
Citation: Kharlamova, M.V.;

Kramberger, C. Electrochemistry of

Carbon Materials: Progress in Raman

Spectroscopy, Optical Absorption

Spectroscopy, and Applications.

Nanomaterials 2023, 13, 640. https://

doi.org/10.3390/nano13040640

Academic Editor: Lyubov G.

Bulusheva

Received: 30 December 2022

Revised: 27 January 2023

Accepted: 29 January 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

Electrochemistry of Carbon Materials: Progress in Raman
Spectroscopy, Optical Absorption Spectroscopy,
and Applications
Marianna V. Kharlamova 1,* and Christian Kramberger 2,*

1 Centre for Advanced Materials Application (CEMEA) of Slovak Academy of Sciences,
Dúbravská cesta 5807/9, 845 11 Bratislava, Slovakia

2 Faculty of Physics, University of Vienna, Bolzmanngasse 5, 1090 Vienna, Austria
* Correspondence: dr.marianna.kharlamova@gmail.com (M.V.K.);

christian.krambeger-kaplan@univie.ac.at (C.K.)

Abstract: This paper is dedicated to the discussion of applications of carbon material in electrochem-
istry. The paper starts with a general discussion on electrochemical doping. Then, investigations by
spectroelectrochemistry are discussed. The Raman spectroscopy experiments in different electrolyte
solutions are considered. This includes aqueous solutions and acetonitrile and ionic fluids. The
investigation of carbon nanotubes on different substrates is considered. The optical absorption
experiments in different electrolyte solutions and substrate materials are discussed. The chemical
functionalization of carbon nanotubes is considered. Finally, the application of carbon materials and
chemically functionalized carbon nanotubes in batteries, supercapacitors, sensors, and nanoelectronic
devices is presented.
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1. Introduction

Carbon nanotubes include single-walled carbon nanotubes (SWCNTs) with unique prop-
erties [1,2] and multi-walled carbon nanotubes (MWCNTs). SWCNTs are sorted and separated
to obtain uniform electronic properties [3], and the channels of SWCNTs are filled [4,5] with
substances [6,7] for the investigation of kinetics and electronic properties [8–15] for applica-
tions (Figure 1). The SWCNTs are filled with inorganic compounds [16–46], molecules [47–76],
and elementary substances [77–108]. Inorganic substances are introduced inside carbon
nanotubes by the gas phase and liquid phase methods. Molecules are filled inside carbon
nanotubes by the gas phase and solution methods. Elementary substances are incorporated
inside carbon nanotubes by the gas, solution, and melt methods. The electronic properties of
chemically modified carbon material are investigated by Raman spectroscopy, near-edge X-ray
absorption fine structure spectroscopy (NEXAFS), optical absorption spectroscopy (OAS), and
photoemission spectroscopy.

A high current carrying capacity, long cycling stability, excellent electrical conductance,
and good capability in rapid charge and discharge make SWCNTs electrodes possible,
leading to a high performance [109].

The electrochemical doping allows for the alteration of the doping level [110–112]. The
shift in the Fermi level is proportional to the applied voltage [112,113]. The experimental
parameters are varied to achieve perfect conditions [112].

In 1999, the first example of electrochemical doping appeared [114]. The methods
that investigated the modified electronic properties are voltamperometry [115–119] and
spectroelectrochemistry [110,113,120–142]. Voltamperometry allows for evaluating the re-
versibility of the p- and n-doping of SWCNTs by applied voltage using the cyclic voltamero-
grams [112]. Combining the spectroscopic investigations, such as Raman spectroscopy and
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optical absorption spectroscopy, with electrochemical charging allows for the evaluation of
the modifications of the electronic properties of SWCNTs [143].

Nanomaterials 2023, 12, x FOR PEER REVIEW 2 of 37 
 

 

 
Figure 1. SWCNT properties, methods, and applications. 

A high current carrying capacity, long cycling stability, excellent electrical conduct-
ance, and good capability in rapid charge and discharge make SWCNTs electrodes possi-
ble, leading to a high performance [109].  

The electrochemical doping allows for the alteration of the doping level [110–112]. 
The shift in the Fermi level is proportional to the applied voltage [112,113]. The experi-
mental parameters are varied to achieve perfect conditions [112]. 

In 1999, the first example of electrochemical doping appeared [114]. The methods that 
investigated the modified electronic properties are voltamperometry [115–119] and spec-
troelectrochemistry [110,113,120–142]. Voltamperometry allows for evaluating the revers-
ibility of the p- and n-doping of SWCNTs by applied voltage using the cyclic voltamer-
ograms [112]. Combining the spectroscopic investigations, such as Raman spectroscopy 
and optical absorption spectroscopy, with electrochemical charging allows for the evalu-
ation of the modifications of the electronic properties of SWCNTs [143].  

The aim of this review is to summarize the reports on the investigations of the elec-
trochemical properties of carbon material. In Section 2, the results of the voltamperometry 
are discussed. In Section 3, the results of the spectroelectrochemistry with Raman spec-
troscopy are considered, i.e., measuring the spectra with electrochemical charging. In Sec-
tion 4, the results of the spectroelectrochemistry with optical absorption spectroscopy are 
presented. In Section 5, investigations of chemically functionalized carbon nanotubes are 
highlighted. In Section 6, applications of carbon material in electrochemical devices are 
discussed.  

2. Voltamperometry 
For voltamperometry, it is important that the MWCNTs do not destroy under elec-

trochemical charging. MWCNTs are stable up to a ~±2 eV applied potential. This allows 
for one to use them for voltamperometry measurements. Measurements are conducted at 
different scan rates. The data present the dependence of the voltage on the capacity. The 
insertion of the electrolyte happens. For MWCNTs, a capacity of up to ~1000 mAh/g was 
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Figure 1. SWCNT properties, methods, and applications.

The aim of this review is to summarize the reports on the investigations of the electro-
chemical properties of carbon material. In Section 2, the results of the voltamperometry are
discussed. In Section 3, the results of the spectroelectrochemistry with Raman spectroscopy
are considered, i.e., measuring the spectra with electrochemical charging. In Section 4, the
results of the spectroelectrochemistry with optical absorption spectroscopy are presented.
In Section 5, investigations of chemically functionalized carbon nanotubes are highlighted.
In Section 6, applications of carbon material in electrochemical devices are discussed.

2. Voltamperometry

For voltamperometry, it is important that the MWCNTs do not destroy under elec-
trochemical charging. MWCNTs are stable up to a ~±2 eV applied potential. This allows
for one to use them for voltamperometry measurements. Measurements are conducted
at different scan rates. The data present the dependence of the voltage on the capacity.
The insertion of the electrolyte happens. For MWCNTs, a capacity of up to ~1000 mAh/g
was observed.

In Ref. [116], the electrochemical experiments were performed with lithium insertion
into nanotubes. High values of irreversible capacity Cirr (from 460 to 1080 mAh/g) were
obtained. The authors plotted the dependence of Cirr on the mesopore volume, which
showed the linear behavior [116].

Figure 2 presents the voltamperometric data of lithium insertion and extraction in
MWCNTs to test electrodes from carbon tubular form. They show the typical behavior of
tubular carbon [116]. The irreversible capacity values of all forms of tubular carbon Cirr
are extremely high. It is believed that one factor that makes the value of Cirr is the solid
electrolyte interphase (SEI) formation.
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Figure 2. Galvanostatic insertion–extraction of lithium into nanotubes. Current load of 20 mA/g.
Reprinted from Frackowiak E, Beguin F Carbon 40 1775 (2002), Copyright (2002), with permission
from Elsevier [116].

The authors of Ref. [116] plotted the Cirr data versus the mesopore volume. Figure 3
presents the linear dependence with the liner fitting of multi-walled carbon nanotubes,
single-walled carbon nanotubes, and carbon filaments [116]. This is caused by the tubular
structure of carbon forms, with an easy access of voluminous solvated lithium cations in
the inner part of the electrode where it decomposes [116].
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In Ref. [144], the voltamperometry data of MWCNT at different scan rates are pre-
sented (Figure 4). Until 1.5 V (open-circuit voltage (OCV)) and about 1 V, there are the
reductions of chemicals, and from about 0.5 V until 0 V, there is the lithium insertion. Above
1.5 V, the region of charging of the double layer was observed, which testified to the good
electrochemical properties [114].
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Figure 4. Voltammetry characteristics of MWCNT. Reprinted from E. Frackowiak et al./Carbon 37
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3. Spectroelectrochemistry with Raman Spectroscopy

The electrochemical experiments are combined with Raman spectroscopy and optical
absorption spectroscopy. Yet, other methods are possible.

To present the method, in the spectroelectrochemical technique, SWCNTs serve as
a working electrode. The spectrum is measured under an applied potential. The spectra
obtained at different applied voltages are plotted for comparison and tracing changes.

Historically, the first experiment on the electrochemical doping of SWCNTs was per-
formed in 1999 [142]. In this experiment, Raman spectroscopy was applied, and the electrolyte
was sulfuric acid. In 2000, the experiments in aqueous [118] and aprotonic (tetrahydrofu-
ran) [110] solutions were made. In the literature, there are also reports on experiments in
aqueous [113,120–126,134–140] solutions and acetonitrile [119,127,128,130,131] and ionic flu-
ids [129]. Thin films [118,119,121,122,128–130,134–136] and buckypaper [120,125,137–139,143]
were analyzed.

In Ref. [118], the authors studied the Raman spectra of SWCNTs upon electrochemical
charging at applied potentials from −0.2 to −0.8 eV and from +0.2 to +1.4 eV. Figure 5
shows the RBM and tangential displacement modes (TDM) of the resonance Raman spectra
of a buckypaper in a 1 M NaCl aqueous solution acquired at a 514 nm laser [118].

The authors of Ref. [123] investigated the RBM-band of Raman spectra. In the RBM
band, there is the peak at 180 cm−1. In the G-band, there is the peak of the tangential modes
(TM) at 1590 cm−1. Figure 6 shows experimental Raman spectra (solid lines) of the RBM at
zero bias (Figure 6a) and −0.08 V (Figure 6b) for an applied laser energy of 2.41 eV. The
dotted lines are the calculated line shapes. The inset shows the G-band at zero bias (open
circles) and at −0.08 V (solid line). Thus, the intensity and position of peaks change under
electrochemical charging [123].
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In Ref. [127], the potential dependent Raman spectra (excited at 2.18 eV) of HiPco
SWCNT were obtained. There are intermediate frequency modes (IFM) in the spectrum.
Figure 7 shows the dependence of IFM modes on electrochemical charging from −1.8 V
to 0 V and from 0 V to 1.2 V. The dispersive IFM modes are shifted stronger than the
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non-dispersive IFM modes upon p-doping, whereas n-doping has the opposite effect. Thus,
one laser wavelength is enough to recognize dispersive and non-dispersive features [127].
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Thus, the spectroelectrochemistry technique is a modern, useful, and powerful method
based on the Raman spectroscopy method. The substances for electrodes should be stable
in electrolyte solutions, and they should not destroy under applied voltages. Raman maps
are plotted using the obtained data; they are the dependence of the Raman peak position on
an applied voltage. In Raman maps of carbon nanotubes, the modifications of the electronic
properties are observed.

4. Spectroelectrochemistry with Optical Absorption Spectroscopy

The optical absorption spectroscopy was first combined with electrochemical charging
in the year 2000 [118]. Indium-tin oxide (ITO) [118,119,124,125] and think Pt film [124,125]
were used as substrates. Aqueous [118], acetonitrile [118,119,124,125], and ionic liquids [125]
were used.

In Ref. [118], electrochemical experiments were conducted using the ITO substrate
and aqueous 0.1 M KCl saturated with nitrogen as the electrolyte solution. Figure 8 shows
the OAS spectra of SWCNTs measured with applied potentials from 0 V to 0.8 V [118].
The spectra contain absorption bands at 1800 nm (0.68 eV), 1000 nm (1.3 eV), and 700 nm
(1.9 eV). Upon electrochemical charging, there is the suppression of the absorption bands.
This was explained by a shift in the Fermi level.

In Ref. [133], the in situ measurement of SWCNT films under electrochemical charging
was performed. Figure 9 shows the OAS spectra at constant electrode potentials [133]. The
potentials of −0.4 V, −0.8 V, 0.3 V, 1.0 V, 1.4 V, and 1.8 V were applied. Upon the application
of the potential, the absorption bands at 1800 nm, 1000 nm, and 700 nm disappear. At high
positive potentials, new broad peaks appear around 1070 nm (1.15 eV) at 1.4 V and around
1000 nm (1.24 eV) at 1.8 V. At low negative potentials, no new absorption bands, at least
up to 21.4 V, were observed. At high positive potentials, the authors also observed the
increased absorption background in the near-infrared field [133].
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5. Investigations of Chemically Functionalized Carbon Nanotubes

There is a large field of work on chemically functionalized carbon nanotubes. It was
shown that metal halogenide-filled SWCNTs with a decreased [145–160] Fermi level, metal
chalcogenide-filled SWCNTs [161–163], metal-filled SWCNTs [164–166], metal halogenide-
filled SWCNTs [167], and metallocene-filled SWCNTs [168–181] with an increased Fermi
level can be used for the electrochemical measurements.
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5.1. Covalent Functionalization of Carbon Nanotubes

The covalent functionalization of carbon nanotubes was made with fluorination. This
method is performed with different chemicals and synthesis parameters [182–186].

In Ref. [182], the covalent functionalization of double-walled carbon nanotubes (DWC-
NTs) with aryldiazonium salt was performed, and it was shown that the functionalization
is reversible upon thermal treatment. The DWCNT transistors were constructed based on
the functionalized DWCNTs, and the assignment of the metallicity of the inner and outer
walls of DWCNTs was conducted (Figure 10).
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Copyright 2011 American Chemical Society [182].

In Ref. [183], the outer walls of SWCNTs were selectively oxidized by oleum and
nitric acid. Figure 11 shows the transmission electron microscopy (TEM) data of oxidized
nanotubes. In Figure 11A,B low- and high-magnification images of DWCNTs treated with
5 mL of a solution for 24 h are shown. In Figure 11C,D DWCNTs treated with 10 mL of a
solution for 2 h are presented [183].

In Ref. [183], the samples were further investigated at a fixed reaction time of 2 h
with nitric acid (Figure 12A–C) and an increasing reaction time using 5 mL of HNO3
(Figure 12D–F). In Figure 12B, it is seen that the relative solubility of DWCNTs is increased
by increasing the amount of acid. In Figure 12C, it is visible that the nanotubes become
more defective, because the ratio of the peaks in the Raman spectra of ID/IG is increased. By
increasing the reaction time (Figure 12D–F), the solubility and defectiveness of nanotubes
increase, too. This is caused by the appearance of more carboxylic groups on the surface of
DWCNTs with oxidation. This leads to more solubility and more defects [183].
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Figure 12. The solubility and defectiveness of DWCNTs at a fixed reaction time of 2 h with nitric acid
(A–C) and increasing reaction times using 5 mL of HNO3 (D–F). Reprinted with permission from
Brozena A et al. JACS 2010 132 11 3932. Copyright 2010 American Chemical Society [183].

In Ref. [184], DWCNTs were fluorinated using (1) gaseous F2 at 200 ◦C, (2) a mixture
of BrF3 and Br2 at room temperature, and (3) radio frequency CF4 plasma. Figure 13a
shows the relative ratio of fluorine plotted versus the synthesis temperature. Figure 13b
shows the relative ratio of oxygen plotted versus the experiment temperature. Figure 13c
demonstrates the high-resolution TEM image of DWCNTs fluorinated by F2 at 200 ◦C [184].
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Figure 13. Concentration of fluorine (a) and oxygen (b) in the DWCNTs fluorinated by F2 (1), BrF3

(2), and CF4 plasma (3) as a function of the annealing temperature. (c) High-resolution TEM image
of DWCNTs fluorinated by F2 at 200 ◦C. Reprinted with permission from Bulusheva L et al. Chem
Mater 2010 22 4197. Copyright 2010 American Chemical Society [184].

In Ref. [185], the covalent modification of DWCNTs was performed to control the
sidewall chemistry. Figure 14a shows the schematics of the covalent functionalization.
Figure 14b demonstrates the optical absorption spectrum of DWCNTs before and after the
functionalization with diazonium salts. It is visible that the covalent functionalization leads
to a charge transfer in DWCNTs [185].
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Figure 14. (a) The schematics of the covalent functionalization of DWCNTs. (b) The optical absorption
spectrum of DWCNTs before and after the functionalization with diazonium salts. Reprinted with
permission from Piao Y. et al. J Phys Chem Lett 2011 2 1577. Copyright 2011 American Chemical
Society [185].

5.2. Gas Sorption on Carbon Nanotubes

Gas sorption on carbon nanotubes is possible. It can be reversible depending on the
experimental conditions [187,188]. This allows for using carbon nanotubes as gas sensors,
biosensors, and sensors for liquids. The reversibility of adsorption is the main characteristic
for the implementation in sensors.

5.3. Substitution of Carbon Atoms with Other Atoms

Many studies were dedicated to the substitution of carbon atoms of carbon nanotubes
by other atoms. The electronic properties depend on the type and concentration of the
doping atoms [189]. The first experiment was made in 1993 [190], and after that, many
examples of doping with nitrogen [191–201] and boron [202–209] were made.

In Ref. [210], nitrogen-doped carbon nanotubes were boron-doped. Figure 15 shows
the SEM and TEM images of B,N-CNTs at different addition amounts of boric acid (B,N-
CNT-1, 0.05 g, B,N-CNT-2, 0.1 g, B,N-CNT-3, 0.25 g, B,N-CNT-4, 0.5 g, and B,N-CNT-5, 1 g).
These images are amazing examples of the unique chemistry of carbon nanotubes.

In Figure 16, the surface chemical compositions of B,N-CNTs calculations with XPS
are shown. Figure 16a shows the C 1s XPS spectra of samples. Figure 16b shows the B1s
XPS spectra of samples. Figure 16c shows the N 1s XPS spectra of the samples [210].
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Figure 15. The SEM and TEM images of B,N-CNTs at different addition amounts of boric acid
(B,N-CNT-1, 0.05 g (a,b), B,N-CNT-2, 0.1 g (c,d), B,N-CNT-3, 0.25 g (e,f), B,N-CNT-4, 0.5 g (g,h),
and B,N-CNT-5, 1 g (i,j)). Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This
article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license [210].
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Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open-access
article distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license [210].

5.4. Intercalation of Nanotube Bundles

The intercalation of carbon nanotube bundles means incorporating simple substances
and chemical compounds to the space between nanotubes in the bundles. The intercalation
with p- and n-dopants was demonstrated. The electronic properties of SWCNTs were
investigated by Raman spectroscopy, optical absorption spectroscopy, electron energy loss
spectroscopy, and X-ray photoelectron spectroscopy techniques [211–237].

5.5. Filling of Carbon Nanotubes

OAS spectroscopy is used to identify the charge transfer in filled SWCNTs [145–181].
Figure 17 shows the OAS spectra of pristine and cobalt bromide-filled SWCNTs [146]. The
modification of spectra such as the change in the intensity of peaks, the shift of peaks, the
alteration of peak profiles, and the disappearance and appearance of peaks testifies to the
charge transfer in filled SWCNTs.

Raman spectroscopy is used to identify the charge transfer and electronic and vibronic
properties of filled SWCNTs [181–185]. Figure 18 shows the Raman spectra of pristine and
cobalt iodide-filled SWCNTs obtained at different laser wavelengths [238]. The modification
of spectra such as the change in the intensity of peaks, the shift of peaks, and the alteration
of peak profiles testifies to the charge transfer in filled SWCNTs.

XPS is used to identify the direction and value of the Fermi level shift of the filled
SWCNTs [145–181]. Figure 19 shows the XPS spectra of pristine and gallium selenide-filled
SWCNTs [162]. The C 1s XPS spectra showed the shift of the peak and the change in its
width. UPS was also used as a direct method of the investigation of the Fermi level shift in
filled SWCNTs [145–181].
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Figure 18. The Raman spectra of pristine and cobalt iodide-filled SWCNTs obtained at laser energies of
2.41 eV (a), 1.96 eV (b), 1.58 eV (c). Copyright 2022 by the author. Licensee MDPI, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY) license [238].
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Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) was applied to
analyze the local interactions between encapsulated substances and SWCNTs [145–181].
Figure 20 shows the NEXAFS spectra of the pristine and sulfur-containing sample with-
out (SWCNT/S-1) and with sonication (SWCNT/S-2) before and after light illumination
(SWCNT/S-1i, SWCNT/S-2i) [239].

The schematics of the modification of the electronic properties of filled SWCNTs are
shown in Figure 21 [145–181].
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Figure 19. The XPS spectra of pristine (a) and gallium selenide-filled SWCNTs (b). Reprinted from
M.V. Kharlamova. Novel approach to tailoring the electronic properties of single-walled carbon
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letters, V. 98, n 5, p. 272–277, 2013, Springer Nature [162].
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Figure 20. The NEXAFS spectra of the pristine and sulfur-filled SWCNTs and the processed samples.
Copyright 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open-access
article distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license [239].
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Figure 21. The schematic of band structures of pristine semiconducting (a) and metallic (b) SWCNTS
and the Fermi level (EF) shift (shown with an arrow) in gallium selenide-filled SWCNTs (c). Reprinted
from M.V. Kharlamova. Novel approach to tailoring the electronic properties of single-walled carbon
nanotubes by the encapsulation of high-melting gallium selenide using a single-step process, JETP
letters, V. 98, n 5, p. 272–277, 2013, Springer Nature [162].

6. Applications of Carbon Material and Chemically Functionalized Carbon Material in
Electrochemical Devices

The electrochemical doping of materials can find applications [240–244] in supercapaci-
tors [115,116], hydrogen storage [245,246], battery construction [247–249], sensors [240,244],
and nanoelectronic devices [113,250–252]. For these experiments, special electrochemical
cells, electrolytes, electrode materials, and other parameters are important [141]. Recent
works include electrochemical studies of carbon materials [253–281].
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In Ref. [251], SWCNT field effect transistors (FET) can be used to reveal changes in
the chemical potential. The gate-voltage dependence of the nanotube conductance was
measured. This is because of the interaction of the molecules with the electrode and their
redox chemistry. Figure 22 shows the threshold voltage shifts of SWCNT FET (red squares,
left axis) and the open-circuit potential between the working and reference electrode (blue
triangles, right axis) [251].
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from Larrimore L et al. Nano Lett. 6 1329 (2006). Copyright 2006 American Chemical Society [251].

The authors of Ref. [252] made high perform FET-transistor form semiconducting
SWCNTs with a diameter of 1.9 nm. Figure 23a shows an optical image of the transistor.
They used six source electrodes. Figure 23b shows an atomic force microscopy (AFM)
image of a tube in the FET. Figure 23c demonstrates the schematic of the electrolyte gate
measurement [252]. The authors obtained very high device mobilities and transconduc-
tances. This makes semiconducting SWCNTs very useful for electronic applications and
sensing (Figure 23d) [252].

In Ref. [268], the nitrogen-doped carbon (NC) and modified-with-ammonia nitrogen-
doped carbon (mNC) were tested as working electrodes of supercapacitors in three-
electrode cells using 1 M H2SO4 and 6 M KOH electrolytes. Figure 24 shows the elec-
trochemical performance of the samples, which show excellent characteristics [268].

In Ref. [262], the kinetics of sodium storage were studied in brominated activated
in alkali porous nitrogen-doped carbon. Figure 25 shows the current–potential curves of
Br-aPNC (Figure 25a) measured at scan rates of 0.1–1.0 mV s−1 and the log(i)–log(v) plots
(Figure 25b) obtained for oxidation and reduction peaks [262]. This behavior improves the
storage and high-rate capability of carbon materials in sodium-ion batteries.

In Ref. [263], annealed nitrogen-doped carbon showed an excellent performance in
both lithium-ion batteries and sodium-ion batteries. Figure 26a,c shows the current vs.
potential measurements at various scanning rates. The diffusion and pseudocapacitive con-
tributions to the electrochemical storage for different scan rates are shown in Figure 26b,d. It
is visible that by increasing the scan rate, the pseudocapacitive contribution increases [263].
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Figure 23. (a) Optical micrograph of the device. (b) Atomic force microscopy image of a tube between
two electrodes. The tube diameter is 1.9 nm. (c) Schematic of the electrolyte gate measurement.
(d) Current versus source drain voltage I-Vsd characteristics of the device. The inset shows the
transconductance gm = dI/dVwg taken at Vsd = −0.8 V. Reprinted with permission from Rosenblatt S
et al. Nano Lett. 2 869 (2002). Copyright 2002 American Chemical Society [252].

In Ref. [275], the electrochemical properties of nitrogen-doped carbon material were
investigated. Figure 27a shows the specific capacitance plotted vs. scan rate for pristine
nitrogen-doped carbon (N-C) and that after hydrothermal treatment in water (N-Cw) and
ammonia solution (N-Ca). Figure 27b,c show the current vs. voltage measurements at scan
rates of 5 and 10 mV s−1 [275].
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sodium-ion batteries. Copyright 2023 by the author. Licensee MDPI, Basel, Switzerland. This arti-
cle is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license [263].
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Figure 27. (a) Specific capacitances and current vs. voltage curves at scan rates of (b) 5 and
(c) 10 mV s−1 of N-C, N-Cw, and N-Ca samples. The inset in (a) presents capacitance retention
plots for N-C and N-Ca during 2000 cycles at 100 mV s−1. Copyright 2020 by the author. Licensee
MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license [275].
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In Ref. [276], the electrochemical properties of pristine, sonicated, and fluorinated
SWCNTs were investigated. Figure 28 shows the current density vs. potential measure-
ments for pristine (SW), split (SW_DC), and fluorinated F-SW, and the F-SW_DC electrodes
at a scan rate of 100 mV s−1 show a nearly rectangular shape. Figure 28 also shows the
capacitance retention vs. cycle number measurements [276].
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Figure 28. Capacitance retention versus cycle number measurements, with insets showing the current
density versus potential measurements for pristine (SW) (a), split (SW_DC) (b), and fluorinated F-SW
(c) and F-SW_DC (d) electrodes at a scan rate of 100 mV s−1. Copyright 2021 by the author. Licensee
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In Ref. [277], the electrochemical properties of SWCNTs filled with red phosphorous
were investigated. Figure 29a,d show the current vs. potential dependence of P-filled
SWCNTs (P@SWCNT/P) and those treated by filtering, sonication, and drying samples
(P@SWCNT). Figure 29b,e show the log(current) vs. log(scan rate). Figure 29c,f demonstrate
the diffusion and capacitive contributions for different scan rates [277].
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7. Conclusions

The filled nanotubes show great promise in many areas [13,253] and are set to advance
functional materials of the future. For instance, carbon nanotubes have been used with
metal oxides as cheap and stable nanocatalysts in the alcohol oxidation processes for fuel
cells [282]. There are many filling materials [6,7,145–181] that can create devices with
an appropriate efficiency, intensity, and color. They are not patented yet because their
construction requires five to ten years. I think that the filling of single-walled carbon
nanotubes is a very promising achievement; there are no other ways to create devices
than to start from laboratory synthesis in a flask, and the applications in car lights are the
most recent. The state corporations in Russia, Europe, the USA, and different countries are
interested in developments [283–302].
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