Hybrid Nanomat: Copolymer Template CdSe Quantum Dots In Situ Stabilized and Immobilized within Nanofiber Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of CdSe QDs Stabilized with PVP
2.2.2. Fabrication of the Nanofibers Immobilized with CdSe QDs
2.3. Characterization of Morphology and Size
2.3.1. Morphology and Size Distribution
2.3.2. Thermal Analysis
2.3.3. UV-Vis and Fluorescence Spectroscopy
2.3.4. Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.4. Biological Properties of Nanofibers
2.4.1. Antimicrobial Activity of Nanofibers
2.4.2. Cytotoxic Effect of Nanofibers on Eukaryotic Cells
2.4.3. Inhibition of Proliferation of Cancer Cells
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soloviev, V.N.; Eichhofer, A.; Fenske, D.; Banin, U. Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 2001, 123, 2354–2364. [Google Scholar] [CrossRef] [PubMed]
- Narula, C.; Chauhan, R.P. Size dependent properties of one dimensional CdSe micro/nanostructures. Phys. B 2017, 521, 381–388. [Google Scholar] [CrossRef]
- Zheng, W.; Strouse, G.F. Involvement of carriers in the size-dependent magnetic exchange for Mn:CdSe quantum dots. J. Am. Chem. Soc. 2011, 133, 7482–7489. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, N.; Spillmann, C.M.; Algar, W.R.; Pons, T.; Stewart, M.H.; Oh, E.; Susumu, K.; Diaz, S.A.; Delehanty, J.B.; Medintz, I.L. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem. Rev. 2017, 117, 536–711. [Google Scholar] [CrossRef]
- Sapsford, K.E.; Pons, T.; Medintz, I.L.; Mattoussi, H. Biosensing with luminescent semiconductor quantum dots. Sensors 2006, 6, 925–953. [Google Scholar] [CrossRef]
- Subramanian, S.; Ganapathy, S.; Subramanian, S. Superior photocatalytic activities of p-CdTe QDs/n-NiTiO3 NFs system for the treatment of hazardous dye industrial effluents. J. Environ. Chem. Eng. 2022, 10, 106941. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, R.; Hu, H.; Fan, X.; Zhang, D.; Wang, D. 0D/2D Heterojunctions of Ti3C2 MXene QDs/SiC as an Efficient and Robust Photocatalyst for Boosting the Visible Photocatalytic NO Pollutant Removal Ability. ACS Appl. Mater. Inter. 2020, 12, 40176–40185. [Google Scholar] [CrossRef]
- Angel, N.; Vijayaraghavan, S.N.; Yan, F.; Kong, L. Electrospun Cadmium Selenide Nanoparticles-Loaded Cellulose Acetate Fibers for Solar Thermal Application. Nanomaterials 2020, 10, 1329. [Google Scholar] [CrossRef]
- Nozik, A.J.; Beard, M.C.; Luther, J.M.; Law, M.; Ellingson, R.J.; Johnson, J.C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873–6890. [Google Scholar] [CrossRef]
- Pastuszak, J.; Wegierek, P. Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials 2022, 15, 5542. [Google Scholar] [CrossRef]
- Mendoza, C.; Nirwan, V.P.; Fahmi, A. Nanofabrication of hybrid nanomaterials: Macroscopically aligned nanoparticles pattern via directed self-assembly of block copolymers. J. Appl. Polym. Sci. 2023, 140, e53409. [Google Scholar] [CrossRef]
- Shen, L. Biocompatible polymer/quantum dots hybrid materials: Current status and future developments. J. Funct. Biomater. 2011, 2, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, N.; Janczewski, D.; Han, M.Y.; Vancso, G.J. Designer polymer-quantum dot architectures. Prog. Polym. Sci. 2009, 34, 393–430. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Zhang, X.Y.; Yu, J.H.; Zhou, L.Q.; Luo, B.S.; Liu, Y.J.; Chen, R. Optical Humidity Sensor Based on CdSe/ZnS Quantum Dots Modified by Porous Silica. Adv. Mater. Interfaces 2022, 9, 2201366. [Google Scholar] [CrossRef]
- Ng, S.M.; Koneswaran, M.; Narayanaswamy, R. A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv. 2016, 6, 21624–21661. [Google Scholar] [CrossRef]
- Gorer, S.; Hodes, G. Quantum-Size Effects in the Study of Chemical Solution Deposition Mechanisms of Semiconductor-Films. J. Phys. Chem.-Us. 1994, 98, 5338–5346. [Google Scholar] [CrossRef]
- Khanna, P.K.; Dhanabalan, K.; More, P.; Viswanathan, S.; Renugopalakrishnan, V. Biocompatible Hydrophilic CdSe Quantum Dots: Single-Step Synthesis. Int. J. Green Nanotechnol. 2012, 4, 62–70. [Google Scholar] [CrossRef]
- Schmidt, L.C.; Edelsztein, V.C.; Spagnuolo, C.C.; Di Chenna, P.H.; Galian, R.E. Light-responsive hybrid material based on luminescent core-shell quantum dots and steroidal organogel. J. Mater. Chem. C. 2016, 4, 7035–7042. [Google Scholar] [CrossRef]
- Concina, I.; Natile, M.M.; Tondello, E.; Sberveglieri, G. Growth kinetics of CdSe quantum dots generated in polar polymers. Dalton Trans 2012, 41, 14354–14359. [Google Scholar] [CrossRef]
- Bulumulla, C.; Du, J.; Washington, K.E.; Kularatne, R.N.; Nguyen, H.Q.; Biewer, M.C.; Stefan, M.C. Influence of functionalized side chains of polythiophene diblock copolymers on the performance of CdSe quantum dot hybrid solar cells. J. Mater. Chem. A 2017, 5, 2473–2477. [Google Scholar] [CrossRef]
- Landry, M.L.; Morrell, T.E.; Karagounis, T.K.; Hsia, C.H.; Wang, C.Y. Simple Syntheses of CdSe Quantum Dots. J. Chem. Educ. 2014, 91, 274–279. [Google Scholar] [CrossRef]
- Yuan, G.; Liang, T.; Liang, Y.; Pang, X.; Jia, Z. The controlled growth of conjugated polymer-quantum dot nanocomposites via a unimolecular templating strategy. Chem. Commun. 2021, 57, 1250–1253. [Google Scholar] [CrossRef]
- Yuan, H.; Zhao, H.; Peng, K.; Qi, R.; Bai, H.; Zhang, P.; Huang, Y.; Lv, F.; Liu, L.; Bao, J.; et al. Conjugated Polymer-Quantum Dot Hybrid Materials for Pathogen Discrimination and Disinfection. ACS Appl. Mater. Inter. 2020, 12, 21263–21269. [Google Scholar] [CrossRef] [PubMed]
- Garzoni, M.; Cheval, N.; Fahmi, A.; Danani, A.; Pavan, G.M. Ion-selective controlled assembly of dendrimer-based functional nanofibers and their ionic-competitive disassembly. J. Am. Chem. Soc. 2012, 134, 3349–3357. [Google Scholar] [CrossRef] [PubMed]
- Nann, T. Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chem. Commun. 2005, 57, 1735–1736. [Google Scholar] [CrossRef]
- Nirwan, V.P.; Kowalczyk, T.; Bar, J.; Buzgo, M.; Filova, E.; Fahmi, A. Advances in Electrospun Hybrid Nanofibers for Biomedical Applications. Nanomaterials 2022, 12, 1829. [Google Scholar] [CrossRef]
- Soares, R.M.D.; Siqueira, N.M.; Prabhakaram, M.P.; Ramakrishna, S. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mat. Sci. Eng. C.-Mater. 2018, 92, 969–982. [Google Scholar] [CrossRef]
- Nirwan, V.P.; Filova, E.; Al-Kattan, A.; Kabashin, A.V.; Fahmi, A. Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering. Nanomaterials 2021, 11, 519. [Google Scholar] [CrossRef]
- Nirwan, V.P.; Al-Kattan, A.; Fahmi, A.; Kabashin, A.V. Fabrication of Stable Nanofiber Matrices for Tissue Engineering via Electrospinning of Bare Laser-Synthesized Au Nanoparticles in Solutions of High Molecular Weight Chitosan. Nanomaterials 2019, 9, 1058. [Google Scholar] [CrossRef]
- Fahmi, A.; Pietsch, T.; Bryszewska, M.; Rodriguez-Cabello, J.C.; Koceva-Chyla, A.; Arias, F.J.; Rodrigo, M.A.; Gindy, N. Fabrication of CdSe Nanofibers with Potential for Biomedical Applications. Adv. Funct. Mater. 2010, 20, 1011–1018. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Han, M.; Bao, J.; Jiang, X.; Dai, Z. CdSe quantum dots as labels for sensitive immunoassay of cancer biomarker proteins by electrogenerated chemiluminescence. Analyst 2011, 136, 5197–5203. [Google Scholar] [CrossRef] [PubMed]
- Badmus, S.O.; Amusa, H.K.; Oyehan, T.A.; Saleh, T.A. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar] [CrossRef] [PubMed]
- Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18. [Google Scholar] [CrossRef]
- Mansurov, Z.; Smagulova, G.; Kaidar, B.; Imash, A.; Lesbayev, A. PAN—Composite Electrospun-Fibers Decorated with Magnetite Nanoparticles. Magnetochemistry 2022, 8, 160. [Google Scholar] [CrossRef]
- Taufiq, A.; Jannah, M.A.; Hidayat, A.; Hidayat, N.; Mufti, N.; Susanto, H. Structural and Magnetic Behaviours of Magnetite/Polyvinyl Alcohol Composite Nanofibers. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Malang, Indonesia, 5 September 2019; p. 012081. [Google Scholar]
- Nezarati, R.M.; Eifert, M.B.; Cosgriff-Hernandez, E. Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng. Part C Methods 2013, 19, 810–819. [Google Scholar] [CrossRef]
- Mailley, D.; Hebraud, A.; Schlatter, G. A review on the impact of humidity during electrospinning: From the nanofiber structure engineering to the applications. Macromol. Mater. Eng. 2021, 306, 2100115. [Google Scholar] [CrossRef]
- Bae, H.-S.; Haider, A.; Selim, K.M.; Kang, D.-Y.; Kim, E.-J.; Kang, I.-K. Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J. Polym. Res. 2013, 20, 1–7. [Google Scholar] [CrossRef]
- Lin, J.; Ding, B.; Yang, J.; Yu, J.; Sun, G. Subtle regulation of the micro-and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale 2012, 4, 176–182. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, C.P. Preparation and characterization of solid dispersions of carvedilol with PVP K30. Res. Pharm. Sci. 2010, 5, 49. [Google Scholar]
- Kaur, R.; Tripathi, S.K. Study of conductivity switching mechanism of CdSe/PVP nanocomposite for memory device application. Microelectron. Eng. 2015, 133, 59–65. [Google Scholar] [CrossRef]
- Pisani, S.; Dorati, R.; Conti, B.; Modena, T.; Bruni, G.; Genta, I. Design of copolymer PLA-PCL electrospun matrix for biomedical applications. React. Funct. Polym. 2018, 124, 77–89. [Google Scholar] [CrossRef]
- Garkhal, K.; Verma, S.; Jonnalagadda, S.; Kumar, N. Fast degradable poly (L-lactide-co-ε-caprolactone) microspheres for tissue engineering: Synthesis, characterization, and degradation behavior. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2755–2764. [Google Scholar] [CrossRef]
- Kamaruddin, K.; Edikresnha, D.; Sriyanti, I.; Munir, M.M.; Khairurrijal, K. Synthesis of Polyvinylpyrrolidone (PVP)-Green tea extract composite nanostructures using electrohydrodynamic spraying technique. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Malang, Indonesia, 9 September 2017; pp. 1–8. [Google Scholar]
- Basha, M.A.F. Magnetic and optical studies on polyvinylpyrrolidone thin films doped with rare earth metal salts. Polym. J. 2010, 42, 728–734. [Google Scholar] [CrossRef]
- Cotrim, M.; Oréfice, R. Biocompatible and fluorescent polycaprolactone/silk electrospun nanofiber yarns loaded with carbon quantum dots for biotextiles. Polym. Adv. Technol. 2020, 32, 87–96. [Google Scholar] [CrossRef]
- Khan, A.U.R.; Nadeem, M.; Bhutto, M.A.; Yu, F.; Xie, X.; El-Hamshary, H.; El-Faham, A.; Ibrahim, U.A.; Mo, X. Physico-chemical and biological evaluation of PLCL/SF nanofibers loaded with oregano essential oil. Pharmaceutics 2019, 11, 386. [Google Scholar] [CrossRef]
- Newsome, T.E.; Olesik, S.V. Electrospinning silica/polyvinylpyrrolidone composite nanofibers. J. Appl. Polym. Sci. 2014, 131(21), 40966. [Google Scholar] [CrossRef]
- Hamley, I.; Castelletto, V.; Castillo, R.V.; Müller, A.J.; Martin, C.; Pollet, E.; Dubois, P. Crystallization in poly (L-lactide)-b-poly (ε-caprolactone) double crystalline diblock copolymers: A study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. Macromolecules 2005, 38, 463–472. [Google Scholar] [CrossRef]
- Sheik, S.; Nagaraja, G.K.; Prashantha, K. Effect of silk fiber on the structural, thermal, and mechanical properties of PVA/PVP composite films. Polym. Eng. Sci. 2018, 58, 1923–1930. [Google Scholar] [CrossRef]
- Ben-David, Y.; Zlotnik, E.; Zander, I.; Yerushalmi, G.; Shoshani, S.; Banin, E. SawR a new regulator controlling pyomelanin synthesis in Pseudomonas aeruginosa. Microbiol. Res. 2018, 206, 91–98. [Google Scholar] [CrossRef]
- Chen, L.; Qu, G.; Zhang, C.; Zhang, S.; He, J.; Sang, N.; Liu, S. Quantum dots (QDs) restrain human cervical carcinoma HeLa cell proliferation through inhibition of the ROCK-c-Myc signaling. Integr. Biol. 2013, 5, 590–596. [Google Scholar] [CrossRef] [PubMed]
- He, S.-J.; Cao, J.; Li, Y.-S.; Yang, J.-C.; Zhou, M.; Qu, C.-Y.; Zhang, Y.; Shen, F.; Chen, Y.; Li, M.-M. CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells. World J. Gastroenterol. 2016, 22, 5012. [Google Scholar] [CrossRef] [PubMed]
Sample | Weight (g) | Voltage (kV) | Flow Rate (mL.h−1) | Temperature (°C) | Humidity (%) | |
---|---|---|---|---|---|---|
PL-b-CL | PVP | |||||
CdSe QDs + PL-b-CL/PVP | 0.85 | 0.21 | 12 | 1 | 16 | 85 |
PL-b-CL/PVP | 0.85 | 0.21 | 12 | 1 | 16 | 85 |
Sample | Mean Diameter | Standard Deviation |
---|---|---|
PL-b-CL/PVP | 2.12 µm | 1.07 µm |
CdSe QDs in PL-b-CL/PVP | 1.04 µm | 0.7 µm |
Sample | Onset (°C) | End (°C) | Step Inflection Points (°C) | Total Weight Loss (%) | ||
---|---|---|---|---|---|---|
1st Step | 2nd Step | 3rd Step | ||||
PL-b-CL/PVP | 304 | 384 | 337 | 380 | 431 | 98.3 |
CdSe QDs in PL-b-CL/PVP | 280 | 429 | 327 | 370 | 434 | 91.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nirwan, V.P.; Lasak, M.; Ciepluch, K.; Fahmi, A. Hybrid Nanomat: Copolymer Template CdSe Quantum Dots In Situ Stabilized and Immobilized within Nanofiber Matrix. Nanomaterials 2023, 13, 630. https://doi.org/10.3390/nano13040630
Nirwan VP, Lasak M, Ciepluch K, Fahmi A. Hybrid Nanomat: Copolymer Template CdSe Quantum Dots In Situ Stabilized and Immobilized within Nanofiber Matrix. Nanomaterials. 2023; 13(4):630. https://doi.org/10.3390/nano13040630
Chicago/Turabian StyleNirwan, Viraj P., Magdalena Lasak, Karol Ciepluch, and Amir Fahmi. 2023. "Hybrid Nanomat: Copolymer Template CdSe Quantum Dots In Situ Stabilized and Immobilized within Nanofiber Matrix" Nanomaterials 13, no. 4: 630. https://doi.org/10.3390/nano13040630
APA StyleNirwan, V. P., Lasak, M., Ciepluch, K., & Fahmi, A. (2023). Hybrid Nanomat: Copolymer Template CdSe Quantum Dots In Situ Stabilized and Immobilized within Nanofiber Matrix. Nanomaterials, 13(4), 630. https://doi.org/10.3390/nano13040630