Ytterbium-Doped Lead–Halide Perovskite Nanocrystals: Synthesis, Near-Infrared Emission, and Open-Source Machine Learning Model for Prediction of Optical Properties
Abstract
:1. Introduction
2. Synthesis
3. Morphology of Yb-Doped Metal–Halide pNCs
4. Optical Properties
Yb3+ Emission and Quantum Cutting
5. Dependence of the Properties of Yb-Doped Lead–Halide pNCs on Synthesis Parameters
5.1. Dependence on the Ligand Type and Its Amount
5.2. Dependence on Reaction Temperature
5.3. Dependence on the Yb-Precursor Type and Its Amount
5.4. Multi-Parameter Approximation for NIR PL QY
6. Summary and Outlook
- (i)
- Development of a standardized template for data collection and further expansion of the dataset based on available experimental data will improve the accuracy of the model prediction;
- (ii)
- Other machine learning models, regularization techniques, and other methods of preprocessing can be employed and compared for better model performance;
- (iii)
- Improvement of mathematical models may include such functions as a prediction of maximal values, sorting by type of precursors and/or resulting materials, graphical representation of derived dependencies of optical characteristics on synthesis parameters, and many more.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, H.; Bodnarchuk, M.I.; Kershaw, S.V.; Kovalenko, M.V.; Rogach, A.L. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance. ACS Energy Lett. 2017, 2, 2071–2083. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; et al. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15, 10775–10981. [Google Scholar] [CrossRef] [PubMed]
- Gualdrón-Reyes, A.F.; Masi, S.; Mora-Seró, I. Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends Chem. 2021, 3, 499–511. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Y.; Wang, S.; Guo, J.; Yu, W.W.; Rogach, A.L. Metal Halide Perovskite Light-Emitting Devices: Promising Technology for Next-Generation Displays. Adv. Funct. Mater. 2019, 29, 1902008. [Google Scholar] [CrossRef]
- Yan, F.; Tan, S.T.; Li, X.; Demir, h.V. Light Generation in Lead Halide Perovskite Nanocrystals: LEDs, Color Converters, Lasers, and Other Applications. Small 2019, 15, e1902079. [Google Scholar] [CrossRef]
- Zhao, h.; Sun, R.; Wang, Z.; Fu, K.; Hu, X.; Zhang, Y. Zero-Dimensional Perovskite Nanocrystals for Efficient Luminescent Solar Concentrators. Adv. Funct. Mater. 2019, 29, 1902262. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Z.; Wang, S.; Lyu, M.; Hao, M.; Ghasemi, M.; Xiao, M.; Yun, J.-H.; Bai, Y.; Wang, L. Luminescent europium-doped titania for efficiency and UV-stability enhancement of planar perovskite solar cells. Nano Energy 2020, 69, 104392. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, S.; Zeng, H.; Song, J. A comprehensive review of doping in perovskite nanocrystals/quantum dots: Evolution of structure, electronics, optics, and light-emitting diodes. Mater. Today Nano 2019, 6, 100036. [Google Scholar] [CrossRef]
- Skurlov, I.D.; Yin, W.; Ismagilov, A.O.; Tcypkin, A.N.; Hua, h.; Wang, h.; Zhang, X.; Litvin, A.P.; Zheng, W. Improved One- and Multiple-Photon Excited Photoluminescence from Cd2+-Doped CsPbBr3 Perovskite NCs. Nanomaterials 2022, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Baktash, A.; Zhong, J.X.; Chen, W.; Bai, Y.; Hao, M.; Chen, P.; He, D.; Ding, S.; Steele, J.A.; et al. Dual Metal-Assisted Defect Engineering towards High-Performance Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2208077. [Google Scholar] [CrossRef]
- Mir, W.J.; Sheikh, T.; Arfin, H.; Xia, Z.; Nag, A. Lanthanide doping in metal halide perovskite nanocrystals: Spectral shifting, quantum cutting and optoelectronic applications. NPG Asia Mater. 2020, 12, 9. [Google Scholar] [CrossRef]
- Liu, M.; Grandhi, G.K.; Matta, S.; Mokurala, K.; Litvin, A.; Russo, S.; Vivo, P. Halide Perovskite Nanocrystal Emitters. Adv. Photon Res. 2021, 2, 2000118. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, D.; Pan, G.; Chen, X.; Li, D.; Xu, W.; Bai, X.; Song, h. Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells. Adv. Mater. 2017, 29, 1704149. [Google Scholar] [CrossRef]
- Luo, X.; Ding, T.; Liu, X.; Liu, Y.; Wu, K. Quantum-Cutting Luminescent Solar Concentrators Using Ytterbium-Doped Perovskite Nanocrystals. Nano Lett. 2019, 19, 338–341. [Google Scholar] [CrossRef]
- Huang, h.; Li, R.; Jin, S.; Li, Z.; Huang, P.; Hong, J.; Du, S.; Zheng, W.; Chen, X.; Chen, D. Ytterbium-Doped CsPbCl3 Quantum Cutters for Near-Infrared Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2021, 13, 34561–34571. [Google Scholar] [CrossRef]
- Sun, R.; Zhou, D.; Lu, P.; Jing, X.; Zhuang, X.; Liu, S.; Wang, Y.; Bai, X.; Xu, W.; Song, h. In situ preparation of two-dimensional ytterbium ions doped all-inorganic perovskite nanosheets for high-performance visual dual-bands photodetectors. Nano Energy 2022, 93, 106815. [Google Scholar] [CrossRef]
- Sokolova, A.V.; Tepliakov, N.V.; Ismagilov, A.O.; Tatarinov, D.A.; Kalinichev, A.A.; Koroleva, A.V.; Zhizhin, E.V.; Baranov, M.A.; Ushakova, E.V.; Litvin, A.P. Stoichiometry Control in Dual-Band Emitting Yb3+-Doped CsPbClxBr3–x Perovskite Nanocrystals. J. Phys. Chem. C 2022, 2022, 20550–20557. [Google Scholar] [CrossRef]
- Tao, h.; Wu, T.; Aldeghi, M.; Wu, T.C.; Aspuru-Guzik, A.; Kumacheva, E. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 2021, 6, 701–716. [Google Scholar] [CrossRef]
- Chen, X.; Lv, h. Intelligent control of nanoparticle synthesis on microfluidic chips with machine learning. NPG Asia Mater. 2022, 14, 69. [Google Scholar] [CrossRef]
- Srivastava, M.; Howard, J.M.; Gong, T.; Rebello Sousa Dias, M.; Leite, M.S. Machine Learning Roadmap for Perovskite Photovoltaics. J. Phys. Chem. Lett. 2021, 12, 7866–7877. [Google Scholar] [CrossRef]
- Tao, Q.; Xu, P.; Li, M.; Lu, W. Machine learning for perovskite materials design and discovery. Npj Comput. Mater. 2021, 7, 23. [Google Scholar] [CrossRef]
- Chang, W.J.; Irgen-Gioro, S.; Vong, A.F.; Kim, H.; Mara, M.W.; Chen, L.X.; Weiss, E.A. Enhancement of Emission from Lanthanide Dopants in Perovskite Nanocrystals through a Temperature-Dependent Phase Transformation of the Perovskite Lattice. J. Phys. Chem. C 2022, 126, 15247–15253. [Google Scholar] [CrossRef]
- Pan, G.; Bai, X.; Yang, D.; Chen, X.; Jing, P.; Qu, S.; Zhang, L.; Zhou, D.; Zhu, J.; Xu, W.; et al. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. Nano Lett. 2017, 17, 8005–8011. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zheng, C.; Zhu, Y.; Li, X.; Huang, J.; Xu, X.; Liu, W.; Cui, S.; Pan, G. Efficient quantum cutting of lanthanum and ytterbium ions co-doped perovskite quantum dots towards improving the ultraviolet response of silicon-based photodetectors. J. Alloys Compd. 2022, 921, 166097. [Google Scholar] [CrossRef]
- Zeng, M.; Locardi, F.; Mara, D.; Hens, Z.; Van Deun, R.; Artizzu, F. Switching on near-infrared light in lanthanide-doped CsPbCl3 perovskite nanocrystals. Nanoscale 2021, 13, 8118–8125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Zhang, X.; Yin, W.; Wang, Y.; Wang, H.; Lu, M.; Li, Z.; Gu, Z.; Yu, W.W. Yb3+ and Yb3+/Er3+ doping for near-infrared emission and improved stability of CsPbCl3 nanocrystals. J. Mater. Chem. C Mater. 2018, 6, 10101–10105. [Google Scholar] [CrossRef]
- Hu, Q.; Li, Z.; Tan, Z.; Song, H.; Ge, C.; Niu, G.; Han, J.; Tang, J. Rare Earth Ion-Doped CsPbBr3 Nanocrystals. Adv. Opt. Mater. 2018, 6, 1700864. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, X.; Shi, Y.; Hou, X.; Li, F.; Zhang, Q.; Tai, Q.; Liu, P.; Zhao, X.-Z. Optimized crystallization and defect passivation with Yttrium (III) doped MAPbBr3 film for highly efficient and stable hole-transport-layer-free carbon-based perovskite solar cells. J. Alloys Compd. 2022, 890, 161909. [Google Scholar] [CrossRef]
- Arfin, h.; Kaur, J.; Sheikh, T.; Chakraborty, S.; Nag, A. Bi 3+ -Er 3+ and Bi 3+ -Yb 3+ Codoped Cs 2 AgInCl 6 Double Perovskite Near-Infrared Emitters. Angew. Chem. Int. Ed. 2020, 59, 11307–11311. [Google Scholar] [CrossRef]
- Mir, W.J.; Mahor, Y.; Lohar, A.; Jagadeeswararao, M.; Das, S.; Mahamuni, S.; Nag, A. Postsynthesis Doping of Mn and Yb into CsPbX3 (X = Cl, Br, or I) Perovskite Nanocrystals for Downconversion Emission. Chem. Mater. 2018, 30, 8170–8178. [Google Scholar] [CrossRef] [Green Version]
- Debnath, G.H.; Bloom, B.P.; Tan, S.; Waldeck, D.H. Room temperature doping of Ln3+ in perovskite nanoparticles: A halide exchange mediated cation exchange approach. Nanoscale 2022, 14, 6037–6051. [Google Scholar] [CrossRef]
- Li, S.; Shi, Z.; Zhang, F.; Wang, L.; Ma, Z.; Yang, D.; Yao, Z.; Wu, D.; Xu, T.-T.; Tian, Y.; et al. Sodium Doping-Enhanced Emission Efficiency and Stability of CsPbBr3 Nanocrystals for White Light-Emitting Devices. Chem. Mater. 2019, 31, 3917–3928. [Google Scholar] [CrossRef]
- De Mello Donegá, C.; Liljeroth, P.; Vanmaekelbergh, D. Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystals. Small 2005, 1, 1152–1162. [Google Scholar] [CrossRef] [Green Version]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [Green Version]
- Pan, A.; He, B.; Fan, X.; Liu, Z.; Urban, J.J.; Alivisatos, A.P.; He, L.; Liu, Y. Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano 2016, 10, 7943–7954. [Google Scholar] [CrossRef] [Green Version]
- Akkerman, Q.A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L. Nearly Monodisperse Insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX3 Nanocrystals. Nano Lett. 2017, 17, 1924–1930. [Google Scholar] [CrossRef]
- Grisorio, R.; Fanizza, E.; Striccoli, M.; Altamura, D.; Giannini, C.; Allegretta, I.; Terzano, R.; Suranna, G.P. Shape Tailoring of Iodine-Based Cesium Lead Halide Perovskite Nanocrystals in Hot-Injection Methods. Chemnanomat 2020, 6, 356–361. [Google Scholar] [CrossRef]
- Vighnesh, K.; Wang, S.; Liu, H.; Rogach, A.L. Hot-Injection Synthesis Protocol for Green-Emitting Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano 2022, 16, 19618–19625. [Google Scholar] [CrossRef]
- Wei, S.; Yang, Y.; Kang, X.; Wang, L.; Huang, L.; Pan, D. Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields. Chem. Commun. 2016, 52, 7265–7268. [Google Scholar] [CrossRef]
- Huang, h.; Li, Y.; Tong, Y.; Yao, E.P.; Feil, M.W.; Richter, A.F.; Döblinger, M.; Rogach, A.L.; Feldmann, J.; Polavarapu, L. Spontaneous Crystallization of Perovskite Nanocrystals in Nonpolar Organic Solvents: A Versatile Approach for their Shape-Controlled Synthesis. Angew. Chem. Int. Ed. 2019, 58, 16558–16562. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.K.; Yin, W.; Li, H.; Jasieniak, J.J. Scalable synthesis of colloidal CsPbBr3 perovskite nanocrystals with high reaction yields through solvent and ligand engineering. Nanoscale 2020, 12, 4859–4867. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Zhou, D.; Pan, G.; Xu, W.; Chen, X.; Li, D.; Zhang, X.; Zhu, J.; Ji, Y.; Song, h. Europium-Doped Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots and Ultrasensitive Cu2+ Detection. ACS Sustain. Chem. Eng. 2019, 7, 8397–8404. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Zang, Z. Room-temperature doping of ytterbium into efficient near-infrared emission CsPbBr1.5Cl1.5 perovskite quantum dots. Chem. Commun. 2020, 56, 5811–5814. [Google Scholar] [CrossRef] [PubMed]
- Milstein, T.J.; Kluherz, K.T.; Kroupa, D.M.; Erickson, C.S.; De Yoreo, J.J.; Gamelin, D.R. Anion Exchange and the Quantum-Cutting Energy Threshold in Ytterbium-Doped CsPb(Cl1–xBrx)3 Perovskite Nanocrystals. Nano Lett. 2019, 19, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Sun, R.; Xu, W.; Ding, N.; Li, D.; Chen, X.; Pan, G.; Bai, X.; Song, h. Impact of Host Composition, Codoping, or Tridoping on Quantum-Cutting Emission of Ytterbium in Halide Perovskite Quantum Dots and Solar Cell Applications. Nano Lett. 2019, 19, 6904–6913. [Google Scholar] [CrossRef] [PubMed]
- Milstein, T.J.; Kroupa, D.M.; Gamelin, D.R. Picosecond Quantum Cutting Generates Photoluminescence Quantum Yields Over 100% in Ytterbium-Doped CsPbCl3 Nanocrystals. Nano Lett. 2018, 18, 3792–3799. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, H.; Hu, J.; Huang, B.; Sun, M.; Dong, B.; Zheng, G.; Huang, Y.; Chen, Y.; Li, L.; et al. A Eu 3+ -Eu 2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363, 265–270. [Google Scholar] [CrossRef]
- Yin, J.; Ahmed, G.H.; Bakr, O.M.; Brédas, J.-L.; Mohammed, O.F. Unlocking the Effect of Trivalent Metal Doping in All-Inorganic CsPbBr3 Perovskite. ACS Energy Lett. 2019, 4, 789–795. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Z.; Ding, J.; Mei, E.; Xia, W.; Liang, X.; Yu, P.; Wang, X.; Xiang, W. Highly Photoluminescent Yb-Doped CsPbBrI2 Nanocrystals in Ethylene Vinyl Acetate Composite Films for Wide Color Gamut Backlight Displays. ACS Appl. Nano Mater. 2022, 5, 8942–8949. [Google Scholar] [CrossRef]
- Dai, Z.; Chen, J.; Yang, B. Yb2+-Alloyed Cs4PbI6–CsPbI3 Perovskite Nanocomposites for Efficient and Stable Pure-Red Emission. J. Phys. Chem. Lett. 2021, 12, 10093–10098. [Google Scholar] [CrossRef]
- Milstein, T.J.; Roh, J.Y.D.; Jacoby, L.M.; Crane, M.J.; Sommer, D.E.; Dunham, S.T.; Gamelin, D.R. Ubiquitous Near-Band-Edge Defect State in Rare-Earth-Doped Lead-Halide Perovskites. Chem. Mater. 2022, 34, 3759–3769. [Google Scholar] [CrossRef]
- Wegh, R.T.; Donker, H.; van Loef, E.v.d.; Oskam, K.D.; Meijerink, A. Quantum cutting through downconversion in rare-earth compounds. J. Lumin. 2000, 87-89, 1017–1019. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Huang, X.Y. Recent progress in quantum cutting phosphors. Prog. Mater. Sci. 2010, 55, 353–427. [Google Scholar] [CrossRef]
- Li, X.; Duan, S.; Liu, H.; Chen, G.; Luo, Y.; Ågren, h. Mechanism for the Extremely Efficient Sensitization of Yb3+Luminescence in CsPbCl3 Nanocrystals. J. Phys. Chem. Lett. 2019, 10, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, A.; Liu, T.; Zhou, L.; Zheng, J.; Zuo, Y.; He, Y.; Li, J. A facile method for preparing Yb3+-doped perovskite nanocrystals with ultra-stable near-infrared light emission. RSC Adv. 2020, 10, 17635–17641. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.-P.; Chen, Y.-M.; Zhang, L.-M.; Guo, S.-Q.; Liu, J.-D.; Li, H.; Ye, B.-J.; Li, Z.-Y.; Zhou, Y.; Zhang, B.-B.; et al. Insights into the local structure of dopants, doping efficiency, and luminescence properties of lanthanide-doped CsPbCl3 perovskite nanocrystals. J. Mater. Chem. C Mater. 2019, 7, 3037–3048. [Google Scholar] [CrossRef]
- Cai, T.; Wang, J.; Li, W.; Hills-Kimball, K.; Yang, H.; Nagaoka, Y.; Yuan, Y.; Zia, R.; Chen, O. Suuport Mn 2+ /Yb 3+ Codoped CsPbCl3 Perovskite Nanocrystals with Triple-Wavelength Emission for Luminescent Solar Concentrators. Adv. Sci. 2020, 7, 2001317. [Google Scholar] [CrossRef]
- Erickson, C.S.; Crane, M.J.; Milstein, T.J.; Gamelin, D.R. Photoluminescence Saturation in Quantum-Cutting Yb3+-Doped CsPb(Cl1–xBrx)3 Perovskite Nanocrystals: Implications for Solar Downconversion. J. Phys. Chem. C 2019, 123, 12474–12484. [Google Scholar] [CrossRef]
- Dagnall, K.A.; Conley, A.M.; Yoon, L.U.; Rajeev, H.S.; Lee, S.-H.; Choi, J.J. Ytterbium-Doped Cesium Lead Chloride Perovskite as an X-ray Scintillator with High Light Yield. ACS Omega 2022, 7, 20968–20974. [Google Scholar] [CrossRef]
- Chen, N.; Cai, T.; Li, W.; Hills-Kimball, K.; Yang, H.; Que, M.; Nagaoka, Y.; Liu, Z.; Yang, D.; Dong, A.; et al. Yb- and Mn-Doped Lead-Free Double Perovskite Cs2AgBiX6 (X = Cl–, Br–) Nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 16855–16863. [Google Scholar] [CrossRef]
Chemical Formula | Precursors | Yb Content, % | Yb/Pb Precursor Molar Ratio | Type of Ligands | OlAm/ OlAc Volume Ratio | T, °C | Reaction Time, sec | pNC Size, nm | Abs, nm | PL, nm | Vis PL QY, % | NIR PL QY, % | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hot-injection method | |||||||||||||
Yb:CsPbCl3 | Cs-oleate, Pb-oleate, Yb-oleate, TMS-Cl | 7.0 | 0.5 | OlAm, OlAc | 0.3 | 240 | 1 | 15 | 410 | 412 | N/A | 110 | [15] |
Yb:CsPbCl3 | Cs2CO3, Pb(OAc)2, Yb(OAc)3, TMS-Cl | 11.0–15.0 | 1.5 | OlAm, OlAc | 1.0 | 240 | 1 | 14 | 400 | 410 | N/A | N/A | [17] |
Yb:CsPbClxBr3−x | Cs2CO3, Pb(OAc)2, Yb(OAc)3, TMS-Cl, TMS-Br | 11.0–15.0 | 1.5 | OlAm, OlAc | 1.0 | 240 | 1 | 35 | 470 | 480 | N/A | N/A | [17] |
Yb:CsPbClxBr3−x | Cs2CO3, Pb(OAc)2, Yb(OAc)3, TMS-Cl, TMS-Br | 11.0–15.0 | 1.5 | OlAm, OlAc | 1.0 | 240 | 1 | 22 | 515 | 520 | N/A | N/A | [17] |
Yb:CsPbCl3 | Cs-oleate, PbCl2, YbCl3 | 9.0 | 0.5 | OlAm, OlAc | 1.0 | 240 | 30 | 6.3 | 390 | 400 | 6.4 | 142.7 | [23] |
Yb:CsPbCl3 | Cs-oleate, Pb(OAc)2, YbCl3 | N/A | 3.0 | OlAm, OlAc | 1.0 | 260 | 5 | 10 | 395 | 410 | 7.7 | 120.1 | [26] |
Yb:CsPbBr3@SiO2 * | Cs-oleate, PbBr2, YbCl3 | 1.5 | 0.7 | OlAm, OlAc, APTES | 1.0 | 180 | 60 | 13.5 | 490 | 484 | 31 | 64 | [55] |
Yb:CsPbBr3 | Cs-oleate, PbBr2, YbCl3 | 2.0 | 0.7 | OlAm, OlAc | 1.0 | 180 | 60 | 8.3 | 490 | 476 | 47 | 44 | [55] |
Yb:CsPbCl3 | CsOAc, Pb(OAc)2, Yb(OAc)3, TMS-Cl | 7.5 | 0.4 | OlAm, OlAc | 0.5 | 240 | 1 | 14.1 | 405 | 410 | N/A | 114 | [44] |
Yb:CsPb(Cl1−xBrx)3 ** | Yb:CsPbCl3 pNCs, TMS-Br | 7.5 | 0.4 | OlAm, OlAc | 0.5 | RT | 12h | 14.8 | 490 | N/A | N/A | 100 | [44] |
Yb:CsPbCl3 | Cs-oleate, PbCl2, YbCl3 | 0.6 | 1.0 | OlAm, OlAc, TOP | 1.0 | 240 | 60 | 8.4 | 400 | 402 | 87.9 | N/A | [56] |
Yb:CsPbCl3 | Cs-oleate, PbCl2, YbCl3 | 1.2 | 1.0 | OlAm, OlAc, TOP | 1.0 | 240 | 60 | 11.4 | 400 | 407 | 58.3 | N/A | [56] |
Yb:CsPbCl3 | Cs-oleate, PbCl2, YbCl3 | 2.7 | 1.0 | OlAm, OlAc, TOP | 1.0 | 220 | 60 | 9.2 | 400 | 405 | N/A | N/A | [56] |
Yb:CsPbCl3 | CsOAc, Pb(OAc)2, Yb(OAc)3, TMS-Cl | 6.0 | 0.8 | OlAm, OlAc | 0.5 | 240 | 1 | 16 | 400 | 410 | 0.7 | 170 | [46] |
Yb:CsPbCl3:Mn(2.17%) *** | CsOAc, Pb(OAc)2, Yb(OAc)3, TMS-Cl, Mn(OAc)2 | 4.0 | 0.1 | OlAm, OlAc | 2.0 | 200 | 10 | 7.8 | 390 | 405 | 1.2 | 32.5 | [57] |
Yb:CsPbCl3:Mn(1.45%) *** | CsOAc, Pb(OAc)2, Yb(OAc)3, TMS-Cl, Mn(OAc)2 | 6.6 | 0.2 | OlAm, OlAc | 2.0 | 200 | 10 | 7.5 | 390 | 405 | 0.9 | 64.6 | [57] |
Yb:CsPbCl3:Mn(1.3%) *** | CsOAc, Pb(OAc)2, Yb(OAc)3, TMS-Cl, Mn(OAc)2 | 10.8 | 0.3 | OlAm, OlAc | 2.0 | 200 | 10 | 7.2 | 380 | 405 | 0.5 | 103.3 | [57] |
Yb:CsPbCl3:Mn(1.14%) *** | CsOAc, Pb(OAc)2, Yb(OAc)3, TMS-Cl, Mn(OAc)2 | 15.2 | 0.4 | OlAm, OlAc | 2.0 | 200 | 10 | 6.8 | 380 | 405 | 0.4 | 66.3 | [57] |
Yb:CsPbCl3 | CsOAc, Pb(OAc)2, Yb(OAc)3, TMS-Cl | 1.4 | 0.8 | OlAm, OlAc | 0.5 | 240 | 1 | 11 | 400 | 410 | N/A | 146 | [58] |
Yb:CsPb(Cl1−xBrx)3 ** | Yb:CsPbCl3 pNCs, TMS-Br | 1.4 | 0.8 | OlAm, OlAc | 0.5 | RT | 12h | N/A | 480 | 495 | N/A | N/A | [58] |
Yb:CsPbCl0.4Br2.6 | Cs-oleate, PbBr2, YbCl3 | 1.2 | 0.2 | OlAm, OlAc | 1.0 | 200 | 10 | 8.7 | 497 | 500 | 69.1 | 27.30 | [13] |
Yb:CsPbClBr2 | Cs-oleate, PbBr2, YbCl3, | 3.8 | 0.3 | OlAm, OlAc | 1.0 | 200 | 10 | 7.9 | 460 | 475 | 52.3 | 42.5 | [13] |
Yb:CsPbCl1.5Br1.5:Er(1.7%) *** | Cs-oleate, PbBr2, YbCl3, ErCl3 | 7.1 | 0.6 | OlAm, OlAc | 1.0 | 200 | 10 | 6.8 | 430 | 450 | 20.3 | 68.8 | [13] |
Yb:CsPbCl1.5Br1.5:Ce(2%) *** | Cs-oleate, PbBr2, YbCl3, CeCl3 | 7.1 | 0.6 | OlAm, OlAc | 1.0 | 200 | 10 | 6.8 | 430 | 450 | 27 | 119 | [13] |
Yb:CsPbCl1.5Br1.5 | Cs-oleate, PbBr2, YbCl3 | 7.2 | 0.7 | OlAm, OlAc | 1.0 | 200 | 10 | 6.9 | 430 | 450 | 21.5 | 94.0 | [13] |
Post-synthetic treatment | |||||||||||||
Yb:CsPbBr1.5Cl1.5 | CsPbBr1.5Cl1.5 pNCs, Yb(OAc)3 | 5 | N/A | OlAm, OlAc | N/A | RT | 600 | 11.5 | 440 | 462 | 5.1 | 51 | [43] |
Yb:CsPbBr1.5Cl1.5 | CsPbBr1.5Cl1.5 pNCs, Yb(OAc)3 | 8 | N/A | OlAm, OlAc | N/A | RT | 600 | 11 | 440 | 462 | 6.1 | 69 | [43] |
Yb:CsPbBr1.5Cl1.5 | CsPbBr1.5Cl1.5 pNCs, Yb(OAc)3 | 10 | N/A | OlAm, OlAc | N/A | RT | 600 | 12 | 440 | 462 | 6.0 | 89 | [43] |
Yb:CsPbBr1.5Cl1.5 | CsPbBr1.5Cl1.5 pNCs, Yb(OAc)3 | 20 | N/A | OlAm, OlAc | N/A | RT | 600 | 12 | 440 | 462 | 4.9 | 32 | [43] |
Yb:CsPbBr1.5Cl1.5 | CsPbBr1.5Cl1.5 pNCs, Yb(OAc)3 | 30 | N/A | OlAm, OlAc | N/A | RT | 600 | 13.5 | 440 | 462 | 4.3 | 10 | [43] |
Yb:CsPbCl3 | CsPbCl3 pNCs, Yb(NO3)3 | 0.6 | N/A | OlAm, OlAc | N/A | RT | 60 | N/A | 400 | 410 | N/A | N/A | [57] |
Yb:CsPbBr3 | CsPbBr3 pNCs, Yb(NO3)3 | 0.7 | N/A | OlAm, OlAc | N/A | RT | 60 | 10 | 490 | 520 | N/A | N/A | [57] |
Yb:CsPbI3 | CsPbI3 pNCs, Yb(NO3)3 | 3.7 | N/A | OlAm, OlAc | N/A | RT | 60 | N/A | 630 | 660 | N/A | N/A | [57] |
Yb:CsPbBr3 NPLs | CsPbBr3 pNPLs, Yb(NO3)3 | 1.4 | N/A | OlAm, OlAc | N/A | RT | 60 | N/A | 430 | 440 | N/A | N/A | [57] |
Yb:CsPbCl3 | CsPbCl3 pNCs, YbCl3 | N/A | N/A | OlAm, OlAc | N/A | RT | 12h | N/A | 400 | 405 | 2 | N/A | [31] |
Yb:CsPbBr3 | CsPbBr3 pNCs, YbCl3 | N/A | N/A | OlAm, OlAc | N/A | RT | 12h | 6.6 | 410 | 415 | 2 | 5 | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timkina, Y.A.; Tuchin, V.S.; Litvin, A.P.; Ushakova, E.V.; Rogach, A.L. Ytterbium-Doped Lead–Halide Perovskite Nanocrystals: Synthesis, Near-Infrared Emission, and Open-Source Machine Learning Model for Prediction of Optical Properties. Nanomaterials 2023, 13, 744. https://doi.org/10.3390/nano13040744
Timkina YA, Tuchin VS, Litvin AP, Ushakova EV, Rogach AL. Ytterbium-Doped Lead–Halide Perovskite Nanocrystals: Synthesis, Near-Infrared Emission, and Open-Source Machine Learning Model for Prediction of Optical Properties. Nanomaterials. 2023; 13(4):744. https://doi.org/10.3390/nano13040744
Chicago/Turabian StyleTimkina, Yuliya A., Vladislav S. Tuchin, Aleksandr P. Litvin, Elena V. Ushakova, and Andrey L. Rogach. 2023. "Ytterbium-Doped Lead–Halide Perovskite Nanocrystals: Synthesis, Near-Infrared Emission, and Open-Source Machine Learning Model for Prediction of Optical Properties" Nanomaterials 13, no. 4: 744. https://doi.org/10.3390/nano13040744
APA StyleTimkina, Y. A., Tuchin, V. S., Litvin, A. P., Ushakova, E. V., & Rogach, A. L. (2023). Ytterbium-Doped Lead–Halide Perovskite Nanocrystals: Synthesis, Near-Infrared Emission, and Open-Source Machine Learning Model for Prediction of Optical Properties. Nanomaterials, 13(4), 744. https://doi.org/10.3390/nano13040744