Internal Explosion Performance of RDX@Nano-B Composite Explosives
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication of RDX@Nano-B Composites and RDX/Nano-B Mixture
2.3. Preparation of Boron-Containing PBX Explosive
2.4. Internal Explosion Test
3. Results and Discussion
3.1. Morphology Characterization of the RDX@Nano-B Composites
3.2. The Detonation Heat in Different Environments
3.3. Explosion Pressure
3.4. Gas Product Analysis
3.5. Explosive Reaction Mechanism of Boron-Containing Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pontalier, Q.; Loiseau, J.; Goroshin, S.; Zhang, F.; Frost, D. Blast enhancement from metalized explosives. Shock Waves 2021, 31, 203–230. [Google Scholar] [CrossRef]
- Zhang, F. Detonation of metalized composite explosives. In Shock Wave Science and Technology Reference Library, Vol. 4; Springer: Berlin/Heidelberg, Germany, 2009; pp. 217–286. [Google Scholar]
- Trzciński, W.A.; Maiz, L. Thermobaric and enhanced blast explosives–properties and testing methods. Propellants Explos. Pyrotech. 2015, 40, 632–644. [Google Scholar] [CrossRef]
- Koch, E.C.; Klapötke, T.M. Boron-Based High Explosives. Propellants Explos. Pyrotech. 2012, 37, 335–344. [Google Scholar] [CrossRef]
- Yen, N.H.; Wang, L.Y. Reactive metals in explosives. Propellants Explos. Pyrotech. 2012, 37, 143–155. [Google Scholar] [CrossRef]
- Cao, W.; Song, Q.; Gao, D.; Han, Y.; Xu, S.; Lu, X.; Guo, X. Detonation characteristics of an aluminized explosive added with boron and magnesium hydride. Propellants Explos. Pyrotech. 2019, 44, 1393–1399. [Google Scholar] [CrossRef]
- Flower, P.; Steward, P.; Bates, L.; Shakesheff, A.; Reip, P. Improving the efficiency of metallised explosives. In Proceedings of the 2006 Insensitive Munitions and Energetic Materials Technology Symposium, Bristol, UK, 24–28 April 2006; pp. 1–11. [Google Scholar]
- Glassman, I.; Williams, F.; Antaki, P. A physical and chemical interpretation of boron particle combustion. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1985; pp. 2057–2064. [Google Scholar]
- Zhang, B.; Huang, C.; Yan, S.; Li, Y.; Cheng, Y. Enhanced reactivity of boron, through adding nano-aluminum and wet ball milling. Appl. Surf. Sci. 2013, 286, 91–98. [Google Scholar] [CrossRef]
- Sullivan, K.; Young, G.; Zachariah, M. Enhanced reactivity of nano-B/Al/CuO MIC’s. Combust. Flame 2009, 156, 302–309. [Google Scholar] [CrossRef]
- Chen, B.; Xia, Z.; Huang, L.; Hu, J. Ignition and combustion model of a single boron particle. Fuel Process. Technol. 2017, 165, 34–43. [Google Scholar] [CrossRef]
- Duan, L.; Xia, Z.; Chen, B.; Feng, Y.; Ma, L. Ignition and combustion characteristics of boron agglomerates under different oxygen concentrations. Acta Astronaut. 2022, 197, 81–90. [Google Scholar] [CrossRef]
- Li, C.; Hu, C.; Deng, Z.; Hu, X.; Li, Y.; Wei, J. Dynamic ignition and combustion characteristics of agglomerated boron-magnesium particles in hot gas flow. Aerosp. Sci. Technol. 2021, 110, 106478. [Google Scholar] [CrossRef]
- Mohan, G.; Wllliams, F. Ignition and combustion of boron in O2/inert atmospheres. Aiaa J. 1972, 10, 776–783. [Google Scholar] [CrossRef]
- Krier, H.; Burton, R.; Spalding, M.; Rood, T. Ignition dynamics of boron particles in a shock tube. J. Propul. Power 1998, 14, 166–172. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Wang, B.; Huang, H. Study on preparation process of ε-HNIW booster explosive by water slurry method. Chin. J. Explos. Propellants 2009, 32, 28–31. [Google Scholar]
- Huang, Y.; Wang, X.; Feng, X. Detonation heat of boron-contained explosive based on RDX. J Chin. J. Energ. Mater. 2011, 19, 363–365. [Google Scholar]
- Xiang, D.; Rong, J.; Li, J.; Feng, X.; Wang, H. Effect of Al/O Ratio on Detonation Performance and Underwater Explosion of RDX-based Aluminized Explosive. Acta Armamentarii 2013, 34, 45–50. [Google Scholar]
- Cook, M. Thermal decomposition of RDX: A critical review. J. Energetic Mater. 1987, 5, 257–266. [Google Scholar] [CrossRef]
- Capellos, C.; Baker, E.; Nicolich, S.; Balas, W.; Pincay, J.; Stiel, L.I. Eigenvalue detonation of combined effects aluminized explosives. In AIP Conference Proceedings; American Institute of Physics: Melville, NJ, USA, 2007; pp. 357–360. [Google Scholar]
- Baker, E.; Balas, W.; Stiel, L.; Capellos, C.; Pincay, J. Theory and Detonation Products Equations of State for a New Generation of Combined Effects Explosives; Insensitive Munitions and Energetic Materials Technology Symposium: Miami, FL, USA, 2007. [Google Scholar]
- Ulas, A.; Kuo, K.K.; Gotzmer, C. Ignition and combustion of boron particles in fluorine-containing environments. Combust. Flame 2001, 127, 1935–1957. [Google Scholar] [CrossRef]
- Li, S.; Williams, F. Ignition and combustion of boron in wet and dry atmospheres. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1991; pp. 1147–1154. [Google Scholar]
- Yetter, R.; Dryer, F.; Rabitz, H.; Brown, R.; Kolb, C. Effect of fluorine on the gasification rate of liquid boron oxide droplets. Combust. Flame 1998, 112, 387–403. [Google Scholar] [CrossRef]
- King, M.K. Ignition and combustion of boron particles and clouds. J. Spacecr. Rockets. 1982, 19, 294–306. [Google Scholar] [CrossRef]
- Zhou, W.; Yetter, R.; Dryer, F.; Rabitz, H.; Brown, R.; Kolb, C. Multi-phase model for ignition and combustion of boron particles. Combust. Flame 1999, 117, 227–243. [Google Scholar] [CrossRef]
Samples | QVacuum (J/g) | QAir (J/g) | ||
---|---|---|---|---|
Experimental | Average | Experimental | Average | |
PBX-B1 | 7432 | 7456 | 8866 | 8885 |
7448 | 8777 | |||
7488 | 9012 | |||
PBX-B2 | 7387 | 7346 | 8229 | 8300 |
7322 | 8357 | |||
7329 | 8314 |
Explosives | CO/% | CH4/% | HCN/% | CO2/% |
---|---|---|---|---|
PBX-B1 | 28.971 | 3.588 | 3.732 | 0 |
PBX-B2 | 25.147 | 2.169 | 0 | 2.793 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, P.; Sun, S.; Shang, Y.; Wang, X.; Dong, J.; Feng, X. Internal Explosion Performance of RDX@Nano-B Composite Explosives. Nanomaterials 2023, 13, 412. https://doi.org/10.3390/nano13030412
Xi P, Sun S, Shang Y, Wang X, Dong J, Feng X. Internal Explosion Performance of RDX@Nano-B Composite Explosives. Nanomaterials. 2023; 13(3):412. https://doi.org/10.3390/nano13030412
Chicago/Turabian StyleXi, Peng, Shiyan Sun, Yu Shang, Xiaofeng Wang, Jun Dong, and Xuesong Feng. 2023. "Internal Explosion Performance of RDX@Nano-B Composite Explosives" Nanomaterials 13, no. 3: 412. https://doi.org/10.3390/nano13030412
APA StyleXi, P., Sun, S., Shang, Y., Wang, X., Dong, J., & Feng, X. (2023). Internal Explosion Performance of RDX@Nano-B Composite Explosives. Nanomaterials, 13(3), 412. https://doi.org/10.3390/nano13030412