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Abstract: Expanding swept volume technology via continuous-phase polymer solution and dispersed-
phase particle gel is an important technique to increase oil production and control water production
in mature waterflooding reservoirs. However, problems such as the low viscosity retention rate,
deep migration, and weak mobility control of conventional polymers, and the contradiction between
migration distance of particle gel and plugging strength, restrict the long-term effectiveness of oil
displacement agents and the in-depth sweep efficiency expanding capability in reservoirs. Combined
with the technical advantages of polymer and particle gel, a novel controllable phase-transition
polymer was developed and systematically studied to gain mechanistic insights into enhanced
oil recovery for mature waterflooding reservoirs. To reveal the phase-transition mechanism, the
molecular structure, morphology, and rheological properties of the controllable phase-transition
polymer were characterized before and after phase transition. The propagation behavior of the
controllable phase-transition polymer in porous media was studied by conducting long core flow
experiments. Two-dimensional micro visualization and parallel core flooding experiments were
performed to investigate the EOR mechanism from porous media to pore level. Results show that
the controllable phase-transition polymer could change phase from dispersed-phase particle gel to
continuous-phase solution with the prolongation of ageing time. The controllable phase-transition
polymer exhibited phase-transition behavior and good propagation capability in porous media. The
results of micro visualization flooding experiments showed that the incremental oil recovery of
the controllable phase-transition polymer was highest when a particle gel and polymer solution
coexisted, followed by a pure continuous-phase polymer solution and pure dispersed-phase particle
gel suspension. The recovery rate of the novel controllable phase-transition polymer was 27.2% after
waterflooding, which was 8.9% higher than that of conventional polymer, providing a promising
candidate for oilfield application.

Keywords: chemical flooding; controllable phase-transition polymer; mechanistic insights; enhanced
oil recovery; mature waterflooding reservoirs

1. Introduction

As oilfields enter the late development stage of high water cut and high recovery,
reservoir heterogeneity becomes more serious; the residual oil is dispersed and the injected
water enters into the preferential flow channel, resulting in low sweep efficiency and oil
recovery rates in mature waterflooding reservoirs. It is predicted that around 60~75% of
residual oil still exists in the un-swept zone after waterflooding [1–3]. Therefore, recovering
the un-swept residual oil is crucial for further enhancing oil recovery. The conventional
waterflooding development method fails to greatly enhance oil recovery. How to effi-
ciently recover the potential residual oil and significantly improve its recovery rate remain
major challenges for the sustainable development of mature waterflooding reservoirs.
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Chemical flooding technology can significantly enhance oil recovery by expanding sweep
efficiency and improving oil displacement efficiency. Chemical flooding technology can
be categorized as follows: polymer flooding [4–7], surfactant flooding [8–15], nanoparticle
flooding [16–22], surfactant–polymer combined flooding [23–34], and heterogeneous phase
combined flooding [35–40].

Polymer flooding, as one of the most important methods for enhanced oil recovery
(EOR), has been successfully applied in a number of mature waterflooding reservoirs in
China, such as the Daqing Oilfield, Shengli Oilfield, etc. Generally, the polymer dissolves
in water to form an aqueous solution with a continuous phase, which can increase the
viscosity of injected water, reduce the water–oil mobility ratio, and improve sweep ef-
ficiency [41]. However, due to worsening reservoir heterogeneity and more dispersed
residual oil, unrecovered residual oil still exists after polymer flooding. In addition, the
EOR efficiency of subsequent surfactant–polymer (SP) flooding after polymer flooding
needs to be improved [42]. Therefore, based on SP flooding technology, in recent years, the
concept of a heterogeneous phase combined flooding (HPCF) system composed of polymer,
branched-performed particle gel, and surfactant was developed and applied in mature
reservoirs after polymer flooding in the Shengli Oilfield. Pilot tests have demonstrated that
HPCF technology can achieve higher EOR efficiency via a synergistic effect. Specifically,
the branched-performed particle gel (B-PPG) can absorb water, swell, and disperse in
formation water to form gel particle dispersion. The dispersed-phase gel particles have the
characteristics of elastic deformation, migration, and plugging in porous media, which can
increase flow resistance and divert the subsequent fluid into the un-swept area.

The continuous-phase polymer solution and dispersed-phase particle gel can expand
the swept volume and enhance oil recovery in mature waterflooding reservoirs with high
water cut and recovery. However, continuous-phase polymer solutions with increased
viscosity and dispersed-phase particle gels have the following technical bottlenecks in
field applications: First, continuous-phase polymer solutions increase their viscosity and
in-depth migration in porous media, but due to viscosity loss via chemical degradation
and shear mechanical degradation, the viscosity retention rate of polymer solutions in a
deep reservoir is low, and mobility control is weak. Second, dispersed-phase particle gels
have a strong sweep efficiency expanding capability, but there is a contradiction between
propagation distance and plugging strength, which leads to an unsatisfactory effect of
injection or deep reservoir plugging effect.

To overcome their respective shortcomings, the innovative technical idea of con-
trollable phase-transition polymer flooding that combines the technical advantages of a
continuous-phase polymer solution and a dispersed-phase particle gel was proposed to en-
hance oil recovery significantly. This novel controllable phase-transition polymer, designed
and developed successfully at the Shengli Oilfield, can change phase from solid to liquid.
The initial state of the controllable phase-transition polymer is a dispersed-phase particle
gel state that can deform and migrate in the reservoir. Then, under reservoir conditions,
the particle gel dissolves gradually from a solid to a viscous solution. The final state of
the controllable phase-transition polymer is in viscous solution form, which has good
viscosity-increasing properties.

Thus, in order to reveal the phase-transition behavior, propagation, and enhanced oil
recovery mechanism of the novel controllable phase-transition polymer, a series of experi-
ments were systematically conducted to gain mechanistic insights into the enhanced oil
recovery for mature waterflooding reservoirs. The molecular structure of the controllable
phase-transition polymer was characterized by using Fourier transform infrared spec-
troscopy. The morphology and rheological properties of the controllable phase-transition
polymer before and after phase transition were investigated to reveal the phase-transition
mechanism. The propagation behavior of the controllable phase-transition polymer in
porous media was studied by conducting long core flow experiments. Two-dimensional
micro visualization and parallel core flooding experiments were performed to investigate
the EOR mechanism from porous media to pore level. We hope this study can provide new
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ideas and methods for chemical-enhanced oil recovery in mature waterflooding reservoirs
in China.

2. Materials and Methods
2.1. Materials

The controllable phase-transition polymer used in this study was independently de-
veloped by the Exploration and Development Research Institute of the Shengli Oilfield.
The phase-transition polymer was prepared as follows: (1) first, the acrylamide (AM),
2-acrylamido-2-methyl propane sulfonic acid (AMPS) monomer and acrylic crosslinking
agent were mixed and dispersed via stirring; (2) then, by adjusting the pH value and
introducing nitrogen gas, an oxidation-reduction initiator was added to initiate the reaction
to synthesize the phase-transition polymer. The salinity of simulated formation water was
19,334 mg·L−1. Sodium chloride and calcium chloride used for simulating water prepa-
ration were all analytical grade products purchased from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). The crude oil used was a simulated oil from a certain block
of Shengli Oilfield, with a crude oil viscosity of 60 mPa·s at 68 ◦C. The molecular weight
and hydrolysis degree of the conventional polymer used in this study was 2500 × 104 and
20%, respectively.

2.2. Methods
2.2.1. Rheological Characterization

A phase-transition polymer solution with a mass concentration of 2000 mg·L−1 was
prepared with the simulated formation water by adding predetermined amounts of dry
powder via mechanical stirring for 30 min. Then, the prepared phase-transition polymer
was deoxygenated and placed in different ampoule bottles in an oven at a simulated reser-
voir temperature of 68 ◦C for ageing treatment. At different ageing times, the samples were
taken out and their elastic modulus was tested at 68 ◦C using an Anton Paar (North Ryde,
NSW, Australia) MCR302 plate rheometer. The plate spacing, vibration stress, and vibra-
tion frequency were set to 0.2 mm, 0.1 Pa, and 1 Hz, respectively. After the controllable
phase-transition polymer solution was filtered, the apparent viscosity of the filtrate was
tested using an Anton Paar MCR302 rotary rheometer at a temperature of 68 ◦C and a shear
rate of 7.34 s−1. The variation law of the elastic modulus and apparent viscosity of the
controllable phase-transition polymer was then analyzed.

2.2.2. Chemical Structure Analysis

Fourier transform infrared (FT-IR) spectroscopy was obtained to analyze the chemical
structure of the controllable phase-transition polymer. The samples for the FT-IR test were
prepared by grinding and pressing the polymer sample with potassium bromide (KBr)
powder. The spectra were recorded in a wavenumber range of 4000–650 cm−1 for the
samples, and the resolution was 4 cm−1.

2.2.3. Morphology Characterization

The morphology of the controllable phase-transition polymer at different phase-
transition stages was characterized using a Carl Zeiss scanning electron microscope (SEM).
The samples were prepared by ageing the phase-transition polymer at 68 ◦C for different
periods. The procedure of lyophilization and SEM observations of samples at different
stages were as follows: (1) The samples were prepared by ageing the phase-transition
polymer at 68 ◦C for different periods; (2) Then, the phase-transition polymer samples
were transferred to a fresh mica sheet; (3) After freezing in liquid nitrogen for 1 h, the
samples were quickly transferred to a lyophilizer, in which the condenser temperature was
−80 ◦C, for 24 h; (4) After freeze-drying and gold spraying treatment, the morphology of
the phase-transition polymer at different phase-transition stages was observed via scanning
electron microscopy (SEM).
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2.2.4. Propagation Behavior of the Phase-Transition Polymer in Porous Media

The propagation behavior of the phase-transition polymer in porous media was
investigated by performing sand-pack flow experiments (Figure S1). In this study, sand-
pack (Φ2.5 cm × 30 cm) was used with different pressure measuring points located at
the injection end (P1), at 10 cm (P2), and at 20 cm (P3) near the injection end. All the
flow experiments were performed at 68 ◦C. The experimental processes are as follows:
(1) Sand-packs with different permeabilities were prepared using the wet-packing method.
During the filling process, quartz sand and simulated formation brine were alternately
added and compacted. The sand-pack pore volume was the volume of used simulated
formation brine. (2) Waterflooding was performed by injecting the formation brine at
a certain flow rate until the injection pressure was stable followed by the calculation of
permeability according to stable injection pressure ∆Pwa. (3) Phase-transition polymer at
different ageing stages was injected, and then subsequent waterflooding was conducted.
The injection pressures during polymer injection (∆Ppolymer) and subsequent waterflooding
process (∆Pwb) were recorded. The same injection rate was applied during the polymer
injection and subsequent waterflooding process.

Based on the injection pressures at different stages, the resistance factor Fr and residual
resistance factor Frr, which can reflect its propagation and plugging characteristics in porous
media, were calculated according to the following equations:

Fr =
∆Ppolymer

∆Pwa
(1)

Frr =
∆Pwb
∆Pwa

(2)

where ∆Ppolymer, ∆Pwa, and ∆Pwb present injection pressures during polymer injection, stable
injection pressure, and injection pressures during the waterflooding process, respectively.

2.2.5. The 2D Glass-Etched Micromodel Flooding Experiment

To reveal the mechanism behind the enhanced oil recovery of the controllable phase-
transition polymer flooding at different stages, 2D glass-etched micromodel flooding
experiments were performed. The glass-etched micromodel was composed of an etched
plate and cover plate, which were attached together and sealed to form an enclosed pore
space. An etched plate with heterogeneous pore size distribution was designed, and the
size of the micromodel was 4 mm × 4 mm. The 2D visualization experimental appa-
ratus (Figure S2) was composed of a transparent glass-etched micromodel, high precise
syringe pump, LED light source, high-resolution camera, and image acquisition and pro-
cessing system. The high-resolution camera was used to record the flow behavior of the
phase-transition polymer in the glass micromodel at different flooding stages. The image
acquisition and processing system was used to measure the change in oil saturation and for
calculating the oil recovery at different flooding stages. The specific experimental process
is as follows: (1) The model was vacuumed for saturating crude oil. (2) Waterflooding
was conducted until no oil was produced at the outlet of the model, at an injection rate
of 0.001 mL/min. (3) The phase-transition polymer flooding was conducted at an injec-
tion rate of 0.001 mL/min. (4) The distribution of oil and water in the micromodel was
observed and recorded throughout the entire flooding process. (5) The EOR efficiency of
phase-transition polymer was calculated at different flooding stages.

2.2.6. Evaluation of Enhanced Oil Recovery Capability

To simulate the heterogeneous reservoir conditions of the Shengli Oilfield, parallel
sand-pack flooding experiments were conducted to investigate the enhanced oil recovery
capability of the controlled phase-transition polymer at different stages. The permeabilities
of the parallel sand-pack model (ϕ2.5 cm × 30 cm, Figure 1) were 3000 × 10−3 µm2

and 1000 × 10−3 µm2, respectively. The specific experimental procedures are as follows:
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(1) The sand-pack was filled with different mesh quartz sand using the wet packing method,
and liquid permeability was measured at a waterflooding rate of 1.0 mL/min. (2) The
wet-packed sand-pack was flooded with crude oil at a rate of 0.1 mL/min until complete
oil saturation. Then, the sand-pack was put in the oven at 68 ◦C for ageing for 48 h after oil
saturation. (3) The initial waterflooding was conducted until the water cut reached 95%, at a
flooding rate of 0.3 mL/min. Then, a 0.5 PV polymer slug was injected into the sand-packs
for chemical flooding. (4) Subsequent waterflooding was conducted until the water cut
reached 98%. Then, the flooding experiments were terminated. The injection pressure and
volumes of the water and oil produced were recorded at different flooding periods.
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3. Results and Discussion
3.1. Morphology and Chemical Structure of the Phase-Transition Polymer

To reveal the morphology changes of the controllable phase-transition polymer during
its phase-transition process, SEM images of the polymer at different phase-transition stages
were acquired. As noted in Figure 2a,c, the controllable phase-transition polymer was in
a state of dispersed-phase particle gel at the initial stage before phase transition, and a
small amount of dense network structure can be observed. With the prolongation of ageing
time, the unique weak cross-linking structure of the controllable phase-transition polymer
was hydrolyzed and transformed into a continuous-phase state of high viscosity polymer
solution. At this stage, the morphology of the controllable phase-transition polymer
presented a large number of network structures (Figure 2b,d), which endow excellent
viscosity-increasing properties, as supported by the rheological results. Digital images
of the controllable phase-transition polymer at different stages provide similar findings
(Figure S3). The scheme of the morphology changes of the phase-transition polymer is
summarized in Figure 2e.

The FT-IR can characterize the molecular structure of the phase-transition polymer,
and the obtained spectrum is presented in Figure 2f. It can be seen that the stretching
vibration peaks of the NH2 group of the primary amide are at 3332 cm−1 and 3189 cm−1,
respectively. A characteristic absorption peak of -CH3 was found at 2931 cm−1. The strong
and sharp absorption peak at 1652 cm−1 is a characteristic absorption peak of carbonyl
groups with a lower wavenumber, usually the amide carbonyl absorption peak. Combined
with the absorption peaks at 3332 cm−1 and 3189 cm−1, it can be inferred that the -CONH2
group is present in the polymer [43]. Based on the above analysis, the controllable-phase
polymer proves to be a class of acrylamide polymer. Peaks at 1181 cm−1 and 1039 cm−1

are attributed to the symmetric bending and asymmetric stretching vibrations of sulfonic-
acid-based -SO3

2− [44]. Moreover, it is clear that the phase-transition polymer contains a
unique functional -OH group and a large amount of -SO3

2−; the monomers acrylamide and
2-acrylamido-2-methyl propane sulfonic acid used to synthesize the polymer contribute to
the chemical characteristics.
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3.2. Rheological Properties of the Phase-Transition Polymer

According to the rheological property characterization method of the phase-transition
polymer during the phase-transition process, the viscosity and elastic modulus of phase-
transition polymer versus time are depicted in Figure 3. It can be seen that the controllable
phase-transition polymer has the characteristics of high viscoelasticity and a deformable
dispersed-phase particle gel at the initial stage; the viscosity of the particle gel suspension
is about 1.0 mPa·s, which indicates that the polymer has not yet been dissolved, and
its viscosity is low. This is because the cross-linking group of controllable weak cross-
linking agent combines with the carboxyl group in the polymer molecular chain, which
greatly reduces the extension of the polymer molecular chain and results in a bound solid
dispersed-phase particle gel. The curled molecular structure inhibits the hydration of
amide and carboxyl groups, making it difficult to increase viscosity. Meanwhile, the elastic
modulus of the solution is about 5 Pa when the phase-transition polymer presents as a
dispersed-phase particle gel.

As the ageing time prolongs, viscosity gradually increases. This is because the weak
cross-linking structure between polymer molecular chains gradually undergoes hydrol-
ysis, allowing the polymer molecular chains to extend and release amide and carboxyl
hydrophilic groups. The hydration effect of the molecular chains gradually increases,
and they intertwine to form a network structure, resulting in an increase in viscosity, as
reported elsewhere [45]. Additionally, the elastic modulus decreases significantly, which
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indicates that the sample’s solid-like behavior deteriorates. During the polymer ageing
process, the particle gel gradually dissolves in water, forming the intermediate phase when
particle gel and polymer solution coexist, leading to a gradually decreased elastic modulus
and increased viscosity. When it comes to the viscosity stabilization stage, the viscosity
and elastic modulus of phase-transition polymer tends to level off. This can be attributed
to the fact that the weak cross-linked structure is completely broken under the ageing
effect, and the solid gel particles are almost all dissolved in water and transformed into a
continuous-phase aqueous solution.
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The viscoelastic properties of controllable phase-transition polymer in an aqueous
solution phase and conventional hydrolyzed polyacrylamide (HPAM) were further inves-
tigated and compared (Figure 4). As noticed, the elastic modulus, viscous modulus, and
complex modulus of the controllable phase-transition polymer in an aqueous solution
phase are slightly higher than those of conventional HPAM. This indicates that under
the branching effect of a weak cross-linking structure, the molecular chains of a control-
lable phase-transition polymer are more stretched, and the intermolecular entanglement is
more obvious compared to HPAM. Consequently, the structural and rheological proper-
ties of a phase-transition polymer may benefit their functioning in a targeted application,
i.e., enhanced oil recovery in mature waterflooding reservoirs.
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3.3. Propagation Behavior of the Phase-Transition Polymer in Porous Media

The propagation behavior of the controllable phase-transition polymer at different
stages in porous media was investigated by conducting sand-pack flow experiments using
the core model with multi-point pressure measurements. The relationship between the
pressure changes and the injected pore volume at different positions of the core was
analyzed to clarify phase-transition behavior, propagation, and plugging capability of the
phase-transition polymer at different ageing stages in porous media. The relationship
between the pressure and injected pore volume during the percolation process of the
phase-transition polymer in porous media depending on ageing time is shown in Figure 5.
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As the ageing of the phase-transition polymer proceeds, the injection pressure during
the injection process exhibits a decreasing trend. Moreover, in the subsequent water-
flooding process, the pressure decreases to a stable value, and the stable pressure value
decreases with the extension of ageing time. The results indicate that the phase-transition
polymer changes from a dispersed-phase particle gel to a continuous-phase aqueous poly-
mer solution. In order to quantitatively characterize the propagation characteristics of
phase-transition polymers in porous media, the pressure change trend at each pressure
measurement point during the injection process of phase-transition polymers at different
ageing times was analyzed. According to the pressure changes at different positions of
the core, the phase-transition polymer shows favorable propagation capability in porous
media. The resistance factor and residual resistance factor of phase-transition polymers
at different stages were calculated, as shown in Table 1 and Figure 6. As the ageing time
prolongs, the two factors decrease, indicating that the phase-transition polymer changes
from a dispersed-phase particle gel to a continuous-phase aqueous polymer solution, which
aligns with the previous reports [46].
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Table 1. The resistance factor and residual resistance factor of the phase-transition polymer.

Ageing Time/h ∆Pwa/MPa ∆Ppolymer/MPa ∆Pwb/MPa Fr Frr

2 0.007 2.926 0.546 418.0 78.0
4 0.006 1.503 0.165 250.5 27.5

12 0.0065 0.369 0.143 56.8 22.0
48 0.006 0.092 0.027 15.3 4.5
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3.4. The EOR Efficiency of the Phase-Transition Polymer

To reveal the EOR mechanism of phase-transition polymer at different stages, three
microscopic visualization flooding experiments were carried out. The residual oil dis-
tributions after waterflooding and phase-transition polymer flooding at different stages
are shown in Figure 7. Results show that due to the heterogeneity of the micro etching
model, injected water mainly flows along the high pore throat flow channel during the
waterflooding process, which can effectively recover crude oil in the high permeability area.
The micro residual oil mainly exists in low permeability areas at the end of waterflooding,
and the waterflooding recovery rate is low. After injecting the controllable phase-transition
polymers at different stages, the polymers can change the fluid flow direction and expand
the sweep efficiency, which can effectively recover the residual oil in low permeability
areas. Difference exists in recovering the remaining oil in the low permeability zone of the
phase-transition polymer at different stages.

According to the residual oil distribution of phase-transition polymers at different
stages, oil recovery at different flooding stages was calculated using the image processing
software ImageJ v.153k. The results are summarized in Table 2.

Table 2. Comparison of incremental oil recovery for phase-transition polymer at different flooding stages.

Different Phase Stage Waterflooding Recovery/% Polymer Flooding
Recovery/%

Increased Oil
Recovery/%

Dispersed-phase particle gel 23.6 46.8 23.2
Particle gel–aqueous solution mesophase 24.5 58.9 34.4

Continuous-phase aqueous solution 24.6 52.3 27.7

At the initial stage of dispersed-phase particle gel, the controllable phase-transition
polymer had low viscosity and a high elastic modulus, which mainly plays a role in blocking
and adjusting the liquid flow direction. The increased oil recovery rate was 23.2%. At the
stage of the coexistence of the particle gel and aqueous polymer solution, the viscosity
of the phase-transition polymer increased rapidly and the particle had deformation and
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plugging capability, which can play a synergistic role in changing the fluid flow direction
via particle plugging and mobility control. The incremental oil recovery was 34.4%. When
the controllable phase-transition polymer was in the continuous-phase polymer solution
stage, its viscosity reached its maximum, which can play a role in the effect of increasing
viscosity and mobility control, followed by an incremental oil recovery of 27.7%.

Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 7. The residual oil distributions after waterflooding and phase-transition polymer flooding 
at different stages: (a) waterflooding and (b) polymer flooding—dispersed particle gel stage; (c) wa-
terflooding and (d) polymer flooding—particle gel–aqueous solution stage; (e) waterflooding and 
(f) polymer flooding—continuous-phase aqueous solution stage.  

According to the residual oil distribution of phase-transition polymers at different 
stages, oil recovery at different flooding stages was calculated using the image processing 
software ImageJ v.153k. The results are summarized in Table 2. 

Table 2. Comparison of incremental oil recovery for phase-transition polymer at different flooding 
stages. 

Different Phase Stage 
Waterflooding Recov-

ery/% 
Polymer Flooding  

Recovery/% 
Increased Oil  
Recovery/% 

Dispersed-phase particle gel 23.6 46.8 23.2 
Particle gel–aqueous solution mesophase 24.5 58.9 34.4 

Continuous-phase aqueous solution 24.6 52.3 27.7 

At the initial stage of dispersed-phase particle gel, the controllable phase-transition 
polymer had low viscosity and a high elastic modulus, which mainly plays a role in block-
ing and adjusting the liquid flow direction. The increased oil recovery rate was 23.2%. At 

Figure 7. The residual oil distributions after waterflooding and phase-transition polymer flood-
ing at different stages: (a) waterflooding and (b) polymer flooding—dispersed particle gel stage;
(c) waterflooding and (d) polymer flooding—particle gel–aqueous solution stage; (e) waterflooding
and (f) polymer flooding—continuous-phase aqueous solution stage.

3.5. Enhanced Oil Recovery Capability of Phase-Transition Polymer over Conventional Polymer
3.5.1. Analysis of the Flooding Curves

Figure 8 presents the flooding curves of the phase-transition polymer over conven-
tional polymer. Results show that during the initial waterflooding stage, when the injection
water volume reached around 0.2 PV, water was produced. With an increase of injection
pore volume, the water cut gradually increased and the flow resistance decreased. The
pressure slowly decreased to gradually stabilize. When the water cut reached around
95%, it fluctuated slightly, and the waterflooding recovery gradually stabilized. At the end
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of the waterflooding period, the waterflooding recoveries of conventional polymer and
phase-transition polymer were 43.5% and 45.3%, respectively.
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Then, a 0.5 PV polymer slug was injected into the sand-pack and flow resistance
increased, resulting in an increase in the injection pressure and a decrease in the water cut.
The polymer slug can block the high permeability sand-pack, diverting the liquid flow to
the low permeability sand-pack. In the subsequent waterflooding stage, a small amount of
polymer still remained in the pores and continued to function, and the water cut continued
to decrease to the lowest level. The subsequent reversal of the liquid flow profile caused
the water cut to rise again to around 98%, and the pressure continued to rise to the highest
value, followed by decreasing and stabilizing.

3.5.2. Analysis of Fractional Flow Curves

According to the fractional flow curve in Figure 9, the change in the fractional flow
curve of the high- and low-permeability layers at the early stage of waterflooding is not
significant. However, after injecting the polymer, the fraction flow of the high-permeability
sand-pack rapidly decreases, while the fractional flow of the low permeability sand-pack
rapidly increases.
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As the injection volume increases, the factional flow curve in the high- and low-
permeability layers is the closest, with the fractional flow in the high-permeability layer
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reaching the lowest and the fractional flow in the low-permeability layer reaching the
highest and maintaining fluctuations. During polymer injection, the polymer preferentially
flows towards the high-permeability layer, causing an increase in the seepage resistance of
the high-permeability layer and then turning towards the low-permeability layer, result-
ing in a rapid increase in the seepage resistance of the low-permeability layer and then
flowing towards the high-permeability layer again, causing a profile reversal. After the
subsequent waterflooding, the liquid intake amount in the high-permeability sand-pack
starts to increase, while the liquid intake amount in the low-permeability sand-pack starts
to decrease, fluctuating up and down to a certain value. During conventional polymer
flooding, its fractional flow curve shows a “Λ” shaped change, while a “

⋂
” shaped change

in fractional flow curve was observed during the controllable phase-transition polymer
flooding, which indicates that the longer the controllable phase-transition polymer acts in
the low-permeability layer, the more obvious the sweep efficiency improves.

3.5.3. Analysis of Enhanced Oil Recovery

Figure 10 depicts the results of enhanced recovery efficiency between conventional
polymer and controllable phase-transition polymer. The total oil recovery rate is 61.8% and
72.5% for the conventional polymer and controllable phase-transition polymer, respectively.
Moreover, the recovery of the novel controllable phase-transition polymer was 27.2% after
waterflooding, which was 8.9% higher than that of conventional polymer. This can be
attributed to the superior physiochemical properties of the phase transition-polymer, as
analyzed above.
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4. Conclusions

In this study, to reveal the phase-transition behavior, propagation, and oil recovery
enhancement mechanism of the novel controllable phase-transition polymer, a series of
experiments were systematically conducted to gain mechanistic insights into enhanced oil
recovery for mature waterflooding reservoirs. Results show that the controllable phase-
transition polymer is in a state of dispersed-phase particle gel at the initial stage before
phase transition, and a small amount of dense network structure exists. As the ageing
time prolongs, the unique weak cross-linking structure of this polymer is hydrolyzed
and transformed into a continuous-phase state of high viscosity polymer solution. Its
morphology presents a large number of network structures, which can improve viscosity.
With ageing continuing, the viscosity gradually increases and the elastic modulus decreases
significantly due to its gradual dissolution in water, forming an intermediate phase when
particle gel and polymer solution coexist. At the stabilization stage, the viscosity and elastic
modulus of the phase-transition polymer tend to be stable, and are higher than those of
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conventional HPAM. The controllable phase-transition polymer exhibits favorable phase-
transition behavior and good propagation capability in porous media. The oil recovery rate
of the controllable phase-transition polymer was highest when the particle gel and polymer
solution coexisted, followed by that of a pure continuous-phase polymer solution and
pure dispersed-phase particle gel suspension. The recovery rate of the novel controllable
phase-transition polymer was 27.2% after waterflooding, which was 8.9% higher than that
of conventional polymer.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13243101/s1. Figure S1: The schematic diagram of sand-pack flow
experimental setup. Figure S2: The schematic diagram of micromodel flooding experimental setup.
Figure S3: Digital images of controllable phase-transition polymer at different stages: (a) dispersed-
phase particle gel stage, (b) particle gel-aqueous solution mesophase stage and (c) continuous-phase
aqueous solution stage.
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