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Abstract: Nanocomposites constructed with heterostructures of graphitic carbon nitride (g-C3N4),
silver (Ag), and titanium dioxide (TiO2) have emerged as promising nanomaterials for various
environmental, energy, and clinical applications. In the field of textiles, Ag and TiO2 are already
recognized as essential nanomaterials for the chemical surface and bulk modification of various
textile materials, but the application of composites with g-C3N4 as a green and visible-light-active
photocatalyst has not yet been fully established. This review provides an overview of the construction
of Ag/g-C3N4, TiO2/g-C3N4, and Ag/TiO2/g-C3N4 heterostructures; the mechanisms of their
photocatalytic activity; and the application of photocatalytic textile platforms in the photochemical
activation of organic synthesis, energy generation, and the removal of various organic pollutants from
water. Future prospects for the functionalization of textiles using g-C3N4-containing heterostructures
with Ag and TiO2 are highlighted.
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1. Introduction

As a next-generation visible-light-active photocatalyst, graphitic carbon nitride (g-C3N4)
has attracted considerable attention in various scientific fields, including environment remedi-
ation [1–11], energy storage and conversion [4,5,8,12–17], and biomedicine [18–20], which are
the most important applications. It has already emerged as a promising nanomaterial for the
degradation of various organic and inorganic environmental pollutants [1–6,8–11], CO2 re-
duction [3,8,15], NOx removal [3], hydrogen evolution through water splitting [3,4,8,12–16],
supercapacitors and batteries [5,8], solar and fuel cells [17], diagnostic imaging [19], thera-
peutic applications [19,20], biosensors [4,7,18–20], and antibacterial disinfection [3,19,20].
Accordingly, there have been a large number of scientific publications on g-C3N4 and
g-C3N4 heterostructures, including more than 2000 original and review articles in 2022
alone (source: Web of Science, advanced search query preview: “graphitic carbon nitride or
g-C3N4” and “photocataly*” in abstracts in 2022, assessed on 28 December 2022).

The attractiveness of g-C3N4 is directly related to its properties, as it is distinguished
as a sustainable, organic, and metal-free two-dimensional conjugated polymeric n-type
semiconductor with unique optical and electronic properties, high physicochemical and
thermal stability, and high corrosion resistance, in addition to having a high earth abun-
dance and an easy and inexpensive means of fabrication [21]. Due to its mild band gap
of about 2.7 eV, g-C3N4 responds to visible light with an optical absorption edge of about
460 nm and, therefore, enables visible-light-driven photocatalytic reactions [22,23]. Pure
g-C3N4 consists of carbon and nitrogen elements and is usually prepared through ther-
mal polycondensation from nitrogen-rich precursors, such as melamine, urea, thiourea,
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dicyandiamide, cyanamide, and cyanuric acid, in the temperature range between 450 ◦C
and 650 ◦C (Figure 1a,b) [8,22,24–27]. It has a graphite-like layered structure composed
of aromatic s-triazine (C3N4) (Figure 1c) and tri-s-triazine (C6N7) (Figure 1d) rings linked
by tertiary amines. The layers are held together by weak van der Waals forces. Since
g-C3N4 synthesized in this way is bulky and exhibits low surface area, marginal optical
absorption in the visible region, rapid charge recombination, and low charge mobility,
various nanostructured forms of g-C3N4 in different morphologies with higher photocat-
alytic activity have been prepared, including 3D porous structures, 2D nanosheets, 1D
nanorods/nanotubes, and 0D g-C3N4 quantum nanodots [4,7,21,25].
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nanosheets (b), s-triazine (c), and tri-s-triazine (d) structure of g-C3N4. Reprinted with permission
from [19]. Copyright 2020, Elsevier.

Another important strategy to improve the photocatalytic efficiency of g-C3N4 is
the formation of g-C3N4-based binary and ternary heterostructure composites, including
doping/loading with noble metals and creating heterojunctions with other organic and in-
organic semiconductors [15,28]. Recently, for example, various heterostructure composites,
such as Ag/g-C3N4 [29–31], Au/g-C3N4 [31–33], graphene oxide/g-C3N4 [34–37], TiO2/g-
C3N4 [38–42], Ag/TiO2/g-C3N4 [43–45], TiO2/Cu/g-C3N4 [46], TiO2/ZrO2/g-C3N4 [47],
and Bi2WO6/g-C3N4/TiO2 [48] have been successfully prepared, to optimize the optical
properties of g-C3N4 and significantly improve its overall photocatalytic activity.

g-C3N4 and g-C3N4-containing heterostructure composites have also become impor-
tant materials in the field of textiles and can be beneficially used for the degradation of
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pollutants in textile wastewater or for the chemical modification of textile fibers, to create
different functionalities [11]. Natural and synthetic textile fibers are an ideal material for
the fabrication of textile-based photocatalytic platforms, because they have advantages over
other solid substrates, such as flexibility, lightness, porosity, absorptivity, and wearability.
However, while the photocatalytic degradation of different dyes through the presence of
g-C3N4 alone or its heterostructure composites has become a widely used sustainable strat-
egy for the purification of dye wastewater [11], the functionalization of textile fibers with
g-C3N4-containing materials remains challenging and, therefore, a topic of research [27].
There are 65 publications dealing with the use of g-C3N4 and g-C3N4 heterostructures for
textile applications (Source: Web of Science, advanced search query preview: “graphitic car-
bon nitride or g-C3N4” and “textile or fabric” in abstracts, assessed on 28 December 2022),
but most of these studies deal with the removal of textile dyes from wastewater. Therefore,
it is of great importance to investigate the advantages of g-C3N4 and g-C3N4-containing
heterostructure composites as promising “green” materials for textile functionalization.

In our previous review paper [27], we presented g-C3N4 as a new sustainable photo-
catalyst for textile functionalization, focusing on the textile substrates used, the application
methods, and the developed functionalities, such as photocatalytic self-cleaning, antibacte-
rial, and flame-retardant properties, as well as the creation of a textile catalytic platform for
water disinfection, removal of various organic pollutants from water, and selective organic
matter transformations. To provide additional valuable information on the recent advances
in surface and bulk modification of textile fibers by g-C3N4-containing nanomaterials, this
review article focuses on the application of heterostructure nanocomposites of g-C3N4 with
Ag and TiO2 nanoparticles (NPs), as the most popular and widely used nanomaterials for
surface and bulk chemical modification of textiles [49]. In the literature, both binary and
ternary heterostructure composites, including Ag/g-C3N4, TiO2/g-C3N4, and Ag/TiO2/g-
C3N4 have been considered promising functional nanomaterials, because the synergistic
effect of the components in the heterostructures leads to the enhanced photocatalytic
performance of the composites compared with the single-component materials. In this
review, the processes for the synthesis of Ag/g-C3N4, TiO2/g-C3N4, and Ag/TiO2/g-C3N4
nanocomposites are explained, while their potential photocatalytic mechanisms of action
and the developed functionalities on textile fibers for photochemical activation of organic
synthesis, energy generation, and the removal of various organic pollutants, as well as
future prospects, are highlighted.

2. Ag/g-C3N4 Nanocomposites
2.1. Preparation and Photocatalytic Mechanism of Ag/g-C3N4 Nanocomposites

As a superior multifunctional nanomaterial, Ag NPs are attractive candidates for
surface loading or doping to develop noble metal/semiconductor heterostructures, also re-
ferred to as Ag/g-C3N4 [50,51]. The Ag/g-C3N4 nanocomposites exhibit not only enhanced
visible light photocatalytic performance, but also improved antimicrobial performance
due to the excellent antimicrobial activity of Ag against a wide range of Gram-negative
and Gram-positive bacteria, viruses, fungi, molds, yeasts, and algae [52]. Ag/g-C3N4
nanocomposites have already been used for the degradation of environmental pollutants,
such as in the decolourization of different dyes [30,53–58] and the degradation of organic
solvents [53,59–61] and antibiotics [62–65]. They have also been used in hydrogen genera-
tion [66]; in microbial disinfection [57,67,68]; and as chemical sensors to detect drugs [69,70],
biothiols [71], plant pigments [72], and pesticides [61]. In another case, Ag/g-C3N4 was
used to obtain composites with multiple colors [73].

Two different approaches have been used to prepare Ag/g-C3N4 nanocomposites,
namely one-step and two-step processes, the latter of which is more commonly used. In
the two-step process [30,53–57,59,61,63,65,67,69–73], g-C3N4 is first synthesized from a
suitable precursor in the form of bulk material, g-C3N4 nanosheets, or g-C3N4 quantum
dots. Then, g-C3N4 is dispersed in the water medium and mixed with AgNO3, which
serves as a precursor for Ag NPs. Subsequently, Ag NPs are synthesized in the pres-
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ence of g-C3N4 using various reducing agents, such as NaBH4 [30,59,61,65], hydrazine
hydrate [70], sodium citrate [72], plant extracts [54], and UV light [53,55,63,67,73]. In this
case, g-C3N4 serves as a platform for the synthesis of Ag NPs, and its surface is decorated
with Ag0 (Figure 2a). On the other hand, in the one-step process [56,57,62,74], urea or a
mixture of melamine and cyanuric acid are used as g-C3N4 precursors and mixed with
AgNO3 in a suitable medium, and the simultaneous synthesis of Ag NPs/g-C3N4 is carried
out under appropriate conditions. This synthesis procedure enables the preparation of
Ag-doped g-C3N4.
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The proposed mechanism behind the photocatalytic activity of the Ag/g-C3N4 nanocom-
posite is shown in Figure 2b [53,54,56,57,59,63,75,76]. It is believed that the photocatalytic
efficiency of the noble metal/semiconductor heterostructure composite is significantly
enhanced by the presence of Ag0, which acts as a current collector and plasmonic ab-
sorber [77].

Ag/g-C3N4 nanocomposite is a visible-light photocatalyst. According to the litera-
ture [23], the band gap energy of g-C3N4 is 2.7 eV, with the potentials of the valence band
(VB) and conduction band (CB) being 1.4 eV and −1.3 eV, respectively. Irradiation with
energy higher than the band gap energy of g-C3N4 results in the excitation of electrons (e−)
from VB to CB, leaving holes (h+) in VB. The photogenerated e− in CB of g-C3N4 can be
easily transferred to the Ag NPs because the Fermi level of Ag is less negative compared
with the CB of g-C3N4. This creates a Schottky barrier that maximizes photoinduced
charge carrier separation and prevents recombination of the e−-h+ pair. The injected e−

accumulates on Ag and can easily enter the reduction reactions on the surface, such as the
reduction of O2 to superoxide radicals (•O−

2 ) [63] or the reduction of H+ to H2 in hydrogen
production by water splitting [76]. At the same time, visible light leads to the excitation of
e− in the Ag surface layer, resulting in surface plasmon resonance (SPR). The generation
of SPR can greatly enhance the photoactivity of the composite through the mechanism
of plasmon resonance energy transfer [77], because the intense near-electric field induced
by SPR improves the efficiency of charge carrier separation [33] and increases the rate of
charge carrier formation in g-C3N4 [44]. On the other hand, h+ in VB can directly oxidize
different pollutants [57,63], but h+ cannot oxidize −OH to give •OH radicals, since the VB
edge potential of g-C3N4 is less positive than the standard redox potential of −OH/•OH
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(+1.99 eV) [53,57,63,75]. This means that •OH radicals cannot be directly generated in the
photochemical process of g-C3N4.

2.2. Ag/g-C3N4 Nanocomposites for Textile Application

Chemically modified textile substrates with Ag/g-C3N4 nanocomposites have been
advantageously used in the photocatalysis of various organic reactions [78,79] and textile-
based triboelectric nanogenerators [80]. While the first application involves photochemical
activation of organic synthesis without additional reagents, thus providing a more environ-
mentally friendly route for organic chemical conversion, the second application represents
an emerging textile-based energy-harvesting device, as a potential power source for wear-
able electronics.

New functionality was imparted to a polyester (PES) fabric by dip-coating with g-
C3N4 nanosheets under ultrasonic treatment, followed by in situ synthesis of Ag NPs in
an aqueous solution of AgNO3 of different concentrations (3–10 wt%), using NaBH4 as a
reducing agent [79]. From the SEM images, it is evident that the micro smooth morphology
of the PES fibers (Figure 3a) was completely changed by the application of the g-C3N4
nanosheets (Figure 3b), as well as the Ag/g-C3N4 nanocomposite (Figure 3c). The latter
became microrough, with clearly visible deposited and uniformly distributed spherical Ag0

particles with an average size of 13.3 nm. The crystalline phase of the uncoated and coated
PES samples was determined by X-ray diffraction (Figure 3d). Since the characteristic
diffraction peaks of g-C3N4 at 2θ~27.5◦ and 13.1◦ could not be detected in the XRD pattern
of the PES sample, the presence of Ag0 showed four peaks at 2θ = 37.47◦, 43.69◦, 63.97◦,
and 77.02◦, corresponding to the cubic Ag0 planes (111), (200), (220), and (311), respectively.
It is also evident that the application of g-C3N4 nanosheets changed the white color of the
PES fabric to brown, but the in situ synthesis of Ag NPs to grey (Figure 3e).

PES coated with g-C3N4 and Ag/g-C3N4 nanocomposites, containing different amounts
of Ag0 from 3 to 10 wt%, was used as a sustainable chemical catalyst for the hydrogenation
of 4-nitrophenol, one of the most toxic organic pollutants in industrial wastewater, into
the valuable compound 4-aminophenol, using NaBH4 as the hydride source [79]. Since a
one-component g-C3N4 coating on PES fabric does not act as a catalyst for the conversion of
4-nitrophenol into 4-aminophenol, the presence of 3 wt% Ag0 in the Ag/g-C3N4 nanocom-
posite resulted in a 30% conversion of 4-nitrophenol into 4-aminophenol after a reaction
time of 5 min, and this increased to 90% conversion when the Ag loading was increased to
10 wt%, with an apparent rate constant of 0.462 min−1, which is more than six-times higher
than that of 3 wt% Ag0. (Figure 3f). This indicates that Ag NPs facilitated the electron
transfer from BH−

4 to 4-nitrophenolate, thus lowering the barrier of activation energy for
the reduction of 4-nitrophenol to 4-aminophenol (Figure 3g). The high recyclability and
stability of the catalyst was evidenced by the fact that the catalytic performance of the cata-
lyst was still nearly 90% after 10 cycles. A comparison with some other Ag-based catalysts
from the literature clearly showed that the conversion of 4-nitrophenol over Ag/g-C3N4
coated PES exhibited enhanced the catalytic activity and recyclability [79].

Ag NP-decorated g-C3N4 was also used in the bulk modification of polyacrylonitrile
nanofibers (PAN NFs) for selective oxidation of styrene, benzylic methylene groups, and
benzene into the desired products under visible light irradiation and milder reaction condi-
tions [78]. For this purpose, Ag NPs/g-C3N4 composite and 10 wt% PAN were dispersed
in an organic solvent under sonification, to produce a homogeneous polymer solution,
which was then electrospun to produce PAN NFs with the embedded Ag NPs/g-C3N4
(Figure 4a,b). TEM micrography showed small dark particles and bulges on the PAN NFs,
indicating that the Ag NPs/g-C3N4 was well dispersed on the PAN surface or embedded
in the PAN matrix, without agglomerating (Figure 4b). The as-prepared PAN/Ag NPs/g-
C3N4 NFs exhibited a highly porous nature with excellent absorption performance. To
optimize the photooxidation reactions, the influence of different parameters, such as the
amount of PAN/Ag NPs/g-C3N4 NFs, organic solvents, reaction time, the presence or
absence of visible light (domestic bulb (40 w)), and H2O2 as oxidant, on the photocatalytic
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performance was investigated. It was found that the oxidation selectivity and conversion
increased with the increase in catalyst concentration and reaction time in the organic solvent
acetonitrile, as well as in the presence of light and H2O2. In this case, a 98% conversion
of styrene and 60% selectivity toward styrene oxide (Figure 4c), 98% conversion of ethyl-
benzene and 99% selectivity toward acetophenone (Figure 4d), as well as an excellent
99% conversion of benzene into the desired phenol, was obtained using H2O2 as oxidant
(Figure 4e) under optimized reaction conditions (Figure 4f). A recyclability study of the
PAN/Ag NPs/g-C3N4 NFs for styrene oxidation showed that the catalyst exhibited high
reusability activity with a product yield of more than 85% in a repeat test of five runs.
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and PES coated with Ag/g-C3N4 nanocomposite containing 10 wt% of Ag0 (PES-GCNN-Ag0 10) (c);
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Copyright 2021, MDPI.
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Figure 4. SEM (a) and TEM (b) images of PAN NFs with the embedded Ag NPs/g-C3N4; schematic
presentation of oxidation of styrene (SR) to styrene oxide (SO) (c), selective oxidation of ethylbenzene
(EB) to acetophenone (AP) (d), and selective oxidation of benzene (BZ) to phenol (PN) (e) by PAN
NFs, with the embedded Ag NPs/g-C3N4 as a catalyst under visible light irradiation, and optimized
reaction conditions with the turnover frequency (TOF) values (f). Reprinted with permission from [78].
Copyright 2020, ACS.

Recently, a textile-based triboelectric nanogenerator (T-TENG) for mechanical energy
harvesting was fabricated by depositing an active layer of g-C3N4 nanosheets decorated
with Ag NPs on a nylon-coated conductive carbon fabric as a textile backbone (Figure 5a–c),
using Teflon or polypropylene as a counter triboelectric material [80]. To establish electrical
contact, aluminum adhesive tapes were attached on one of the surfaces of these layers,
with an extension for electrical contacts. To produce a voltage, the fabric based samples
and Teflon were put in repetitive contact-separation mode through mechanical agitation.
When the two materials are in contact, charge transfer occurs between the two surfaces,
and when the two materials are separated, a current flows through the external circuit, to



Nanomaterials 2023, 13, 408 8 of 26

balance the potential on the two surfaces. Such a configuration of an Ag/g-C3N4/nylon
bi-layer T-TENG generates an open circuit voltage of ~200 V, which is more than 10 times
higher compared with a bare g-C3N4 nanosheet layer (19 V) and almost four-times higher
compared to a g-C3N4/nylon bi-layer (52 V) (Figure 5d). The thermal stability, as well
as the conversion efficiency, at an elevated temperature of up to ~65 ◦C make it a poten-
tial candidate for integration into textile-based wearable electronic devices (Figure 5e).
The synergistic effect of interfacial charge trapping, the increased surface area and the
increased surface charge density in the Ag/g-C3N4/nylon bi-layer system result in the
development of a maximum short circuit current of ~1.1 µA, which is about three-times
higher than that of g-C3N4/nylon (Figure 5f) and delivery of a maximum output power of
~3.1 µW/cm2, which is higher than that obtained from g-C3N4/nylon (Figure 5g). When a
Ag/g-C3N4/nylon bi-layer T-TENG was examined upon charging a commercial capacitor
(0.26 µF) using a bridge rectifier, the Ag/g-C3N4/nylon device was able to charge the
capacitor to ~85 V within 30 s, which is more than 2.7 times higher than the result of
a g-C3N4/nylon device (Figure 5h). In addition, several commercially available LEDs
could be driven by the capacitors, which were charged by the impact of the textile-based
nanogenerator (insert in Figure 5h). The excellent power generation capability of this fabric
coated with an Ag/g-C3N4/nylon bi-layer indicates its potential applicability for wearable
and flexible nanogenerators.
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voltage generation from TENG operation for different layers with Teflon as a counter triboelectric
material under a mechanical impact (d); attachment of TENG to different parts of clothes (e); short
circuit current (f), output power density (g), and capacitor charging voltage (h) for g-C3N4/nylon
and Ag/g-C3N4/nylon based T-TENGs (insets show a closer view of voltage profile and the glowing
of LEDs using the charged capacitor). Reprinted with permission from [80]. Copyright 2022, Elsevier.

3. TiO2/g-C3N4 Heterojunctions
3.1. Preparation and Photocatalytic Mechanism of TiO2/g-C3N4 Nanocomposites

The design and construction of TiO2/g-C3N4 hybrid photocatalysts have attracted
much attention, as they have been recognized as an effective material for various environ-
mental and energy applications [81–98]. It should be noted that TiO2 in the TiO2/g-C3N4
heterojunction is a wide-band-gap semiconductor that responds to UV light (Eg = 3.2 eV;
λ ≤ 387.5 nm) [99,100], while g-C3N4 responds to visible light. It is believed that the forma-
tion of a synergistic TiO2/g-C3N4 heterojunction can significantly reduce the recombination
of photogenerated electron–hole pairs and increase the photocatalytic activity of TiO2 in vis-
ible light, which is beneficial for both photocatalysts [92,101]. Moreover, the TiO2/g-C3N4
heterojunction is expected to simultaneously utilize UV and visible light, thus exhibiting
excellent photocatalytic performance under UV and visible light irradiation [82,92].

In the preparation of a TiO2/g-C3N4 heterojunction, two-step processes have gen-
erally been applied in two different ways [82–88,91–98]. The first approach involves the
prior synthesis of both TiO2 and g-C3N4 from the corresponding precursors and sub-
sequent mixing [87,88,92,95–98]. In the other approach, in situ synthesis of TiO2 was
performed in the presence of presynthesized g-C3N4 [82–86,93,94] or conversely, the in situ
synthesis of g-C3N4 was performed in the presence of presynthesized TiO2 [91]. While
urea [84,85,88,91,92,95], melamine [82,86,93,94,96,97], dicyandiamide [87,98], or a combi-
nation of urea and melamine [83] have been used as precursors for g-C3N4 synthesis,
titanium(IV) butoxide [85,92,93,95,96], titanium(IV) isopropoxide [84], titanium tetrachlo-
ride [82,83,86], titanium(IV) bis-(ammonium lactato) dihydroxide [94], and titanyl sul-
phate [97] are widely used as TiO2 precursors. For TiO2 synthesis, the hydrothermal
or solvothermal assisted sol-gel process under acidic or alkaline conditions is mostly
used [82,84,86,87,92,93,96]. In addition to the two-step processes, a one-step hydrothermal
process using melamine as g-C3N4 precursor and titanium(IV) isopropoxide as TiO2 pre-
cursor and cyanuric acid as catalyst has also been reported [90]. All the above processes
are completed by drying and calcining the nanocomposites under suitable conditions, to
obtain the desired morphology.

Two mechanisms have been proposed for the photocatalytic activity of TiO2/g-C3N4
nanocomposites, including the Type-II heterojunction (Figure 6a) [82,87,92–94,96–98,102]
and the direct Z-scheme (Figure 6b) [90,91,95]. In both mechanisms, it is assumed that
when g-C3N4 and TiO2 are excited in the heterojunction by incident UV/visible light
of sufficient energy, the photoinduced electrons are transferred from VB to CB, leaving
holes in VB. According to the Type-II heterojunction mechanism, the photogenerated
electrons can be easily transferred from CB of g-C3N4 to CB of TiO2 because the CB
edge potential of g-C3N4 (−1.3 eV) is more negative than that of TiO2 (−0.29 eV). At
the same time, the photogenerated holes can be transferred from VB of TiO2 to VB of
g-C3N4 because the VB edge potential of TiO2 (2.91 eV) is more positive than that of
g-C3N4 (1.4 eV). In this case, photoinduced electrons accumulate in the CB of TiO2 for
the reduction reaction and photoinduced holes accumulate in the VB of g-C3N4 for the
oxidation reaction, which efficiently separates the photogenerated electron–hole pairs and
suppresses their recombination [102–104]. However, despite the enhanced photocatalytic
efficiency of the as-constructed TiO2/g-C3N4 nanocomposite, a drawback of the Type-II
heterojunction mechanism is attributed to the impairment of redox capability, since the
reduction reaction proceeds on TiO2 with a lower reduction potential compared with g-
C3N4, and the oxidation reaction proceeds on g-C3N4 with a lower oxidation potential
compared with TiO2 [102,103]. Since the holes in the VB of g-C3N4 cannot directly generate
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OH radicals in the oxidation reaction, this significantly reduces the photocatalytic efficiency
of the nanocomposite.
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2011, Elsevier.

In contrast to the Type-II heterojunction mechanism, the direct Z-scheme photo-
catalysis system assumes a significantly different charge carrier transfer pathway in the
TiO2/g-C3N4 nanocomposite, although it has the same band structure configuration
(Figure 6b) [102]. Indeed, the direct Z-scheme dictates that the existence of an internal elec-
tric field, the extra potential barrier, and the Coulomb repulsion hinder the transfer of the
photogenerated electrons from the CB of g-C3N4 to the CB of TiO2 and the photogenerated
holes from the VB of TiO2 to the VB of g-C3N4, as well as promoting the recombination
between the photogenerated electrons in the CB of TiO2 and the photogenerated holes
in the VB of g-C3N4 with a lower redox ability [102,103]. In this case, the electrons and
holes are spatially separated on g-C3N4 with the higher reduction potential and TiO2 with
a higher oxidation potential, respectively. The electrons in the CB of g-C3N4 are trapped
by O2 on the nanocomposite surface to form reactive •O−

2 , since the CB edge potential
of g-C3N4 (−1.3 eV) is more negative than the redox potential of O2/•O−

2 (−0.33 eV and
−0.046 eV), while the holes in VB of TiO2 react with absorbed water to generate reactive
•OH radicals [91] because the VB edge potential of TiO2 (2.91 eV) is more positive than the
redox potential of −OH/•OH (+1.99 eV). Compared with the Type-II heterojunction, the
direct Z-scheme has a much stronger redox capability to drive photocatalytic reactions [102],
which could explain the superior photocatalytic efficiency of TiO2/g-C3N4 nanocomposite
in the various reduction and oxidation reactions. The presence of the direct Z-scheme
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instead of the Type-II heterojunction was also confirmed by experiments involving the
trapping of •OH and •O−

2 radicals [103].
On the other hand, when irradiated with visible light, when only g-C3N4 can be

excited because the energy of the incident light is too low to excite TiO2, the reduction
reaction on the TiO2 surface can be indirectly induced via electron transfer from the CB of
g-C3N4 to the CB of TiO2, leading to effective separation of photogenerated electron–hole
pairs and an enhanced photocatalytic activity (Figure 6c) [81,84,96].

3.2. TiO2/g-C3N4 Nanocomposites for Textile Application

TiO2/g-C3N4 nanocomposites were applied to cotton and polyester substrates to
develop textile-based photocatalysts for effective purification of emerging liquid, gaseous
pollutants, and bacteria [39,105–107]. To this end, TiO2/g-C3N4–cotton and TiO2/g-C3N4–
polyester composites were constructed and used as solar-driven photocatalysts for the
degradation of the antibiotic sulphaquinoxaline (SQX) and the pesticide thiamethoxam
(Figure 7) [106,107]. The preparation of a TiO2@g-C3N4–cotton photocatalyst included
binding of the coupling agent (3-Aminopropyl)triethoxysilane (APTES) to the carboxyl-
modified g-C3N4, to create reactive silanol groups on the g-C3N4 surface. Afterwards,
a cotton fabric sample was immersed in the g-C3N4–APTES hydrolysate, followed by
squeezing on a two-roll padder and drying at 130 ◦C, to chemically bind g-C3N4–APTES to
the cotton surface. To produce the TiO2@g-C3N4–cotton, a g-C3N4–APTES-cotton sample
was immersed in the TiO2 dispersion and maintained at 120 ◦C for 2 h for hydrothermal
reaction, to achieve the deposition of TiO2 on the g-C3N4–APTES-cotton surface (Figure 7a).
In the preparation of the g-C3N4-TiO2@LMPET photocatalyst, low-melting non-woven
polyester (LMPET) was immersed in the g-C3N4 dispersion, followed by squeezing and
drying at 80 ◦C, and heat treated at 135 ◦C, to melt the LMPET sheath to strongly stick
g-C3N4. The as-prepared g-C3N4@LMPET was immersed in the TiO2 dispersion and
maintained at 120 ◦C for 2 h for hydrothermal reaction, to achieve the deposition of TiO2
on the g-C3N4@LMPET surface (Figure 7b).

The incorporation of the TiO2/g-C3N4 nanocomposite into the cotton and LMPET
significantly changed the morphology of the fibers, resulting in an increased surface
roughness of the cotton (Figure 8a–d) [107] as well as LMPET [106]. Photocatalytic activity
was studied in the degradation of the antibiotic sulphaquinoxaline (SQX) (Figure 8e,f)
and the pesticide thiamethoxam (Figure 8g,h) under sunlight irradiation. It was found
that both the TiO2@g-C3N4-cotton and g-C3N4-TiO2@LMPET samples showed excellent
photocatalytic performance, resulting in an almost 100% degradation of SQX after 60 and
90 min by the TiO2@g-C3N4-cotton and g-C3N4-TiO2@LMPET samples, respectively, and
of thiamethoxam after 150 and 180 min by TiO2@g-C3N4-cotton and g-C3N4-TiO2@LMPET
samples, respectively, at pH 7. The photocatalytic performance was sufficiently higher
than that of the TiO2-cotton and TiO2@LMPET samples and that of the g-C3N4-cotton and
g-C3N4@LMPET samples. The rate of SQX removal by TiO2/g-C3N4 was higher than that
of thiamethoxam for both textile-based photocatalysts, because thiamethoxazine is a more
difficult pollutant to degrade than SQX. The results also showed that the TiO2/g-C3N4
composite exhibited better photocatalytic activity in the decomposition of SQX under acidic
and neutral conditions and gradually weakened under alkaline conditions (Figure 8i).
Both TiO2@g-C3N4-cotton and g-C3N4-TiO2@LMPET photocatalysts maintained excellent
catalyst recyclability and stability and could remove 97% SQX after 10 cycles.
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Figure 8. SEM images of cotton (a), TiO2@g-C3N4–cotton (b), LMPET (c), and g-C3N4-TiO2@LMPET
(d) samples; photocatalytic degradation of SQX by cotton-based photocatalysts (e) and LMPET-based
photocatalysts (f) under solar irradiation, [SQX] = 2× 10−5 mol/L, pH 7; photocatalytic degradation
of thiamethoxam by cotton-based photocatalysts (g), and LMPET-based photocatalysts (h) under solar
irradiation, [thiamethoxam] = 2× 10−5 mol/L, pH 7; photocatalytic degradation rate of SQX by cotton-
based photocatalysts at different pH under solar irradiation for 60 min, [SQX] = 2 × 10−5 mol/L (i);
photoluminescence spectra of LMPET and LMPET-based photocatalysts (j). (a,b,e,g,i) Reprinted with
permission from [107]; Copyright 2021, Elsevier; (c,d,f,h,j) Reprinted with permission from [106],
Copyright 2019, Elsevier.

The mechanism of the photocatalytic activity of the TiO2/g-C3N4 heterojunction and
the behavior of the charge transfer at the interface were discussed based on the photolu-
minescence spectra (Figure 8j) [106]. The results showed that g-C3N4 exhibited a strong
emission peak at about 450 nm, which decreased drastically in the case of the TiO2/g-C3N4
heterojunction. This phenomenon can be explained by the electron transfer from the CB
of g-C3N4 to the CB of TiO2, which efficiently suppresses the recombination of photogen-
erated electron–hole pairs and improves the photocatalytic performance compared with
the single-components TiO2 and g-C3N4, indicating a synergistic effect between TiO2 and
g-C3N4 in the heterojunction.
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A textile-based photocatalyst was also prepared by constructing a TiO2/g-C3N4 coat-
ing on cotton fabric using a simple layer-by-layer (LBL) self-assembly strategy, in which
the cotton fabric was alternately immersed in the cationic TiO2 solution and the anionic
g-C3N4 solution to obtain two, five, and seven bilayers (BL) [105]. After each immersion,
the sample was rinsed and dried. A TiO2/g-C3N4 powder composite was also prepared
for comparison. The SEM analysis revealed that the self-assembly coating mainly covered
the surface of the cotton fibers and significantly increased their roughness (Figure 9a). The
mass of the coating increased with the number of BL. The photocatalytic performance of
the TiO2/g-C3N4 coated cotton fabric was investigated through the degradation rate of
RhB dye (Figure 9b) and toluene (Figure 9c) under visible-light irradiation. The higher the
degradation rate constant, the higher the photocatalytic performance. From the results, it
can be seen that the reaction rate constant, κ, for the degradation of Rhodamine B (RhB) dye
gradually increased with the increasing number of BL, and the highest value was reached
for the coating with 7 BL, which was much higher than that of TiO2/g-C3N4 and TiO2
powders (Figure 9b). This confirmed that the coupling of TiO2 with g-C3N4 is an efficient
strategy to improve photocatalytic performance and highlights the importance of the cotton
fabric as a support for the photodegradation reaction, since the fabric acts as an absorbent
for pollution and drives the active species to rapidly absorb and degrade the pollutants.
Similar results were obtained for the photodegradation of toluene, with coatings of 2 BL,
5 BL, and 7 BL showing significantly higher degradation compared with the TiO2/g-C3N4
powder (Figure 9c). The excellent performance of the 7 BL coated cotton fabric was also
demonstrated by the degradation of RhB solution under sunlight, where not only was the
RhB solution completely discolored within 4 h but also the coated fabric, indicating RhB
degradation in the solution and on the fabric surface (Figure 9d).
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Figure 9. SEM images of the cotton modified with TiO2/g-C3N4 (a); kinetic degradation curves
of RhB under visible-light irradiation (b), kinetic degradation curves of toluene under simulated
sunlight irradiation (c); absorption spectra of RhB under real sunlight (d). Reprinted with permission
from [105]. Copyright 2019, ACS Publications.
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To investigate the photocatalytic mechanism, a TiO2/g-C3N4 nanocomposite was
chemically grafted onto cotton fibers in a hydrothermal process (Figure 10) [39]. In the
preparation of cotton fabric loaded with TiO2/g-C3N4 in different mass ratios (C–g-C3N4–
TiO2 samples), the in situ synthesis of TiO2 was performed in a solution of presynthesized
g-C3N4 nanosheets in the presence of the swollen cotton fibers at 120 ◦C for 4 h. The
results showed that the as-prepared C–g-C3N4–TiO2 samples exhibited fish-like lobes, with
densely aggregated nanosized particles of irregular shape (Figure 10a). Chemical grafting
of the g-C3N4–TiO2 heterojunction composite with cotton fibers resulted in an Eg of 3.31 eV,
which was red-shifted compared with the Eg of C–TiO2 fibers of 3.45 eV (Figure 10b),
indicating a higher light absorption efficiency. Both calculated Eg values were higher than
those of TiO2 NPs (Eg = 3.2 eV) and g-C3N4 nanosheets (Eg = 2.82 eV), suggesting that
cotton affected the energy band structure of the generated composite photocatalysts, which
is difficult to explain.
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Figure 10. FESEM images of C–g-C3N4–TiO2 cotton fibers (a); schematic diagrams of energy band
structure for C–TiO2 and C–g-C3N4–TiO2 cotton fibers (b); photodegradation of MO dye solution
by the C–g-C3N4–TiO2 cotton fibers (c); trapping experiments for the photodegradation of MO dye
solution by C–g-C3N4–TiO2 cotton fibers (d). Reprinted with permission from [39]. Copyright 2021,
Springer Link.

The photocatalytic performance results of the C–g-C3N4–TiO2 and C–TiO2 samples
showed that the C–TiO2 cotton fibers exhibited a poor photodegradation performance for
methyl orange (MO) dye solution when irradiated with visible light, with only 10% MO
decolorization after 150 min, while the photocatalytic performance of the C–g-C3N4–TiO2
cotton fibers was much higher (Figure 10c) [39]. The latter increased with the increase in the
mass of the g-C3N4 nanosheets in the TiO2/g-C3N4 nanocomposite, from 0.025 to 0.05 g,
and reached its maximum with a photocatalytic efficiency about four-times higher than that
of the C–TiO2 cotton fibers. Further increasing the mass of the g-C3N4 nanosheets led to a
decrease in the photocatalytic activity of the C–g-C3N4–TiO2 cotton fibers, indicating that
the mass ratio between g-C3N4 and TiO2 in the heterojunction should be carefully selected.
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The photocatalytic mechanism of action of the C–g-C3N4–TiO2 cotton fibers was
determined through trapping experiments (Figure 10d) [39], in which photodegradation of
the MO dye solution was performed under irradiation with visible light in the presence of
four radical scavengers, i.e., 1,4-benzoquinone (BQ), furfuryl alcohol (FA), tertbutyl alcohol
(TBA), and ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) to scavenge •O−

2 ,
singlet oxygen (1O2), •OH and h+, respectively. It was found that the photocatalytic activity
of the C–g-C3N4–TiO2 cotton fibers decreased only slightly in the presence of EDTA-2Na,
but a significant decrease in photocatalytic capacity was observed after the addition of BQ
and FA. This indicates that •O−

2 , generated by the reduction reaction at the surface of the
TiO2/g-C3N4 heterojunction, is the most important type of radical for the photocatalytic
degradation of MO, followed by 1O2, •OH, and h+. It was concluded that cotton fabric
modified with g-C3N4–TiO2 can be repeatedly used to remove organic contaminants.

4. Ag/TiO2/g-C3N4 Heterostructure
Preparation and Photocatalytic Mechanism of Ag/TiO2/g-C3N4 Nanocomposites

The construction of ternary Ag/TiO2/g-C3N4 heterostructures represents a very
promising strategy for achieving the enhanced photocatalytic performance of semiconduc-
tor nanocomposites under visible light irradiation [43,45,108–126]. Various approaches for
the synthesis of Ag/TiO2/g-C3N4 nanocomposites have been reported in the literature.
One of these proposes the preparation of a mixture of Ag, TiO2 and g-C3N4 precursors and
the synthesis of an Ag/TiO2/melamine nanocomposite at 70 ◦C, followed by calcination of
the nanocomposite at 550 ◦C, to produce g-C3N4 from melamine (Figure 11a) [126]. An-
other strategy is to mix previously synthesized TiO2 and g-C3N4, followed by the addition
of an AgNO3 precursor and synthesis of Ag NPs in the presence of a g-C3N4 and TiO2 mix-
ture or previously prepared TiO2/g-C3N4 nanocomposite (Figure 11b1,b2) [45,115,123,124].
A TiO2/g-C3N4 composite was also prepared by the synthesis of g-C3N4 from a suit-
able precursor in the presence of TiO2 or through the synthesis of TiO2 from a suit-
able precursor in the presence of g-C3N4, followed by the synthesis of Ag NPs from
an AgNO3 precursor in a reduction reaction in the presence of TiO2/g-C3N4 nanocom-
posite (Figure 11c1,c2) [108,116,117]. It has also been reported that the Ag/TiO2/g-C3N4
nanocomposite was prepared by synthesis of Ag NPs from an AgNO3 precursor in the
presence of TiO2 and subsequent mixing of the Ag/TiO2 nanocomposite with previously
synthesized g-C3N4 (Figure 11d) [43,110,113,118,119,121,122].

It should be emphasized that the photocatalytic mechanism of the ternary Ag/TiO2/g-
C3N4 nanocomposite is very complex and not yet fully understood. Since it is influenced by
nanocomposite construction, which is directly related to the synthesis route and the forma-
tion of tight interfacial connections between the components in the heterojunction, there are
various schematic representations of the photocatalytic mechanisms of Ag/TiO2/g-C3N4
in the literature, as well as explanations of the charge carrier transfer. The most commonly
proposed mechanisms are shown in Figure 12 [45,116,120,122].

It is proposed that the enhanced photocatalytic performance of Ag/TiO2/g-C3N4 is
due to the effective Z-scheme mechanism established in the TiO2 and g-C3N4 heterojunction
under UV- and visible-light irradiation, which is supported by the SPR of Ag facilitating
charge transfer (Figure 12a) [45,108]. It has been suggested that Ag, as a conductive material,
can directly act as a center to combine electrons on the surface of TiO2 with the holes on
g-C3N4 and maintain this remarkable Z-scheme photocatalytic system [45].
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Figure 11. Schematic presentation of strategies for the synthesis of the Ag/TiO2/g-C3N4 nanocom-
posites: synthesis of Ag/TiO2/melamine from a mixture of Ag, TiO2 and g-C3N4 precursors, followed
by calcination to produce Ag/TiO2/g-C3N4 (a); preparation of a mixture of TiO2 and g-C3N4, fol-
lowed by synthesis of Ag NPs (b1); synthesis of TiO2/g-C3N4, followed by synthesis of Ag NPs (b2);
synthesis of g-C3N4 in the presence of TiO2, followed by the synthesis of Ag NPs (c1); synthesis of
TiO2 in the presence of g-C3N4, followed by the synthesis of Ag NPs (c2); synthesis of Ag NPs in the
presence of TiO2, followed by a mixture with g-C3N4 (d). P = precursor.
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Figure 12. Direct Z-scheme of the photocatalytic mechanism of Ag/TiO2/g-C3N4 heterostructure (a)
(Reprinted with permission from [45]; Copyright 2022, IWA Publishing); Type II heterojunction of
Ag/TiO2/g-C3N4 accompanied by the Schottky barrier (b) (Reprinted with permission from [122];
Copyright 2017, Elsevier) and (c) (Reprinted with permission from [116], Copyright 2020, Elsevier);
photocatalytic mechanism of Ag/TiO2/g-C3N4 under visible light (d) (Reprinted with permission
from [120], Copyright 2015, Elsevier).

Another possible photocatalytic mechanism of Ag/TiO2/g-C3N4 involves the Type-
II mechanism of the TiO2/g-C3N4 heterojunction and Schottky barrier formed at the
interfaces of Ag/TiO2, Ag/gC3N4 or TiO2/Ag/g-C3N4 (Figure 12b,c) [116,117,122,125,126].
According to this mechanism, both TiO2 and g-C3N4 are excited under spectrum solar
irradiation, but g-C3N4 mainly absorbs visible light and TiO2 absorbs UV light. After
excitation, photogenerated e- can easily be transferred from the more negative CB of g-
C3N4 to the less negative CB of TiO2 and, at the same time, h+ can be easily transferred
from the more positive VB of TiO2 to the less positive VB of g-C3N4 (Type-II mechanism).
When Ag is deposited on TiO2 in TiO2/g-C3N4, e- can be transferred from the CB of TiO2
and trapped by Ag due to the Schottky barrier formed at the interface of the Ag and TiO2
(Figure 12b) [117,121,122,124,126]. This promotes the separation of charge carriers and
significantly enhances the photocatalytic activity. On the other hand, when Ag is deposited
on TiO2 and g-C3N4 in the ternary heterostructure, Ag captures the electrons from both
g-C3N4 and TiO2 (Figure 12c) [116,117,125]. The effect of the position of the noble metal
in TiO2/g-C3N4 on the photocatalytic activity was systematically investigated for ternary
Pt/TiO2/g-C3N4 nanocomposites, and the results showed that the efficiency increased
as follows: Pt deposited only on g-C3N4 < Pt deposited on both TiO2 and g-C3N4 < Pt
deposited only on TiO2 [127].
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In some of the reported studies, only visible light was used as the excitation source, and it
was suggested that only g-C3N4 absorbs the visible light photons and is excited [118,120,128].
Subsequently, the photogenerated e− in the CB of g-C3N4 can be transferred to the CB
of TiO2. It has been suggested that the Ag deposited on the surface of TiO2 plays a key
role as an electron conduction bridge, to transfer the electron from the CB of g-C3N4 to
the CB of TiO2. The formation of a Schottky barrier at the interface between Ag and TiO2
efficiently enhances the electron transfer to TiO2 and the separation of electron−holes in
g-C3N4 [118,120]. At the same time, the SPR effect of Ag contributes significantly to the
absorption of visible light in the Ag/TiO2/g-C3N4 nanocomposite. However, it is also
believed that the strong electron oscillation in the SPR in Ag under visible light triggers
the transfer of energetic electrons from Ag into the TiO2 conduction band, thus shattering
the Schottky barrier (Figure 12d) [120]. It is hypothesized that loading of TiO2 with Ag
can cause the shift of the Fermi level of Ag to a more negative level and of TiO2 to a more
positive level, to achieve a new Fermi level equilibrium that allows the transfer of the
energetic plasmon electrons of Ag NPs across the energy barrier into the conduction band
of TiO2 [115]. In this case, the oxidation reaction occurs at the surface of TiO2, while the
holes of g-C3N4 are directly involved in the oxidation reaction.

In the literature, an Ag/TiO2/g-C3N4 ternary nanocomposite has not yet been ap-
plied to textile fibers, although it has been established as a powerful nanomaterial for the
photocatalytic degradation of various dyes [43,108,113,116,118,121,123,124], phenol [118],
acetaldehyde [119], formaldehyde [117], ammonia [109], and carbon dioxide [122]; hard
metals, such as hexavalent chromium [108,109]; and uranium from uranium-containing
wastewater [45]. Ag/TiO2/g-C3N4 nanocomposite has already been used for photocatalytic
hydrogen evolution [115,126], solar water oxidation [112], electron transport in organic
solar cells [114], vitamin B3 production [110], and as an antibacterial agent [108,111]. Due
to its excellent multifunctional properties, the use of Ag/TiO2/g-C3N4 nanocomposite for
the chemical modification of textile fibers is still a promising research challenge.

5. Conclusions and Future Perspectives

In this review, binary Ag/g-C3N4 and TiO2/g-C3N4 nanostructures and ternary
Ag/TiO2/g-C3N4 nanostructure were presented as very promising and effective nanocom-
posites with Schottky, Type II, and Z-scheme mechanisms of photocatalysts. All the above
nanocomposites have attracted much attention, due to their ability to initiate and carry
out various reduction and oxidation reactions under visible light, and can thus be ad-
vantageous when used in environmental remediation, energy storage and conversion,
sustainable catalysis, biosensing, and antimicrobial disinfection.

For textile applications, binary Ag/g-C3N4 and TiO2/g-C3N4 composites have emerged
as promising functional nanomaterials, because the synergistic effect of the components
in the heterostructures leads to improved photocatalytic performance of the composites
compared with the single-component material itself. The Ag/g-C3N4 nanocomposites
not only exhibit enhanced visible-light photocatalytic performance but also an improved
antimicrobial performance, due to the excellent antimicrobial activity of Ag. In the prepara-
tion of Ag/g-C3N4 nanocomposites, g-C3N4 is surface-decorated with Ag during the in
situ synthesis of Ag0 from AgNO3 precursor in the suspension of presynthesized g-C3N4.
Another approach is to mix urea, melamine, and/or cyanuric acid with AgNO3 precur-
sors and then synthesize Ag-doped g-C3N4 under suitable conditions. Compared to bare
g-C3N4, it is believed that the efficiency of the Ag/g-C3N4 nanocomposite is significantly
enhanced by the presence of Ag0, which acts as a current collector and plasmonic absorber.
The Schottky barrier formed at the interface between Ag and g-C3N4 maximizes pho-
toinduced charge carrier separation and prevents electron–hole pair recombination. The
nanocomposite photoactivity is further enhanced by plasmon resonance energy transfer,
as the intense electric near field induced by SPR improves the efficiency of charge carrier
separation. The exceptional photocatalytic performance of Ag/g-C3N4 nanocomposites on
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textile substrates has already been advantageously used for the photochemical activation
of organic syntheses and as a textile-based source for wearable electronics.

The two-semiconductor heterojunction of TiO2 and g-C3N4 has been recognized as an
effective material for various environmental and energy applications. TiO2/g-C3N4 was
prepared by various synthetic routes, including the facile mixing of prepared TiO2 and
g-C3N4 under suitable conditions, the in situ synthesis of TiO2 from its precursor in the
presence of presynthesized g-C3N4, or conversely, the in situ synthesis of g-C3N4 from its
precursor in the presence of presynthesized TiO2. Moreover, the precursors of TiO2 and
g-C3N4 were simultaneously mixed in sol to synthesize the TiO2/g-C3N4 heterojunction.
An important step in the synthesis process is the calcination of the nanocomposites under
suitable conditions, to obtain the desired morphology of the nanocomposite. The unique
properties of the TiO2/g-C3N4 heterojunction are related to the simultaneous utilization
of UV and visible light, resulting in excellent photocatalytic performance under UV- and
visible-light irradiation. When TiO2/g-C3N4 is excited by incident UV/visible light of
sufficient energy, the Type-II heterojunction and the direct Z-scheme charge carrier transfer
pathway are adopted in the photocatalytic mechanism of the TiO2/g-C3N4 nanocomposite.
According to the band edge potentials, the Type-II heterojunction allows the transfer of the
photogenerated electrons from the CB of g-C3N4 to the CB of TiO2 and the photogenerated
holes from the VB of TiO2 to the VB of g-C3N4. This causes the reduction reaction on TiO2
to proceed with a lower reduction potential compared with g-C3N4, and the oxidation
reaction on g-C3N4 to proceed with a lower oxidation potential compared to TiO2, which is
a disadvantage of the Type-II heterojunction mechanism. On the other hand, despite having
the same band structure configuration, the direct Z-scheme assumes a much stronger redox
capability for the TiO2/g-C3N4 heterojunction because it promotes the spatial separation of
electrons and holes on g-C3N4 with the higher reduction potential and on TiO2 with the
higher oxidation potential, respectively, and promotes the recombination between the pho-
togenerated electrons in the CB of TiO2 and the photogenerated holes in the VB of g-C3N4
with the lower redox capability. The superior photocatalytic efficiency of TiO2/g-C3N4
nanocomposite has already been beneficially utilized in the development of textile-based
photocatalysts for the effective purification of liquid and gaseous pollutants and bacteria.

There is no evidence in the literature that an Ag/TiO2/g-C3N4 ternary nanocomposite
has been used for textile applications, although it is a promising strategy for the surface-
and bulk-modification of textiles. There are many strategies to prepare Ag/TiO2/g-C3N4
heterostructures, including simultaneous synthesis of the nanocomposite from suitable
precursors, in situ synthesis of Ag in the presence of a previously synthesized TiO2/g-C3N4
composite, and surface decoration of TiO2 by Ag and subsequent mixing with g-C3N4. The
synthesis pathway directly affects the photocatalytic mechanism of the Ag/TiO2/g-C3N4
nanocomposite, which can be explained by the direct Z-scheme or the Type-II mechanisms
established in the TiO2 and g-C3N4 heterojunction, supported by the Schottky barrier and
SPR of Ag. The great potential of the Ag/TiO2/g-C3N4 ternary nanocomposite lies in its
ability to provide multifunctional textile properties, such as photocatalytic self-cleaning,
antimicrobial activity, UV protection, conductivity, and thermal stability. Therefore, the
development of textile platforms with integrated Ag/TiO2/g-C3N4 heterostructures is a
major challenge, where the in situ synthesis of Ag/TiO2/g-C3N4 in the presence of textile
fibers as an stabilizing agent is a priority. Due to the additional requirements imposed
on textile materials, the preparation of simultaneously effective, multifunctional, non-
cytotoxic, and durable chemical modification of textile substrates will certainly be a hot
research topic and will open new application opportunities for textile-based Ag/TiO2/g-
C3N4 nanocomposites.
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