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Abstract: Atomic Force Microscopy (AFM) is a powerful tool enabling the mechanical characterization
of biological materials at the nanoscale. Since biological materials are highly heterogeneous, their
mechanical characterization is still considered to be a challenging procedure. In this paper, a new
approach that leads to a 3-dimensional (3D) nanomechanical characterization is presented based
on the average Young’s modulus and the AFM indentation method. The proposed method can
contribute to the clarification of the variability of the mechanical properties of biological samples in
the 3-dimensional space (variability at the x–y plane and depth-dependent behavior). The method
was applied to agarose gels, fibroblasts, and breast cancer cells. Moreover, new mathematical methods
towards a quantitative mechanical characterization are also proposed. The presented approach is
a step forward to a more accurate and complete characterization of biological materials and could
contribute to an accurate user-independent diagnosis of various diseases such as cancer in the future.

Keywords: average young’s modulus; nanoindentation; scanning probe microscopy; mechanical
properties; depth-dependent behavior; cells; cancer diagnosis

1. Introduction

Atomic Force Microscopy (AFM) is a powerful instrument that offers the possibil-
ity of retrieving the mechanical properties of tissues, cells, fibrous components, and
biomolecules [1–10]. It is important to note that the determination of the mechanical
properties of biological materials at the nanoscale using the AFM indentation method
has opened up new prospects regarding various biomedical applications such as disease
diagnosis and prognosis (e.g., cancers and osteoarthritis) [1,4–8]. The major advantage of
the AFM regarding the characterization of biological samples is that it can be applied in the
characterization of single molecules and proteins as well as the characterization of complex
biological samples such as cells and tissues [11].

However, the characterization of biological materials using AFM is still considered a
challenging procedure. Many errors may arise which, among other factors [11], are related
to data processing and the misuse of contact mechanics models that consider the sample
to be an elastic half-space (biological samples at the nanoscale are highly heterogeneous
and non-isotropic materials) [11,12]. The major problem regarding the lack of appropriate
models and mathematical theories regarding AFM data processing has been very recently
pinpointed [11]. The application of novel techniques for the mechanical characterization of
biological samples requires the development of new theories and mathematical models for
data processing. In this direction, several attempts have been recently proposed. In particu-
lar, a novel mathematical model for describing the depth-dependent mechanical properties
of cells (that takes into account the surface tension effects) was recently derived by Ding
et al. [13]. The mechanical properties of soft heterogeneous materials at the nanoscale
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can be also determined using the Trimechanic theory for general elastic response [14]. In
this case, the applied force can be decomposed into three factors: the depth impact, the
Hookean, and the tip-shape factor [14]. In addition, the depth-dependent nanomechanical
properties of soft materials can be also determined using the average Young’s modulus
theory [12,15].

It is important to note that the only way to achieve the accurate mechanical char-
acterization of biological samples is to separately characterize the different superficial
and inner nano-features in each case. For example, a simple model used to characterize
the different mechanical properties of a cell’s membrane compared to its inner features
has been proposed [16]. In addition, a recently published paper combined 3D acoustic
manipulation with micro-indentation for 3-dimensional mechanical characterization at the
microscale [17]. The need for an accurate 3D mechanical characterization using various
approaches is growing fast, as was shown in [18], and is considered to be a cutting-edge
area of research since the aim is to solve the most important problem in the mechanical
characterization of biological samples, which is the current inability to record the mechani-
cal properties at a 3D scale. In other words, existing AFM methods using typical Young’s
modulus maps [19–24] provide a 2D characterization (since they do not take into account
the alterations in mechanical properties’ in the 3rd dimension, i.e., as the indentation depth
increases, and their results are user dependent).

In this paper, the previously developed ‘average Young’s modulus theory’ [12,15] is
used for a complete mechanical characterization of biological materials at the nanoscale.
The primary goal of this paper was to use the average Young’s modulus theory for a 3D
mechanical nano-characterization of any soft biological sample. The previously developed
mathematical technique for creating depth-dependent average Young’s modulus maps [15]
is combined with classic methods (i.e., conventional Young’s modulus maps) to create 3D
plots that present the mechanical properties of 3-dimensional regions. These plots will be a
sum of M average Young’s modulus maps (for each value of indentation depth, a different
map will be available). Thus, assuming that each average Young’s modulus map consists of
N values, the proposed method will result in measurements over a 3–dimensional region.
In addition, the average Young’s modulus distributions for each map are also obtained.
Thus, the average Young’s modulus distributions with respect to the indentation depth
plots are also available. The significance of these plots is that they allow for the easy
monitoring of the ‘softening/stiffening behavior’ as the indentation depth increases (as in
3D maps) but also permit the testing of whether the sample tends towards a ‘homogeneous’
behavior or the heterogeneity increases for big indentation depths. The 3D mechanical
characterization was applied to different types of cells, since these samples are of utmost
scientific interest related to early cancer diagnosis [4] and other applications [25]. The
accurate 3D mechanical characterization of biological samples will lead to a new strategy
regarding AFM data processing and will open up new possibilities for the AFM use in
research or industrial applications.

2. Materials and Methods
2.1. Depth Dependent Mechanical Properties

The procedure for determining the depth-dependent mechanical properties of biologi-
cal samples has been previously presented [15]. Briefly, a heterogeneous material can be
considered as the sum of N narrow homogeneous slices (each one of them has a thickness,
∆h). The average Young’s modulus of these slices is defined below:

E =
E1 + E2 + . . . + EN

N
=

E1∆h + E2∆h + . . . + EN∆h
N∆h

=
1
h ∑N

i=1 Ei∆h (1)

Assuming N→∞ layers with the same thickness, Equation (1) takes the following
form:

E =
1
h

∫ h

0
E(y)dy (2)



Nanomaterials 2023, 13, 395 3 of 16

The symbol E(y) indicates the depth-dependent Young’s modulus function. The classic
Hertzian equations for cylindrical, parabolic, or conical indenter are valid [15]; however,
the parameter that is determined using a typical fitting procedure is the average Young’s
modulus.

For cylindrical indenters,

F =
2ER

1− v2 h (3)

In Equation (3), R is the indenter’s radius, v is the Poisson’s ratio, F is the applied
force on the sample, and h is the indentation depth. For conical indenters,

F =
2(tanθ)

π(1− v2)
Eh2 (4)

In Equation (4), θ is the cone’s half angle. For parabolic indenters (or spherical
indenters for small indentation depths),

F =
4R1/2E

3(1− v2)
h3/2 (5)

It is also significant to note that for spherical indenters, the h/R ratio is a significant
parameter to consider. For example, the accurate equation that relates the applied force to
the indentation depth for a spherical indentation on an elastic half space was derived by
Sneddon [3] and is provided below:

F =
E

2(1− v2)

[(
r2

c + R2
)

ln
(

R + rc

R− rc

)
− 2rcR

]
(6)

In Equation (6), E is the Young’s modulus of the elastic half space. The indentation
depth is related to the contact radius with the following equation [3]:

ln
(

R + rc

R− rc

)
=

2h
rc

(7)

Nevertheless, an alternating equation was recently derived which directly correlates
the applied force to the indentation depth [3]:

F =
4ER1/2

3(1− v2)
h3/2Z (8)

The correction factor Z is provided below:

Z = c1 +
3
4

c2R−1/2h1/2 +
3
6

c3R−3/2h3/2 +
3
8

c4R−5/2h5/2 + . . . +
3

2N
cN R( 3

2−N)hN−3/2 (9)

or,

Z = c1 + ∑N
M=2

3
2M

cMR( 3
2−M)hM−3/2, Z ≤ 1 (10)

To determine the depth-dependent mechanical properties at a specific point, a force–
indentation depth curve is obtained. Biological samples are depth dependent; thus, for each
value of indentation depth the average Young’s modulus will be different. Hence, many
different fittings should be obtained using Equations (3)–(5) depending on the indenter’s
shape. For an indentation depth equal to h1 the average Young’s modulus will be equal to
E1, and for an indentation depth equal to h2, the average Young’s modulus will be equal
to E2, etc. (Figure 1). Thus, the values E1, E2, . . . EN for 0 ≤ h ≤ h1, 0 ≤ h ≤ h2, . . . ,
0 ≤ h ≤ hN are obtained and the E = f (h) data is determined. For example, it has been
previously shown that for cells, the appropriate function to describe the depth-dependent
mechanical properties at a specific point is E = ahb + c, where a, b, c are fitting factors
(a, c > 0, b < 0) [12].
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representative maps are shown). Each map is valid for a specific indentation depth. In this figure, it 
is assumed that the average Young’s modulus decreases as the indentation depth increases. 
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At each region, a force–indentation depth curve will be obtained. Using these curves, 

the average Young’s modulus–indentation depth data will be obtained for each elemen-
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Figure 1. Methodology for the depth-dependent mechanical characterization of biological samples:
(a) a force-indentation curve using a spherical indenter is obtained. (b) Multiple force–indentation
curves are taken within an area of interest using AFM. (c) The average Young’s modulus is calculated
for different indentation depths. Many average Young’s modulus maps are obtained (four representa-
tive maps are shown). Each map is valid for a specific indentation depth. In this figure, it is assumed
that the average Young’s modulus decreases as the indentation depth increases.
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2.2. 3D Maps

At each region, a force–indentation depth curve will be obtained. Using these curves,
the average Young’s modulus–indentation depth data will be obtained for each elementary
region (Figure 2a). By deriving the E = f (h) data for many nanoregions, a big number of
average Young’s modulus maps can be constructed (assume M the number of maps). The
sum of M maps can then be used to derive a 3D plot, as presented in Figure 2b. The number
of M maps that can be obtained depends on the accuracy that is needed to be acquired
each time. For example, a big M number indicates an extremely detailed monitoring of
the mechanical properties with respect to the indentation depth. At this point, it should
be mentioned that the 3D maps are obtained using one experiment each time (since the
E = f (h) data are derived using the conventional force–indentation data [12]). In other
words, the experimental procedure used to yield a classic Young’s modulus map and the
3D map is the same. The difference is based on data processing. This is a major advantage
of this method; the 3D mechanical characterization can be achieved without increasing the
cost, the duration, or the complexity of the experimental procedure.

The 3D mechanical properties can be mathematically described using the average
Young’s modulus distributions for each indentation depth. More specifically, the graph
‘probability with respect to the average elastic modulus’ for the sample can be plotted.
The probability provides the occurrences of a single average Young’s modulus expressed
as a fraction of 100. In Figure 2b, a characteristic illustration of a 3D plot consisting of
eight average Young’s modulus maps is presented. In addition, two representative average
Young’s modulus distributions are also shown. Each average Young’s modulus distribution
can then fitted to an appropriate function. For example, assume that the average Young’s
modulus distribution follows a Gaussian distribution for a specific indentation depth, h1
(i.e., 0 ≤ h ≤ h1):

f
(
E
)
=

1
σ
√

2π
e−

1
2 (

E−µ
σ )

2

(11)

In Equation (11), µ is the mean of the distribution and σ is the standard deviation.
A mathematical criterion to evaluate the depth-dependent mechanical properties using
elementary functions is to determine the f

(
E
)

function for each map. Using this approach,
the µ, σ values for each map are also determined. More specifically,

Map 1 : 0 ≤ h ≤ h1, µ = µ1, σ = σ1
Map 2 : 0 ≤ h ≤ h2, µ = µ2, σ = σ2

...
Map M : 0 ≤ h ≤ hM, µ = µM, σ = σM

Assume, for example, that, µ1>µ2 > . . . > µM and σ1>σ2 > . . . > σM. This result
indicates that the mean of the distribution reduces as the indentation depth increases (i.e.,
this is a sample’s softening behavior) and the standard deviation also reduces (the sample
tends towards a ‘homogeneous’ behavior).

A characteristic example of a sample tending towards a ‘homogeneous behavior’ is pre-
sented in [12]. The multiple average Young’s modulus distributions (for every indentation
depth) can be also described using the following function:

f
(
E
)
= c1

1
σ1
√

2π
e−

1
2 (

E−µ1
σ1

)
2

+ c2
1

σ2
√

2π
e−

1
2 (

E−µ2
σ2

)
2

+ c3
1

σ3
√

2π
e−

1
2 (

E−µ3
σ3

)
2

+ . . . + cN
1

σN
√

2π
e−

1
2 (

E−µN
σN

)
2

(12)

where, c1 = 1, c2 = c3 = . . . = cN = 0 for h = h1, c2 = 1, c1 = c3 = . . . = cN = 0 for h = h2,
. . . , cN = 1, c1 = c2 = . . . = cN−1 = 0 for h = hN . More specifically, when referring to the
map for h = h1, only the first term is kept, and when referring to the map for h = h2, only
the second term is kept, etc. Using Equation (12), it is also easy to plot the distributions for
each indentation depth comparatively.
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Figure 2. 3D mechanical properties: (a) a depth dependent average Young’s modulus map [15]. The
dark areas in the 3D plot presents nanoregions with big average Young’s modulus. The light color
areas show nanoregions with small average E. (b) Eight average E maps and two representative
average Young’s modulus distributions. (c) An arbitrary (µ, σ, h) vector.

2.3. The (µ, σ, h) Vector

Since each map is characterized by three variables (i.e., µ, σ, h), the procedure can be
simplified by assuming a vector in a 3-d space (x, y, z) (Figure 2c). In particular,

→
r = x

→
i + y

→
j + z

→
k (13)

where, x = Aµ (A = 1 kPa−1), y = Bσ (B = 1 kPa−1), and z = Ch (C = 1 nm−1). For
example, assuming that for an average Young’s modulus map, µ = 20 kPa, σ = 5 kPa, and
h = 300 nm,

→
r = 20

→
i + 5

→
j + 300

→
k (14)
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In case of a homogeneous sample, σ = 0 and E = constant for any indentation depth.
Thus, assuming E = 20 kPa, and for two different indentation depths (e.g., 100 nm and
300 nm),

→
r 1 = 20

→
i + 100

→
k ,
→
r 2 = 20

→
i + 300

→
k (15)

2.4. Software Development

A web application was developed to compute the average Young’s modulus based
on the mathematical modelling as described in previous sections and visualize the 3D
mechanical properties maps and 3D distributions. This choice was driven by the need to
be able to access the application by any device supporting modern web browsers. For the
frontend, the Angular web framework was chosen using angular material and the state of
the art web visualization library Apache Echarts. Additionally, for the backend, Quarkus
java framework was used, with PostgreSQL for the database. An Nginx reverse proxy was
configured so that all microservices can be accessed by the same address, with this creating
the possibility to apply security measures in later application versions. The deployment
was carried out using docker containers in order to be able to easily deploy the application
to a cloud provider in the future. Figure 3 shows an overview of the application architecture
that was implemented.
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2.5. Agarose Gels

The measurements were performed using colloidal AFM probes (CP-PNPL-BSG-A,
sQube, obtained by NanoAndMore GMBH, Wetzlar, Germany) with spheres of nominal
radius equal to 1 µm. The indenters were firstly calibrated using the AFM test grating
TGT1 (NT-MDT Instruments, Moscow, Russia). The experiments were conducted using
agarose gels with a 2.5% concentration (low melting agarose, cat.no. CLSE-AG100, Cleaver
Scientific, Warwickshire, United Kingdom) in a 35 mm petri dish. The Poisson’s ratio of an
agarose gel can be assumed to be 0.5 due to the high water content.

2.6. Open Access Data

Open access nanoindentation data obtained using a conical indenter on a fibroblast
was used [26]. According to this paper, human fibroblasts were cultured and maintained
at 37 ◦C in a 5% CO2 humidified atmosphere. In this case, a conical indenter with a half
angle equal to 25◦ was employed. The cantilever’s spring constant was 0.01 Nm−1 [26].
The (force–indentation) data used in this study were deposited in the (AtomicJ) repository
(https://sourceforge.net/projects/jrobust/files/TestFiles/, accessed on 1 July 2022).

2.7. Experiments on Breast Cancer Cells

For the experiments, we used the 4T1 murine breast cells (4T1, ATCC). The cells were
cultured in RPMI-1640 Medium and supplemented with 10% Foetal Bovine Serum (FBS)
and with 1% antibiotic/antimycotic. The cells were cultured in a humidified incubator

https://sourceforge.net/projects/jrobust/files/TestFiles/
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(culture incubator) at 37 ◦C with 95% O2 and 5% CO2 air conditions. AFM experiments
were conducted after 24 h of culturing and the used cells were between the passages 8–10.

2.8. AFM Characterization

AFM measurements were performed in contact mode under liquid conditions in live
cells and force curves were collected. A Molecular Imaging-Agilent PicoPlus AFM system
was used. AFM characterization was obtained in liquid under complete medium [27] using
35 mm petri dishes. Force spectroscopy on live cells was performed with V-shaped soft
silicon nitride probes (MLCT-Bio, cantilever C, Bruker) on an area of 5× 5 µm2 at the center
of each cell.

3. Results
3.1. An Approximately Homogeneous Sample

Firstly, agarose gels using the protocol described in Section 2.5 were tested. In Figure 4a,
two average Young’s modulus maps were created, one for an indentation depth equal
to 150 nm and one for an indentation depth equal to 600 nm. Each map consists of 16
measurements. The mean value of the average Young’s modulus for an indentation equal
to 150 nm resulted in 154 kPa and a standard deviation equal to 10.5 kPa. For the second
map (i.e., an indentation depth equal to 600 nm), the mean value resulted in 153 kPa and a
standard deviation of 10.5 kPa. The results are similar with previous studies [28]. Thus, the
proposed method can easily show that the agarose gel can be approximated to an elastic
half space since the average Young’s modulus is depth-independent. The (µ, σ, h) vectors
are also presented in Figure 4b,c.
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Figure 4. Experiments on agarose gel: (a) the proposed method can easily show that an agarose gel
can be approximately considered as a homogeneous and isotropic material. (b) The µ, σ values are
approximately the same for different indentation depths. (c) A 2D diagram showing the µ, σ values
for indentation depths of 150 nm and 600 nm.
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3.2. Fibroblasts

In Figure 5, 8 average Young’s modulus maps obtained on a fibroblast (open access
data, see Section 2.6) are presented. The indentation depths were 100 nm, 200 nm, 300 nm,
400 nm, 500 nm, 600 nm, 700 nm, and 800 nm. Each map consists of 4096 average Young’s
modulus values (64 × 64 measurements). The ‘yellow-red’ portion is affected by substrate
effects. In Figure 6a, the 3D average Young’s modulus map using the eight maps presented
in Figure 5 is shown. Additionally, the distribution of the average Young’s modulus for
each map is presented in Figure 6b. In Figure 6c, a 3D map using only the data for 300 nm,
500 nm, and 700 nm is also presented. The portion of the data affected by the substrate
effect has been removed, and the average Young’s modulus distributions are presented. The
distribution was fitted to Gaussian functions (Equation (11)) for h1 = 300 nm, µ1 = 8.46 kPa,
and σ1 = 2.78 kPa. In addition, for h2 = 500 nm, µ2 = 6.24 kPa and σ2 = 2.51 kPa. Lastly,
for h3 = 700 nm, µ3 = 5.67 kPa and σ3 = 2.88 kPa. The (µ, σ, h) vectors for the three
maps are also presented in Figure 6d,e. The fibroblast presents a ‘softening’ behavior as the
indentation depth increases, as expected [12,13,29]. The standard deviation in every case is
approximately the same.

3.3. Breast Cancer Cells

The same approach was applied on breast cancer cells (see protocol in Section 2.7). In
Figure 7, four average Young’s modulus maps (with indentation depths of 250 nm, 500 nm,
750 nm, and 1000 nm) and the related average Young’s modulus distributions are presented.
Each map consists of 64 × 64 = 4096 average Young’s modulus values. Each distribution
was fitted to a Gaussian function. The (µ, σ, h) vectors were as follows: 0.56 kPa, 0.11 kPa,
250 nm, 0.41 kPa, 0.05 kPa, 500 nm, 0.40 kPa, 0.04 kPa, 750 nm, and 0.40 kPa, 0.03 kPa,
1000 nm. A ‘softening’ behavior is also recorded in this case. In addition, the standard
deviation decreases as the indentation depth increases. In Figure 8, the (µ, σ, h) vectors are
also presented.
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Figure 5. Experiments on fibroblasts: eight average Young’s modulus maps obtained on a fibroblast.
The data were obtained from the AtomicJ repository (https://sourceforge.net/projects/jrobust/files/
TestFiles/, accessed on 1 July 2022). The indentation depths for the presented maps were (a) 100 nm,
(b) 200 nm, (c) 300 nm, (d) 400 nm, (e) 500 nm, (f) 600 nm, (g) 700 nm, and (h) 800 nm. The average
Young’s modulus at each point changes as the indentation depth increases.
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Figure 6. 3D nanomechanical characterization: (a) a 3D mechanical properties map using eight
average Young’s modulus maps on a fibroblast. The maximum indentation depth was 800 nm.
(b) The average Young’s modulus distributions for the maps presented in Figure 5 and (a). (c) A 3D
map using only three average Young’s modulus maps (300 nm, 500 nm, and 700 nm). The average
Young’s modulus distributions are also presented. The data was fitted to Gaussian functions. (d) The
(µ, σ, h) vectors. The data show a softening behavior as the indentation depth increases. (e) The (µ, σ,
h) values in a 2D representation.
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Figure 7. Experiments on breast cancer cells: four average Young’s modulus maps obtained on a
breast cancer cell (see Section 2.7). For each map, the average Young’s modulus distribution is also
presented. Each distribution was fitted to a Gaussian function (Equation (11)). The indentation
depths for the presented maps and distributions were (a,b) 250 nm, (c,d) 500 nm, (e,f) 750 nm, and
(g,h) 1000 nm.
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4. Discussion

In this paper, a novel method for an accurate 3D nanomechanical characterization of
biological materials was presented. The ability to determine the average Young’s modulus
with respect to the indentation depth data enables the opportunity to develop 3D me-
chanical properties plots regarding biological samples. The method is based on obtaining
multiple average Young’s modulus maps for different indentation depths. Conventional
AFM techniques using classic Young’s modulus maps present a major limitation. They do
not take into account the depth-dependent mechanical properties of highly heterogeneous
materials such as biological ones. In other words, when using a conventional Young’s
modulus map, the variation in terms of Young’s modulus is recorded over the x–y plane,
but it is assumed that the calculated Young’s modulus is independent of the indentation
depth. Thus, this paper goes beyond the state of the art by proposing a novel technique
that do not present the aforementioned limitation. In the case of a fibroblast, 64 × 64 × 8
average Young’s modulus values presented a complete 3D characterization at the domain
0 ≤ h ≤ 800 nm (Figures 5 and 6). In case of a breast cancer cell, 64 × 64 × 4 values were
used to monitor the 3D mechanical properties at the domain 0 ≤ h ≤ 1000 nm (Figure 7).
The exact number of measurements depends on the detail that needs to be obtained. In
addition to the 3D maps, two other significant tools were also presented: the 3D mechani-
cal distribution (i.e., multiple average Young’s modulus distributions depending on the
indentation depth) and the (µ, σ, h) vectors. The 3D mechanical distribution (Figure 6b)
is a significant tool since it shows in a quantitative way how the mechanical properties
change with depth. The major advantage of this approach compared to average Young’s
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modulus maps is that it can be expressed in the form of a function. For example, the three
distributions presented in Figure 6c can be expressed as follows:
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where, c1 = 1, c2 = c3 = 0 for h = 300 nm, c2 = 1, c1 = c3 = 0 for h = 500 nm, and c3 = 1,
c1 = c2 = 0 for h = 700 nm. In addition, µ1 = 8.46 kPa, σ1 = 2.78 kPa, µ2 = 6.24 kPa,
σ2 = 2.51 kPa, µ3 = 5.67 kPa, and σ3 = 2.88 kPa.

For the case of the breast cancer cells (Figure 7),
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where, c1 = 1, c2 = c3 = c4 = 0 for h = 250 nm, c2 = 1, c1 = c3 = c4 = 0 for h = 500 nm,
. . . , c3 = 1, c1 = c2 = c4 = 0 for h = 750 nm, and c4 = 1, c1 = c2 = c3 = 0 for h = 1000 nm.
In addition, µ1 = 0.56 kPa, σ1 = 0.11 kPa, µ2 = 0.41 kPa, σ2 = 0.05 kPa, µ3 = 0.40 kPa,
σ3 = 0.04 kPa, µ4 = 0.40 kPa, and σ4 = 0.03 kPa. Finally, an easier method for determining
the mechanical behavior of 3D areas is by using the (µ, σ, h) vectors (Figure 6d,e and
Figure 8). Using this approach, it is easy to present how the mean value of the average
Young’s modulus and the standard deviation changes as the indentation depth increases.
For example, a ‘softening’ or a ‘stiffening’ behavior can be easily recorded. In addition, the
possibility of a sample tending towards certain characteristics in a constant value as the
indentation depth increases can also be monitored. In this case, the standard deviation
should reduce as the indentation depth increases (i.e., the Gaussians should be ‘steeper’ for
big indentation depths).

It is significant to note that 3D nanomechanical characterization may lead to easily
reproducible results regarding cancer diagnosis. As it has been previously reported, cancer
diagnosis can be performed using Young’s modulus distributions on normal/benign and
cancer tissues [30]. AFM revealed that, in the case of normal/benign tissues, the stiffness
distribution consists of one single peak, while in cancer tissues, at least two different
peaks are determined due to the softening of the cancerous cells (Lower Elasticity Peak
(LEP)) and the stiffening of the surrounding tissue (Higher Elasticity Peak (HEP)) [4,30].
However, to date, there is not a conclusive answer regarding the maximum indentation
depth that should be used. Hence, multiple average Young’s modulus distributions for
different indentation depths can be acquired through the use of 3D mechanical properties
maps. Thus, the ‘two peak’ stiffness distribution on cancer tissues can be monitored as the
indentation depth increases.

In addition, the possibility of monitoring the mechanical properties of a malignant
tissue and its surroundings is important since local slight mechanical alterations could
provide information regarding the metastasis procedure. A basic goal is to discover the
paths used by cancer cells during metastasis based on the mechanical properties of the
surroundings of the tumor. Thus, it will likely be possible to determine whether a metastasis
procedure is in progress.

Another significant application for this method will be cancer prognosis. The accurate
3D monitoring of the mechanical properties of a malignant tissue under specific treatments
is important to evaluate the effects of those treatments. Thus, 3D mechanical monitoring
will likely become a powerful tool in medical doctors’ hands in decision making regarding
the best personalized treatment procedure in the future.

5. Conclusions

In this paper, a 3D nanomechanical characterization based on the average Young’s
modulus was presented. Using this approach, highly heterogeneous materials such as
biological samples can be mechanically characterized in three dimensions. Other useful
tools were also presented, such as the average Young’s modulus distributions with respect
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to indentation depth and the (µ, σ, h) vectors. In conclusion, this paper is a step forward
towards the complete characterization of biological materials at the nanoscale.
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