Measuring the Diameter of Single-Wall Carbon Nanotubes Using AFM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. AFM Measurements
2.3. Analysis of AFM Data
3. Results and Discussion
3.1. Applied Force in AFM Imaging Leads to Nanotube Compression
3.2. Substrate and Nanotube Roughness Contribute to Diameter Uncertainty
3.3. Analysis Method to Rapidly Extract SWCNT Diameters
3.4. Diameter Measurements of PFDD/SWCNTs
3.5. Measuring Compression at SWCNT Junctions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gomulya, W.; Costanzo, G.D.; De Carvalho, E.J.F.; Bisri, S.Z.; Derenskyi, V.; Fritsch, M.; Fröhlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; et al. Semiconducting Single-Walled Carbon Nanotubes on Demand by Polymer Wrapping. Adv. Mater. 2013, 25, 2948–2956. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Geier, M.; Hersam, M.C.; Dodabalapur, A. Inkjet Printed Circuits on Flexible and Rigid Substrates Based on Ambipolar Carbon Nanotubes with High Operational Stability. ACS Appl. Mater. Interfaces 2015, 7, 27654–27660. [Google Scholar] [CrossRef] [PubMed]
- Brady, G.J.; Way, A.J.; Safron, N.S.; Evensen, H.T.; Gopalan, P.; Arnold, M.S. Quasi-Ballistic Carbon Nanotube Array Transistors with Current Density Exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, J.; Ding, J.; Li, Z.; Finnie, P.; Lopinski, G.; Malenfant, P.R.L. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics. Acc. Chem. Res. 2017, 50, 2479–2486. [Google Scholar] [CrossRef] [PubMed]
- Zaumseil, J. Semiconducting Single-Walled Carbon Nanotubes or Very Rigid Conjugated Polymers: A Comparison. Adv. Electron. Mater. 2019, 5, 1800514. [Google Scholar] [CrossRef]
- Bishop, M.D.; Hills, G.; Srimani, T.; Lau, C.; Murphy, D.; Fuller, S.; Humes, J.; Ratkovich, A.; Nelson, M.; Shulaker, M.M. Fabrication of Carbon Nanotube Field Effect Transistors in Commercial Silicon Manufacturing Facilities. Nat. Electron. 2020, 3, 492–501. [Google Scholar] [CrossRef]
- Wang, J.; Lei, T. Enrichment of High-Purity Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. Nanoscale 2022, 14, 1096–1106. [Google Scholar] [CrossRef]
- Qin, C.; Peng, L.-M. Measurement Accuracy of the Diameter of a Carbon Nanotube from TEM Images. Phys. Rev. B 2002, 65, 155431. [Google Scholar] [CrossRef]
- Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A.G.; et al. Gas Phase Synthesis of Non-Bundled, Small Diameter Single-Walled Carbon Nanotubes with near-Armchair Chiralities. Appl. Phys. Lett. 2015, 107, 013106. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Sun, S.; Yang, F.; Li, Y. Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Acc. Chem. Res. 2022, 55, 3334–3344. [Google Scholar] [CrossRef] [PubMed]
- Kuzmany, H.; Plank, W.; Hulman, M.; Kramberger, C.; Gruneis, A.; Pichler, T.; Peterlink, H.; Kataura, H.; Achiba, Y. Determination of SWCNT Diameters from the Raman Response of the Radial Breathing Mode. Eur. Phys. J. B 2001, 22, 307–320. [Google Scholar] [CrossRef]
- Jorio, A.; Saito, R. Raman Spectroscopy for Carbon Nanotube Applications. J. Appl. Phys. 2021, 129, 021102. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, H.; Laiho, P.; Kauppinen, E.I. Validity of Measuring Metallic and Semiconducting Single-Walled Carbon Nanotube Fractions by Quantitative Raman Spectroscopy. Anal. Chem. 2018, 90, 2517–2525. [Google Scholar] [CrossRef] [Green Version]
- Castan, A.; Forel, S.; Fossard, F.; Defillet, J.; Ghedjatti, A.; Levshov, D.; Wenselleers, W.; Cambre, S.; Loiseau, A. Assessing the Reliability of the Raman Peak Counting Method for the Characterization of SWCNT Diameter Distributions: A Cross Characterization with TEM. Carbon 2021, 171, 968–979. [Google Scholar] [CrossRef]
- Bellotti, R.; Bartolo, G.; Luigi, P. AFM Measurements and Tip Characterization of Nanoparticles with Different Shapes. Nanomanuf. Metrol. 2022, 5, 127–138. [Google Scholar] [CrossRef]
- Lee, C.W.; Pillai, S.K.R.; Luan, X.; Wang, Y.; Li, C.M.; Chan-Park, M.B. High-Performance Inkjet Printed Carbon Nanotube Thin Film Transistors with High-k HfO2 Dielectric on Plastic Substrate. Small 2012, 8, 2941–2947. [Google Scholar] [CrossRef]
- Hennrich, F.; Li, W.; Fischer, R.; Lebedkin, S.; Krupke, R.; Kappes, M.M. Length-Sorted, Large-Diameter, Polyfluorene-Wrapped Semiconducting Single-Walled Carbon Nanotubes for High-Density, Short-Channel Transistors. ACS Nano 2016, 10, 1888–1895. [Google Scholar] [CrossRef]
- Rother, M.; Schießl, S.P.; Zakharko, Y.; Gannott, F.; Zaumseil, J. Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 5571–5579. [Google Scholar] [CrossRef] [Green Version]
- Alizadegan, R.; Liao, A.D.; Xiong, F.; Pop, E.; Hsia, K.J. Effects of Tip – Nanotube Interactions on Atomic Force Microscopy Imaging of Carbon Nanotubes. Nano Res. 2012, 5, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xu, X.; Zhang, L.; Huang, S. Controlling the Diameter of Single-Walled Carbon Nanotubes by Improving the Dispersion of the Uniform Catalyst Nanoparticles on Substrate. Nano-Micro Lett. 2015, 7, 353–359. [Google Scholar] [CrossRef]
- Timmermans, M.Y.; Estrada, D.; Nasibulin, A.G.; Wood, J.D.; Behnam, A. Effect of Carbon Nanotube Network Morphology on Thin Film Transistor Performance. Nano Res. 2012, 5, 307–319. [Google Scholar] [CrossRef]
- Santos, S.; Barcons, V.; Christenson, H.K.; Font, J.; Thomson, N.H. The Intrinsic Resolution Limit in the Atomic Force Microscope: Implications for Heights of Nano-Scale Features. PLoS ONE 2011, 6, 23821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerreta, A.; Vobornik, D.; Di Santo, G.; Tobenas, S.; Alonso-Sarduy, L.; Adamcik, J.; Dietler, G. FM-AFM Constant Height Imaging and Force Curves: High Resolution Study of DNA-Tip Interactions. J. Mol. Recognit. 2012, 25, 486–493. [Google Scholar] [CrossRef]
- Cerreta, A.; Vobornik, D.; Dietler, G. Fine DNA Structure Revealed by Constant Height Frequency Modulation AFM Imaging. Eur. Polym. J. 2013, 49, 1916–1922. [Google Scholar] [CrossRef]
- Zorn, N.F.; Zaumseil, J. Charge Transport in Semiconducting Carbon Nanotube Networks Charge Transport in Semiconducting Carbon Nanotube Networks. Appl. Phys. Rev. 2021, 8, 041318. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Vobornik, D.; Zou, S.; Lopinski, G.P. Analysis Method for Quantifying the Morphology of Nanotube Networks. Langmuir 2016, 32, 8735–8742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.F.; Kowalewski, T.; Ruoff, R.S. Investigation of the Radial Deformability of Individual Carbon Nanotubes under Controlled Indentation Force. Phys. Rev. Lett. 2000, 85, 1456–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minary-Jolandan, M.; Yu, M.F. Reversible Radial Deformation up to the Complete Flattening of Carbon Nanotubes in Nanoindentation. J. Appl. Phys. 2008, 103, 073516. [Google Scholar] [CrossRef]
- Deborde, T.; Joiner, J.C.; Leyden, M.R.; Minot, E.D. Identifying Individual Single-Walled and Double-Walled Carbon Nanotubes by Atomic Force Microscopy. Nano Lett. 2008, 8, 3568–3571. [Google Scholar] [CrossRef]
- Fakhri, N.; Tsyboulski, D.A.; Cognet, L.; Weisman, R.B.; Pasquali, M. Diameter-Dependent Bending Dynamics of Single-Walled Carbon Nanotubes in Liquids. Proc. Natl. Acad. Sci. USA 2009, 106, 14219–14223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Loi, M.A.; de Carvalho, E.J.F.; dos Santos, M.C. Selective Wrapping and Supramolecular Structures of Polyfluorene - Carbon Nanotube Hybrids. ACS Nano 2011, 5, 3993–3999. [Google Scholar] [CrossRef]
- Ding, J.; Li, Z.; Lefebvre, J.; Cheng, F.; Dubey, G.; Zou, S.; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G.P.; et al. Enrichment of Large-Diameter Semiconducting SWCNTs by Polyfluorene Extraction for High Network Density Thin Film Transistors. Nanoscale 2014, 6, 2328–2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, Y.; Mazzoni, M.S.C.; Choi, H.J.; Ihm, J.; Louie, S.G. Structural Deformation and Intertube Conductance of Crossed Carbon Nanotube Junctions. Phys. Rev. Lett. 2001, 86, 688–691. [Google Scholar] [CrossRef]
- Janssen, J.W.; Lemay, S.G.; Kouwenhoven, L.P.; Dekker, C. Scanning Tunneling Spectroscopy on Crossed Carbon Nanotubes. Phys. Rev. B 2002, 65, 115423. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vobornik, D.; Chen, M.; Zou, S.; Lopinski, G.P. Measuring the Diameter of Single-Wall Carbon Nanotubes Using AFM. Nanomaterials 2023, 13, 477. https://doi.org/10.3390/nano13030477
Vobornik D, Chen M, Zou S, Lopinski GP. Measuring the Diameter of Single-Wall Carbon Nanotubes Using AFM. Nanomaterials. 2023; 13(3):477. https://doi.org/10.3390/nano13030477
Chicago/Turabian StyleVobornik, Dusan, Maohui Chen, Shan Zou, and Gregory P. Lopinski. 2023. "Measuring the Diameter of Single-Wall Carbon Nanotubes Using AFM" Nanomaterials 13, no. 3: 477. https://doi.org/10.3390/nano13030477
APA StyleVobornik, D., Chen, M., Zou, S., & Lopinski, G. P. (2023). Measuring the Diameter of Single-Wall Carbon Nanotubes Using AFM. Nanomaterials, 13(3), 477. https://doi.org/10.3390/nano13030477