Dielectric Behavior of Thin Polymerized Composite Layers Fabricated by Inkjet-Printing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Subramanian, V.; Chang, J.B.; de la Fuente Vornbrock, A.; Huang, D.C.; Jagannathan, L.; Liao, F.; Mattis, B.; Molesa, S.; Redinger, D.R.; Soltman, D.; et al. Printed Electronics for Low-Cost Electronic Systems: Technology Status and Application Development. In Proceedings of the ESSCIRC 2008—34th European Solid-State Circuits Conference, Edinburgh, UK, 15–19 September 2008; pp. 17–24. [Google Scholar]
- Stiny, L. Passive Elektronische Bauelemente: Aufbau, Funktion, Eigenschaften, Dimensionierung und Anwendung; Springer: Wiesbaden, Germany, 2019; ISBN 978-3-658-24732-4. [Google Scholar]
- Li, H.; Hou, Y.; Wang, F.; Lohe, M.R.; Zhuang, X.; Niu, L.; Feng, X. Flexible All-Solid-State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene. Adv. Energy Mater. 2017, 7, 1601847. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Jiao, L.; Han, D.; Wang, F.; Zhang, P.; Li, H.; Niu, L. Hierarchical Architecture of Polyaniline Nanoneedle Arrays on Electrochemically Exfoliated Graphene for Supercapacitors and Sodium Batteries Cathode. Mater. Des. 2020, 188, 108440. [Google Scholar] [CrossRef]
- Alamán, J.; Alicante, R.; Peña, J.I.; Sánchez-Somolinos, C. Inkjet Printing of Functional Materials for Optical and Photonic Applications. Materials 2016, 9, 910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernasconi, R.; Brovelli, S.; Viviani, P.; Soldo, M.; Giusti, D.; Magagnin, L. Piezoelectric Drop-On-Demand Inkjet Printing of High-Viscosity Inks. Adv. Eng. Mater. 2022, 24, 2100733. [Google Scholar] [CrossRef]
- Su, W.; Cook, B.S.; Fang, Y.; Tentzeris, M.M. Fully Inkjet-Printed Microfluidics: A Solution to Low-Cost Rapid Three-Dimensional Microfluidics Fabrication with Numerous Electrical and Sensing Applications. Sci. Rep. 2016, 6, 35111. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.J.; Lee, C.K.; Oh, J.H. All-Inkjet-Printed Electrical Components and Circuit Fabrication on a Plastic Substrate. Microelectron. Eng. 2012, 97, 251–254. [Google Scholar] [CrossRef]
- Mikolajek, M.; Reinheimer, T.; Bohn, N.; Kohler, C.; Hoffmann, M.J.; Binder, J.R. Fabrication and Characterization of Fully Inkjet Printed Capacitors Based on Ceramic/Polymer Composite Dielectrics on Flexible Substrates. Sci. Rep. 2019, 9, 13324. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, T.; Herbeck-Engel, P.; Adam, J.; Klein, G.; Kololuoma, T.; Veith, M. Dielectric Properties of a Printed Sol–Gel Matrix Composite. Adv. Eng. Mater. 2010, 12, 379–384. [Google Scholar] [CrossRef]
- Siponkoski, T.; Nelo, M.; Peräntie, J.; Juuti, J.; Jantunen, H. BaTiO3–P(VDF-TrFE) Composite Ink Properties for Printed Decoupling Capacitors. Compos. B Eng. 2015, 70, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Kim, J.; Yoon, Y.J.; Kim, H.; Yoon, H.G.; Lee, S.-N.; Kim, J. Improvement on Relative Permittivity of Inkjet-Printed BaTiO3–Resin Hybrid Film by Manipulating Ceramic Powder Size-Distribution. Int. J. Appl. Ceram. Technol. 2012, 9, 199–205. [Google Scholar] [CrossRef]
- Menesklou, W.; Paul, F.; Zhou, X.; Elsenheimer, H.; Binder, J.R.; Ivers-Tiffée, E. Nonlinear Ceramics for Tunable Microwave Devices Part I: Materials Properties and Processing. Microsyst. Technol. 2011, 17, 203–211. [Google Scholar] [CrossRef]
- Zhang, L.; Zhong, L.; Wang, C.L.; Zhang, P.L.; Wang, Y.G. Dielectric Properties of Ba0.7Sr0.3TiO3 Ceramics with Different Grain Size. Phys. Status Solidi (a) 1998, 168, 543–548. [Google Scholar] [CrossRef]
- Panigrahi, R.; Hajra, S.; De, M.; Kumar, A.; James, A.R.; Choudhary, R.N.P. Investigation of Resistive, Capacitive and Conductive Properties of Lead-Free Electronic Material: 0.7Bi(Fe0.98Ga0.02)O3-0.30BaTiO3. Solid State Sci. 2019, 92, 6–12. [Google Scholar] [CrossRef]
- Hajra, S.; Mohanta, K.; Sahu, M.; Purohit, V.; Choudhary, R.N.P. Studies of Structural, Dielectric and Impedance Spectroscopy of Fused Silica Ceramics Fabricated through Colloidal Processing. Appl. Phys. A 2019, 125, 369. [Google Scholar] [CrossRef]
- Sherman, V.O.; Tagantsev, A.K.; Setter, N.; Iddles, D.; Price, T. Ferroelectric-Dielectric Tunable Composites. J. Appl. Phys. 2006, 99, 074104. [Google Scholar] [CrossRef]
- Looyenga, H. Dielectric Constants of Heterogeneous Mixtures. Physica 1965, 31, 401–406. [Google Scholar] [CrossRef]
- Jayasundere, N.; Smith, B.V. Dielectric Constant for Binary Piezoelectric 0-3 Composites. J. Appl. Phys. 1993, 73, 2462–2466. [Google Scholar] [CrossRef]
- Lichtenecker, K. Die Dielektrizitatskonstante Natürlicher Und Künstlicher Mischkörper. Phys. Z. 1926, 27, 115–158. [Google Scholar]
- Graddage, N.; Chu, T.-Y.; Ding, H.; Py, C.; Dadvand, A.; Tao, Y. Inkjet Printed Thin and Uniform Dielectrics for Capacitors and Organic Thin Film Transistors Enabled by the Coffee Ring Effect. Org. Electron. 2016, 29, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Plötner, M.; Berndt, A.; Kumar, A.; Voit, B.; Pospiech, D.; Fischer, W.-J. All-Printed Capacitors with Continuous Solution Dispensing Technology. Semicond. Sci. Technol. 2017, 32, 095012. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, J.Y.; Hong, L. Morphology, Crystallinity, and Electrochemical Properties of in Situ Formed Poly(Ethylene Oxide)/TiO2 Nanocomposite Polymer Electrolytes. J. Appl. Polym. Sci. 2003, 89, 2815–2822. [Google Scholar] [CrossRef]
- Neusel, C.; Schneider, G.A. Size-Dependence of the Dielectric Breakdown Strength from Nano- to Millimeter Scale. J. Mech. Phys. Solids 2014, 63, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Zhang, P.; Li, B.-W.; Zhang, B.; Yu, Y.; Shen, Z.; Zhang, X.; Wu, J.; Nan, C.-W.; Zhang, S. Inkjet Printing of Perovskite Nanosheets for Microcapacitors. Adv. Electron. Mater. 2021, 7, 2100402. [Google Scholar] [CrossRef]
- Reinheimer, T.; Azmi, R.; Binder, J.R. Polymerizable Ceramic Ink System for Thin Inkjet-Printed Dielectric Layers. ACS Appl. Mater. Interfaces 2020, 12, 2974–2982. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Huang, X.; Li, B.-W.; Zhi, C.; Tanaka, T.; Jiang, P. Core–Satellite Ag@BaTiO3 Nanoassemblies for Fabrication of Polymer Nanocomposites with High Discharged Energy Density, High Breakdown Strength and Low Dielectric Loss. Phys. Chem. Chem. Phys. 2013, 15, 17560–17569. [Google Scholar] [CrossRef] [PubMed]
- Friederich, A.; Binder, J.R.; Bauer, W. Rheological Control of the Coffee Stain Effect for Inkjet Printing of Ceramics. J. Am. Ceram. Soc. 2013, 96, 2093–2099. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-C.; Si, W.; West, A.D.; Xi, X.X. Thickness Dependence of Dielectric Loss in SrTiO3 Thin Films. Appl. Phys. Lett. 1998, 73, 464–466. [Google Scholar] [CrossRef]
- Natori, K.; Otani, D.; Sano, N. Thickness Dependence of the Effective Dielectric Constant in a Thin Film Capacitor. Appl. Phys. Lett. 1998, 73, 632–634. [Google Scholar] [CrossRef] [Green Version]
- Tsilipotkina, M.V.; Tager, A.A.; Petrov, B.S.; Pustobaeva, G. Determination of the Packing Density of Solid Polymer Chains. Determination of the Specific Surface Area of Polymers by Sorption of Nitrogen Vapor. Polym. Eng. Sci. 1963, 3, 157–161. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yuan, J.-K.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Hu, G.-H. Fundamentals, Processes and Applications of High-Permittivity Polymer–Matrix Composites. Prog. Mater. Sci. 2012, 57, 660–723. [Google Scholar] [CrossRef]
- Donev, A.; Cisse, I.; Sachs, D.; Variano, E.A.; Stillinger, F.H.; Connelly, R.; Torquato, S.; Chaikin, P.M. Improving the Density of Jammed Disordered Packings Using Ellipsoids. Science 2004, 303, 990–993. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Ekere, N.N.; Cai, L. Computer Simulation of Random Packing of Unequal Particles. Phys. Rev. E 1999, 60, 7098–7104. [Google Scholar] [CrossRef] [PubMed]
- Newnham, R.E.; Skinner, D.P.; Cross, L.E. Connectivity and Piezoelectric-Pyroelectric Composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Sengwa, R.J.; Kaur, K.; Chaudhary, R. Dielectric Properties of Low Molecular Weight Poly(Ethylene Glycol)s. Polym. Int. 2000, 49, 599–608. [Google Scholar] [CrossRef]
- Popielarz, R.; Chiang, C.K.; Nozaki, R.; Obrzut, J. Dielectric Properties of Polymer/Ferroelectric Ceramic Composites from 100 Hz to 10 GHz. Macromolecules 2001, 34, 5910–5915. [Google Scholar] [CrossRef]
- Kaydanova, T.; Miedaner, A.; Perkins, J.D.; Curtis, C.; Alleman, J.L.; Ginley, D.S. Direct-Write Inkjet Printing for Fabrication of Barium Strontium Titanate-Based Tunable Circuits. Thin Solid Films 2007, 515, 3820–3824. [Google Scholar] [CrossRef]
- Wetz, D.; Mankowski, J.; Dickens, J.; Kristiansen, M. The Impact of Electrode Material on the Pulsed Breakdown Strength of Water. In Proceedings of the 2005 IEEE Pulsed Power Conference, Monterey, CA, USA, 13–15 June 2005; pp. 935–938. [Google Scholar]
- Yang, Q.; Jin, Y.; Sima, W.; Liu, M. Effect of the Electrode Material on the Breakdown Voltage and Space Charge Distribution of Propylene Carbonate under Impulse Voltage. AIP Adv. 2016, 6, 045215. [Google Scholar] [CrossRef] [Green Version]
- Perez, N. Electrochemical Corrosion. In Electrochemistry and Corrosion Science; Perez, N., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–23. ISBN 978-3-319-24847-9. [Google Scholar]
- Schroeder, A.; Fleig, J.; Drings, H.; Wuerschum, R.; Maier, J.; Sitte, W. Excess Free Enthalpy of Nanocrystalline Silver, Determined in a Solid Electrolyte Cell. Solid State Ion. 2004, 173, 95–101. [Google Scholar] [CrossRef]
Dielectric Material | Ratio (vol%) (cer./pol.) | Substrate | Thickness [µm] | Permittivity (Frequency) | Capacitance (pF/mm2) | Curing Temperature (°C) | Literature |
---|---|---|---|---|---|---|---|
PVP | PET | 0.07 | 3.9 (100 kHz) | 200 | 130 °C | [21] | |
BST + PMMA | 66.6:33.3 | PET | 6 | 42 (1 kHz) | 58 | 120 | [9] |
Ca2NaNb4O13 perovskite nanosheets | Glass | 2 | 45–65 (1 kHz–1 MHz) | 210 | - | [24] | |
BST-Si + PMMA | 50:50 | PET | 0.9 | 40 ± 1 (100 kHz) | 500 | 120 °C | [25] |
Ceramic:Polymer (Volume Ratio) | φCeramic [vol%] | φPolymer [vol%] | φIPA [vol%] | φBDG [vol%] |
---|---|---|---|---|
20:80 | 2.0 | 8.0 | 35.6 | 54.4 |
35:65 | 3.5 | 6.5 | 32.3 | 57.7 |
50:50 | 5.0 | 5.0 | 28.9 | 61.1 |
65:35 | 6.5 | 3.5 | 25.5 | 64.5 |
80:20 * | 8.0 | 2.0 | 17.8 | 72.2 |
Sample | Capacitance (pF) | Loss Factor | Permittivity | Layer Thickness (µm) | No. of Samples |
---|---|---|---|---|---|
1 layer | 2000 ± 83 | 0.1257 ± 0.0250 | 40 ± 2 | 0.7 | 2 |
2 layers | 857 ± 35 | 0.1132 ± 0.0041 | 44 ± 2 | 1.8 | 3 |
3 layers | 451 ± 23 | 0.1161 ± 0.0140 | 42 ± 2 | 3.3 | 3 |
Ceramic Content (vol%) (Target Value) | Ceramic 1 (vol%) (Packing Density) | Pores 2 (vol%) | Polymer 3 (vol%) | Ceramic Content 4 (vol%) (Actual Value) |
---|---|---|---|---|
20 | 23.87 | 0.33 | 75.80 | 23.95 |
35 | 36.12 | 0.31 | 63.57 | 36.23 |
50 | 50.03 | 0.74 | 49.23 | 50.40 |
65 | 62.20 | 1.62 | 36.18 | 63.22 |
80 | 74.12 | 5.02 | 20.86 | 78.04 |
Ceramic Content (vol%) | Capacitance (pF) | Loss Factor | Permittivity | Layer Thickness (µm) | No. of Samples |
---|---|---|---|---|---|
20 | 596 ± 20 | 0.0928 ± 0.0135 | 20 ± 1 | 1.2 | 2 |
35 | 1004 ± 34 | 0.1066 ± 0.0004 | 34 ± 1 | 1.2 | 4 |
50 | 1010 ± 58 | 0.0895 ± 0.0025 | 43 ± 2 | 1.5 | 6 |
65 | 1527 ± 48 | 0.0805 ± 0.0013 | 52 ± 2 | 1.2 | 2 |
80 | 1364 | 0.1082 | 69 | 1.8 | 1 |
Bottom Electrode | dElectrode [nm] | Capacitance [pF] | Loss Factor | Permittivity | dComposite [µm] | No. of Samples |
---|---|---|---|---|---|---|
Gold | 100 | 1000 ± 72 | 0.0908 ± 0.0059 | 40 ± 3 | 1.4 | 6 |
Silver | 300 | 1010 ± 58 | 0.0895 ± 0.0025 | 43 ± 2 | 1.5 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinheimer, T.; Mach, T.P.; Häuser, K.; Hoffmann, M.J.; Binder, J.R. Dielectric Behavior of Thin Polymerized Composite Layers Fabricated by Inkjet-Printing. Nanomaterials 2023, 13, 441. https://doi.org/10.3390/nano13030441
Reinheimer T, Mach TP, Häuser K, Hoffmann MJ, Binder JR. Dielectric Behavior of Thin Polymerized Composite Layers Fabricated by Inkjet-Printing. Nanomaterials. 2023; 13(3):441. https://doi.org/10.3390/nano13030441
Chicago/Turabian StyleReinheimer, Timo, Tim P. Mach, Kevin Häuser, Michael J. Hoffmann, and Joachim R. Binder. 2023. "Dielectric Behavior of Thin Polymerized Composite Layers Fabricated by Inkjet-Printing" Nanomaterials 13, no. 3: 441. https://doi.org/10.3390/nano13030441
APA StyleReinheimer, T., Mach, T. P., Häuser, K., Hoffmann, M. J., & Binder, J. R. (2023). Dielectric Behavior of Thin Polymerized Composite Layers Fabricated by Inkjet-Printing. Nanomaterials, 13(3), 441. https://doi.org/10.3390/nano13030441