2 (xLa = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1) annealed at 200, 500,
and 800 ◦C.

The average crystallite size (DC) increases from 19.5 to 35.4 nm at 800 ◦C, with an increase
in the Fe3+ substitution by La3+ ion (Table 1). The increase in DC with temperature is attributed
to the agglomeration of crystallites without recrystallization, resulting in a transition from a
polycrystalline structure to single crystals at elevated temperatures [11–14]. Another plausible
explanation is the coalescence process, with small nanoparticles merging into larger ones at
high annealing temperatures [1,11–14]. The substitution of La3+ for Fe3+ induces crystalline
anisotropy following the substantial difference in their sizes, with the doping of La3+ ions
acting as a kinetic barrier to further grain growth [7,22]. Increasing the temperature distinctly
enhances the crystallinity of lanthanum–nickel ferrite [10]. The amorphous phase dominates
at low annealing temperatures and undergoes partial transformation into various crystalline
phases at higher annealing temperatures [1]. The increase in DC indicates a reduction in the
densities of nucleation centers [1]. La–O bond energy is greater when compared with that of Fe–
O; as such, the replacement of Fe3+ ions with La3+ ions at the octahedral site in NiFe2O4 causes
La3+ ions to enter the interstitial location and hinders nickel ferrites from crystallizing [6].
The variation in DC may also be attributed to the peak broadening associated with lattice
strains, the grain growth blocking effect induced by the SiO2 matrix, as well as thermal and
instrumental effects [1,11–14]. Following Vegard’s law, the increase in lattice parameter (a)
with the increase in lanthanum concentration could be explained on the basis of ionic radii of
the La3+ ion substituted in the structure [1–3,9,22]. In nickel ferrite, Ni2+ ions predominantly
occupy octahedral sites (B-site), whereas Fe3+ ions occupy both tetrahedral (A) and octahedral
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(B) sites. The increase in the lattice constant (a) following the increase in La content (Table 1)
can be attributed to the larger ionic radius of La3+ ions (oct: 1.06 Å) when compared with that
of Fe3+ ions (oct: 0.67 Å); the La3+ ions of higher radii substitute Fe3+ ions of smaller radii at the
octahedral sites [1–3,6,9,22]. The inverse spinel structures cause a partial migration of Ni2+ ions
from A to B sites; the migration is consorted by an opposite relegation of the corresponding
numerical values of Fe3+ ions from B to A sites in order to relax the strain [1–3,11–14].

Table 1. Lattice parameter (a), crystallite size (DC), particle size from AFM (DAFM), H (high), and Rq
(roughness) of NiLaxFe2−xO4/SiO2 (xLa = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1) annealed at 200, 500, and 800 ◦C.

NiLaxFe2−xO4/SiO2 Temp, ◦C a,
Å

DC,
nm

DTEM,
nm

DAFM,
nm

H,
nm

Rq,
nm SSA m2/g

xLa = 0.1
200 - - - 10 12 1.23 283
500 8.444 10.4 - 22 15 1.33 230
800 8.458 19.5 26 33 11 1.23 3

xLa = 0.3
200 8.451 1.2 - 12 14 1.38 267
500 8.462 12.9 - 25 12 1.17 216
800 8.481 22.8 31 38 10 1.42 3

xLa = 0.5
200 8.469 3.4 15 15 1.43 257
500 8.483 15.5 28 12 1.15 173
800 8.497 25.3 35 42 15 2.41 2

xLa = 0.7
200 8.488 5.9 - 18 9 0.94 229
500 8.501 17.8 - 31 13 1.23 208
800 8.521 28.1 39 44 18 2.77 <0.5

xLa = 0.9
200 8.502 8.1 - 20 9 1.01 258
500 8.517 20.1 - 35 11 1.11 198
800 8.541 31.7 43 46 22 3.91 <0.5

xLa = 1.1
200 8.525 9.8 - 21 12 1.24 -
500 8.538 22.6 - 37 11 1.14 241
800 8.566 35.4 47 50 26 4.56 <0.5

Based on the content of Ni, La, and Fe within the samples, the Ni/La/Fe molar ratio
was calculated and compared with the theoretic value for each sample (Table 2). A good
agreement was observed between the theoretical and experimental molar ratios across all
samples and calcination temperatures.

Table 2. Ni/La/Fe molar ratios of NiLaxFe2−xO4/SiO2 samples calcined at 200, 500, and 800 ◦C.

xLa
Ni/La/Fe Molar Ratio

Theoretical 200 ◦C 500 ◦C 800 ◦C

0.1 1.0/0.1/1.9 1.01/0.11/1.88 1.00/0.09/1.91 1.00/0.11/1.89
0.3 1.0/0.3/1.7 1.00/0.29/1.71 1.02/0.31/1.67 1.00/0.30/1.70
0.5 1.0/0.5/1.5 1.01/0.52/1.47 1.01/0.49/1.52 1.00/0.49/0.51
0.7 1.0/0.7/1.3 0.99/0.68/1.32 0.98/0.71/1.31 1.01/0.69/1.30
0.9 1.0/0.9/1.1 0.98/0.93/1.09 0.99/0.89/1.12 1.00/0.91/1.09
1.1 1.0/1.1/0.9 1.00/1.11/0.89 1.00/1.08/0.92 1.01/1.09/0.90

The nitrogen adsorption–desorption isotherms recorded at −196 ◦C are utilized to
provide information about the porous structure and the surface area of the nanocom-
posites. The isotherm shapes observed in the composites annealed at 200 ◦C and 500 ◦C
exhibit characteristics typical of mesoporous materials, all falling into the type IV
category according to the IUPAC classification. Additionally, they display minimal
hysteresis at high relative pressures [23]. For the materials thermally treated at higher
temperatures (800 ◦C), the isotherms could only be recorded for the nanocomposite
samples with lower lanthanum content: xLa between 0.1 and 0.5. For the composites



Nanomaterials 2023, 13, 3096 6 of 17

with higher La concentration, the surface area is below the detection limit of the equip-
ment (below 0.5 m2/g). As can be observed in Figure 2, the shape of the isotherms is
comparable for all nanocomposites annealed at 200 ◦C and 500 ◦C, suggesting a very
similar porous structure of these materials. For the nanocomposite samples calcined
at the same temperature, the SSA values vary only in moderate proportion to the lan-
thanum concentration. A direct, linear correlation between the lanthanum content
and the specific surface area was not observed (Table 1). For the samples annealed at
200 ◦C, there is a general trend of a slow decrease in the SSA with the increase in La
substitution within the ferrite lattice. However, no such trend can be observed for the
samples calcined at 500 ◦C. In this case, after an initial decrease in SSA with the increase
in La content, the trend reverses and the SSA started to increase again, with the sample
with the lowest value for SSA being NiLa0.5Fe1.5O4/SiO2 (173 m2/g compared with
230 m2/g for NiLa0.1Fe1.9O4/SiO2 and 240 m2/g for NiLa1.1Fe0.9O4/SiO2, respectively).
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Figure 2. Nitrogen adsorption–desorption isotherms (a,b) and pore diameter distribution (c,d) for
NiLaxFe2−xO4/SiO2 (xLa = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1) annealed at 200 ◦C and 500 ◦C. (full line—adsorption
and dashed line—desorption branch of the isotherms).

This trend corresponds to the one observed for surface roughness (Rq) of the film
prepared for AFM analysis. For the samples containing the same amount of La but ther-
mally treated at different temperatures, the increase in temperature led to a decrease in
SSA. This behavior was previously reported for nickel ferrite [24], ferrite-SiO2 composite
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materials [25], as well as other oxides [26], being usually related to an increase in crys-
tallinity due to crystallite growth (Table 1 and Figure 1) and/or to the prevalence of silica
crystalline forms with lower surface areas. All the samples annealed at 800 ◦C present
very low surface areas (less than 3 m2/g) indicating that in the samples calcined at this
temperature, the porous structure is no longer present. For the samples calcined at 200 ◦C
and 500 ◦C, the distribution in pore sizes (Figure 2c,d) confirms the mesoporous structure
of NiLaxFe2−xO4/SiO2. The pore dimensions for all samples are low, with values less than
10 nm, and are thus situated in the lower region of the mesoporous domain. All the tested
nanocomposites present a multimodal pore size distribution that is very similar across
all samples. The size distribution is relatively narrow (3–10 nm), with the multiple pore
dimensions inside this range being characteristic of composite materials in which the global
porous structure is given by the combined effect of the porosity of each component

The ferrite powder obtained after annealing is slightly agglomerated. Therefore,
each sample was dispersed into deionized water and transferred onto glass substrates via
vertical adsorption. The intense Brownian movement within dispersed particles promotes
their individualization, with these nanoparticles being attracted to the glass surface and
subsequently adsorbing, forming a thin film [27,28]. The obtained ferrite thin films were
investigated using AFM microscopy and the obtained topographic images are presented
in Figure 3. A small substitution of Fe atoms with La (xLa = 0.1) within nickel ferrites has
limited influence on particle size and shape and is mainly observed only at the crystalline
lattice level as revealed by XRD patterns in Figure 1. Thus, the AFM image of the sample
treated at 200 ◦C reveals very small rounded particles of about 10 nm in diameter, as
shown in Figure 3a. As no crystallites were observed in the XRD analysis results, we
assume that these nanoparticles are amorphous. Increasing the annealing temperature
to 500 ◦C, a diameter enhancement to 22 nm was observed, as shown in Figure 3b. This
observation is in good agreement with ferrite crystallite development. The ferrite core has a
crystallite of 10.4 nm, which is covered with amorphous silica up to the observed diameter
of nanoparticles.

The crystallization process is enhanced at 800 ◦C, developing a ferrite core of
19.5 nm that conducts to the formation of larger nanoparticles of 33 nm in diameter,
as shown in Figure 3c. The crystalline core introduces certain sharp corners to the
shape of the nanoparticles, but these corners are rounded by the amorphous silica glaze.
This behavior aligns with AFM observations made on nickel ferrite [29,30]. Increasing
the amount of La substitution with xLa = 0.3, less significant changes in the obtained
nanoparticles after annealing at 200 ◦C and 500 ◦C were found. The exception here
is a slight increase in their diameters, as shown in Figure 3d,e. The major change
occurs after annealing at 800 ◦C, as shown in Figure 3f, where the nanoparticles have an
increased size of about 38 nm with a ferrite crystalline core of 22.8 nm (as calculated
from XRD patterns) and their shape becomes boulder-like with rounded corners due
to the cubic FCC crystals’ expansion. This tendency is progressively accentuated by
increasing xLa from 0.5 to 0.9. Smaller rounded particles are observed after annealing
at 200 ◦C, exhibiting a gradual increase in size from approximately 15 to 20 nm. This
size evolution is attributed to the development of small ferrite crystallites and the
presence of an amorphous silica coating, as shown in Figure 3g,j, and m. A similar
enhancement from a diameter of about 28 nm to one of 35 nm is observed after annealing
at 500 ◦C, with the development of a vigorous ferrite core crystallite (as determined
from XRD patterns); however, it was not strong enough to alter the rounded shape of
the nanoparticles, as shown in Figure 3h,k,n.
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The situation is more favorable after annealing at 800 ◦C because the nanoparticles
are well developed, evidencing a small and constant increase in the diameter from 42 to
46 nm along with the accentuation of their boulder aspect as a consequence of cubic FCC
single-phase development through the ferrite core, as shown in Figure 3i,l,o. The high
amount of La substitution of Fe atoms within nickel ferrite (xLa = 1.1) has a major impact
on the nanostructure of all particles. The shape remains rounded after the annealing at
200 ◦C. However, the diameter increases at 21 nm with a ferrite crystallite core of 9.8 nm,
as shown in Figure 3p, and is comparable to xLa = 0.1 annealed at 500 ◦C, Figure 3b. The
condition is further improved following annealing at 800 ◦C, resulting in nanoparticles
with a diameter of approximately 37 nm.

These nanoparticles exhibit a crystalline core measuring 22.6 nm, and the initially
rounded shape shows a slight alteration with the emergence of square corners, as depicted
in Figure 3q. These features are not readily apparent due to the presence of the amorphous
silica glaze, but they are clearly indicated by the XRD pattern. The nanoparticles exhibit
significant elongation of the boulder shape, attributed to the strong development of the
ferritic core following annealing at 800 ◦C, as illustrated in Figure 3r, resulting in a size
of approximately 50 nm and a crystallite core measuring 35.4 nm. The substitution of Fe
atoms with La appears to be facilitated by higher annealing temperatures, promoting the
formation of topographically anisotropic nanoparticles. This distinctive assembly at the
nanostructural level suggests the potential for special properties.

By examining the three-dimensional profiles of the resulting thin films in Figure 4, one
can observe that nanoparticles annealed at 200 ◦C produce smooth, uniform, and compact
layers characterized by low heights and minimal surface roughness, as indicated in Table 1.
As the annealing temperature rises, the nanoparticle diameter expands, and the thin film
becomes more agglomerated, resulting in localized unevenness that increases both height
and surface roughness. Notably, nanoparticles obtained after annealing at 800 ◦C exhibit
excellent individualization, and the adsorbed thin film is less compact. This phenomenon
is linked to the augmented diameter, leading to a notable increase in surface roughness.
These findings hold potential for the future application of customized surfaces through
thin film deposition. Achieving desired properties may involve adjusting the nanoparticle
range appropriately.

The morphological characteristics of NiLaxFe2−xO4/SiO2 samples annealed at 800 ◦C
(xLa = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1) were investigated using transmission electron microscopy
(TEM), as illustrated in Figure 5. TEM images clearly reveal the spherical nature and
uniform size distribution of particles. Also, the mean size of particles increases from 26 nm
to 47 nm with rising La3+ content, which is likely influenced by higher surface tension in
smaller nanoparticles, driving increased agglomeration [1–3,6,9]. Spherical particle shapes
may be attributed to the synthesis method and surface properties, while agglomeration
could result from interfacial surface tension phenomena [1–3,6,9]. Discrepancies between
crystallite size (DXRD), particle size from AFM data (DAFM), and TEM-derived particle
size (DTEM) may be explained by interference from the amorphous SiO2 matrix and large
nanoparticles in diffraction patterns [11–14]. Agglomeration could be explained by the
influence of thermal treatment temperature and potential surface defects [3].

The sonophotocatalytic performance of the samples was examined when exposed to
visible irradiation using a RhB synthetic solution. Prior to the irradiation, the samples were
subjected to 60 min of darkness to achieve the adsorption equilibrium. The results of this
investigation are depicted in Figure 6.

For samples subjected to annealing at 500 ◦C, the adsorption capacity falls within the range
of 12% to 22%, except for NiLa0.5Fe2.5O4/SiO2, which exhibits a notably higher adsorption
capacity at around 45%. An interesting observation is the fact that this sample has the smallest
specific surface area. The adsorption capacity increases for samples annealed at 800 ◦C, ranging
from 22% to 45%, excluding NiLa1.1Fe0.9O4/SiO2 nanocomposites with an adsorption capacity
of less than 5%. As expected, all samples annealed at 800 ◦C, with the exception of that with
xLa = 1.1, have lower specific surface area and still have higher adsorption capacity. Based on
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this observation, it can be concluded that the adsorption capacity of these samples might be
attributed to interactions between the surface functional groups of the prepared ferrites and
the active functional groups of RhB [31]. Figure 6 illustrates the removal rates of the samples
after 5 h of irradiation. Among samples annealed at 500 ◦C, NiLa0.5Fe1.5O4/SiO2 demonstrates
the most effective removal rate at approximately 60%. However, as the annealing temperature
rises to 800 ◦C, the removal rate of this sample decreases to 53%, which is attributed to its larger
crystallite size dimension (DC) and lower specific surface area (SSA). Notably, in the samples
annealed at 800 ◦C, NiLa0.5Fe1.5O4/SiO2 is surpassed in removal rate by NiLa0.3Fe1.5O4/SiO2,
reaching a maximum removal rate of 73%. This value is higher than the previously reported
removal rate of Ni-ferrite of about 39% [32]. To assess the impact of ultrasound, this sample
was kept in the dark for an additional 300 min, and the results are incorporated in Figure 6. It
can be observed that ultrasound does not have a significant effect on the sample removal rate.
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The first-order kinetic model was applied to describe the photocatalytic process (1):

−ln
At

A*
0
= k × t, (1)

where At represents RhB absorbance at t time; A*
0 is the absorbance of RhB after dark

adsorption; t—irradiation time; and k—apparent kinetic constant.
The experimental data were fitted using the rate equation, and the resulting plots,

demonstrating a linear correlation with irradiation time, are showcased in Figure 7.
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Figure 7. Photodegradation kinetics of RhB synthetic solution at 500 and 800 ◦C.

The inset of Figure 7 displays the rate constant values derived from the fitting process.
Upon analyzing the obtained results, it is evident that the NiLa0.3Fe1.7O4/SiO2 sample,
annealed at 800 ◦C, exhibited the most superior photocatalytic activity.

The photocatalytic activity is influenced by various factors, and one key factor is the
band gap energy. To assess this, we determined the band gap energy using Tauc’s equation
based on the UV-Vis absorption spectra. In Figure 8a, the UV-Vis absorption profiles of all
samples annealed at 800 ◦C are presented. The significant absorption is a result of electron
excitation from the valence band to the conduction band. The variation in absorbance
band edge is attributed to the presence of interface defects, point defects, and interactions
involving photogenerated electrons [1]. The UV–visible spectrum results from electronic
transitions, moving from a lower energy band to a higher energy band. In the case of nickel
ferrite, this transition is attributed to electrons moving from the O 2p level to the Fe 3d level.
This is explained by considering the O 2p orbital as the valence band and the Fe 3d orbital
as the conduction band, as the band structure is primarily defined in this manner [33].
Through a substitution with La ions, the maximum absorption and the absorption edge
vary; however, all samples exhibit a broad response across the entire visible range.
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Figure 8b shows the Tauc plot of (αhv)2 versus hv for the direct allowed transition
of all samples. The extrapolation of this plot by linear region to the point = 0 gives the
corresponding values of the direct band gap. The optical band gaps were calculated
and are inserted in the inset of Figure 8b. The calculated values indicate a significant
decrease in the band gap energies of NiLa0.5Fe1.5O4/SiO2 and NiLa0.9Fe1.1O4/SiO2 when
compared with the 1.45 eV band gap of Ni-ferrite reported in a previous study [34]. This
reduction is likely attributed to the introduction of additional dopant levels into the band
gap of Ni ferrite. In accordance with Rajeshwari et al. [34], the band gap values for the
prepared Lanthanum-doped manganese nanoferrite range from 1.89 to 2.35 eV, showing
improvement compared with the 1.25–1.38 eV band gap values of Mn nanoferrite, owing
to the influence of La3+ ions. The photocatalytic mechanism could be explained through
the generation of electron–hole pairs when the ferrite surface is exposed to an energy
equal to or greater than the band gap energy. Consequently, the photoexcited electron
moves from the valence band to the conduction band, creating a hole in the valence band.
Effective photocatalysis occurs when these generated pairs remain uncombined. In this
scenario, the electrons engage with the adsorbed O2 on the photocatalyst’s surface, yielding
superoxide radicals, while the holes interact with H2O, forming hydroxyl radicals. Both
types of radicals are classified as reactive oxygen species capable of breaking down organic
pollutant molecules. A significant challenge in this process is the recombination of electron–
hole pairs, which hampers the production of reactive oxygen species, thereby impeding
the photodegradation process. In our study, the energy levels of dopants, derived from
the Ni-ferrite band gap, effectively capture the generated electrons, thereby hindering the
recombination of electron–hole pairs. More precisely, part of the photogenerated electrons
undergo excitation and reach defect levels, while simultaneously, the photogenerated holes
participate in photo-oxidation reactions. The enhanced photocatalytic activity observed
in the NiLa0.3Fe1.7O4/SiO2 sample can be attributed to its increased adsorption capacity
and the introduction of dopant energy levels into the band gap of Ni-ferrite through
La substitution. These dopant energy levels serve as mediators for interfacial charge
transfer [35], resulting in a high separation rate of photogenerated charge carriers. However,
with a higher doping level, La ions become recombination centers, leading to the quenching
of photocatalytic activity.

To confirm the generation of reactive oxygen species (ROS) by the NiLa0.3Fe1.7O4/SiO2
sample under visible irradiation, we utilized EPR spectroscopy coupled with the spin
trapping technique. DMPO was employed as the spin trapping agent, and the resulting
spectrum is depicted in Figure 9.
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To discern the species accountable for this signal, a simulation was performed. The
experimental spectrum fitted closely with the spectrum of the •DMPO-O−

2 spin adduct
having the following spin Hamiltonian parameters g = 2.0098, ∆H = 1.38 G, aN = 13.2474 G,
aβH = 8.0109 G, and aγH = 1.6051 G. Unexpectedly, the sample generates only O−

2 , meaning
that the maximum valence band position has a lower potential than the oxidation one of
the OH-/•OH and H2O/•OH redox pair; consequently, these reactions cannot occur [36].
The photocatalytic activity of the sample is exclusively attributed to the generation of
superoxide radicals when exposed to visible light.

The obtained photocatalytic performance results (removal rate and the first-order
rate constant, k) for NiLa0.3Fe1.5O4/SiO2 annealed at 800 ◦C are in the same range with
other Ni-ferrites previously reported in the literature. Table 3 provides a comparison of
various Ni-ferrites, considering both reported work and the current study, with respect to
the first-order rate constant.

Table 3. Comparison of various Ni-ferrite samples with respect to the reported first-order rate
constant values.

Sample Lights Dyes k × 10−3 (min−1) Reference

NiFe2O4 Visible Methylene blue 3.4 [4]
NiFe2O4 Visible Methyl Orange 2.4 [37]
NiFe2O4 Visible Methylene blue 2.3 [38]
NiFe2O4 Visible Methylene blue 2.4 [39]

ZnO-NiFe2O4 Visible RhB 2.5 [40]
ZnO/NiFe2O4 Visible Methylene blue 1.7 [4]

NixZn1−xFe2O4 Sun Fluorescein 2.7 [41]
NixCu(1−x)Fe2O4 Visible RhB 3.6 [42]
Ni0.5Zn0.5Fe2O4 Sun Methylene blue 6.5 [43]

TiO2−xNx/SiO2/NiFe2O4 Visible Methyl Orange 4.7 [44]
NiLa0.3Fe1.5O4/SiO2 Visible RhB 2.3 This work

The photostability of the NiLa0.3Fe1.7O4/SiO2 sample (annealed at 800 ◦C) was
verified via reutilization tests in three consecutive trials. The results are depicted
in Figure 10. The sample, extracted from the solution using a magnet, underwent a
washing with water and ethyl alcohol before each run, followed by an overnight drying.
As could be observed from the results, the removal rate shows minimal variation,
signifying the robust stability of the photocatalyst.

Nanomaterials 2023, 13, x FOR PEER REVIEW 15 of 17 
 

 

-200 0 200 400 600 800 1000 1200

-10

0

10

20

30

40

50

60

70

80

3rd2nd1st

R
e
m

o
v
a
l 
ra

te
  
(%

)

time  (min)  

Figure 10. Photocatalyst stability test of NiLa0.3Fe1.7O4/SiO2 annealed at 800 °C for removal of RhB. 

4. Conclusions 

Nickel nanoferrite samples doped with La3+ ions, featuring various compositions, 

were synthesized using a sol–gel method. Single-phase nanostructures in the form of an 

inverse spinel were achieved for Ni-La ferrites across all concentrations at both 500 and 

800 °C. The substitution of iron with lanthanum ions within the lattice revealed an expan-

sion of the lattice parameter. This is attributed to the considerable difference in ionic radii 

between La3+ and Fe3+, influencing both crystallite size and the fraction of A sites occupied 

by ferrite cations. Consequently, the degree of the inverse spinel structure experienced an 

increase. The crystallite size of the mixed Ni-La ferrites increases with the increase in La 

content and increased temperature, from 19.5 nm to 35.4 nm at 800 °C, from 10.4 nm to 

22.6 nm at 500 °C, and from 1.2 nm to 9.8 nm at 200 °C. The particles have an asymmetric 

spherical shape. The results affirm that the preparation method effectively provided a 

straightforward means of achieving the desired morphology and microstructure for the 

ferrite nanocrystals. The specific surface area (SSA) values exhibit variation in accordance 

with the lanthanum content, showing a decrease as the heat treatment temperature in-

creases. This decline is attributed to the augmentation of grain sizes and crystallinity dur-

ing the heating process. All nanocomposites present pores in the mesoporous region, with 

narrow pore size dispersion. All samples show good optical response in the visible range. 

The best sonophotocatalytic performance was registered for NiLa0.3Fe1.7O4/SiO2; this result 

is most likely because of the La additional levels inserted in the band gap of Ni-ferrite and 

the equilibrium between La and Fe in Ni-La ferrite. 

Author Contributions: Conceptualization, T.D.; methodology, T.D.; software, T.D., I.P., M.D.L., and 

D.T.; formal analysis, T.D., I.P., M.D.L., and D.T.; investigation, T.D., I.P., M.D.L., and D.T.; resources, 

T.D., I.P., M.D.L., and D.T.; data curation, T.D.; writing—original draft preparation, T.D., I.P., M.D.L., 

and D.T.; writing—review and editing, T.D., I.P., M.D.L., and D.T.; visualization, T.D.; supervision, 

T.D. All authors have read and agreed to the published version of the manuscript. 

Funding: The APC was funded by the Technical University of Cluj-Napoca Grant Support 

CA106/28.06.2022. 

Acknowledgments: M.D.L. and D.T. acknowledge support from the Romanian Ministry of Research, 

Innovation, and Digitalization, NUCLEU Program within the National Research Development and 

Innovation Plan 2022–2027, project numbers PN 23 24 01 01 and PN 23 24 01 03, and Program 1—

Development of the national research and development system, Subprogram 1.2—Institutional per-

formance—Projects that finance the RDI excellence, contract no. 37PFE/30.12.2021. The authors 

acknowledge the Research Centre in Physical Chemistry “CECHIF” for AFM assistance. 

Figure 10. Photocatalyst stability test of NiLa0.3Fe1.7O4/SiO2 annealed at 800 ◦C for removal of RhB.



Nanomaterials 2023, 13, 3096 15 of 17

4. Conclusions

Nickel nanoferrite samples doped with La3+ ions, featuring various compositions, were
synthesized using a sol–gel method. Single-phase nanostructures in the form of an inverse
spinel were achieved for Ni-La ferrites across all concentrations at both 500 and 800 ◦C. The
substitution of iron with lanthanum ions within the lattice revealed an expansion of the
lattice parameter. This is attributed to the considerable difference in ionic radii between
La3+ and Fe3+, influencing both crystallite size and the fraction of A sites occupied by ferrite
cations. Consequently, the degree of the inverse spinel structure experienced an increase.
The crystallite size of the mixed Ni-La ferrites increases with the increase in La content
and increased temperature, from 19.5 nm to 35.4 nm at 800 ◦C, from 10.4 nm to 22.6 nm at
500 ◦C, and from 1.2 nm to 9.8 nm at 200 ◦C. The particles have an asymmetric spherical
shape. The results affirm that the preparation method effectively provided a straightforward
means of achieving the desired morphology and microstructure for the ferrite nanocrystals.
The specific surface area (SSA) values exhibit variation in accordance with the lanthanum
content, showing a decrease as the heat treatment temperature increases. This decline is
attributed to the augmentation of grain sizes and crystallinity during the heating process. All
nanocomposites present pores in the mesoporous region, with narrow pore size dispersion.
All samples show good optical response in the visible range. The best sonophotocatalytic
performance was registered for NiLa0.3Fe1.7O4/SiO2; this result is most likely because of the
La additional levels inserted in the band gap of Ni-ferrite and the equilibrium between La
and Fe in Ni-La ferrite.
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