Construction of Polypyrrole-Coated CoSe2 Composite Material for Lithium-Sulfur Battery
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of ZIF-67 and Hollow CoSe2
2.2. Preparation of Hollow CoSe2@PPy Dodecahedrons
2.3. Preparation of Hollow CoSe2@PPy-S
2.4. Measurement of Material Characteristics
2.5. Electrochemical Characterization of Materials
2.6. Visualization Experiment Test
3. Results and Discussion
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pechen, L.; Makhonina, E.; Medvedeva, A.; Politov, Y.; Rumyantsev, A.; Koshtyal, Y.; Goloveshkin, A.; Eremenko, I. Influence of the Composition and Testing Modes on the Electrochemical Performance of Li-Rich Cathode Materials. Nanomaterials 2022, 22, 4054. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Chung, S. Nickel-plated Sulfur Nanocomposites for Electrochemically Stable High-loading Sulfur Cathodes in a Lean-electrolyte Lithium-sulfur Cell. Chem. Eng. J. 2022, 429, 132257. [Google Scholar] [CrossRef]
- Tang, J.; Xie, Q.; Chen, Z.; Tian, Y.; Zuo, J.; Yang, W.; Zheng, W. Convenient Surface Treatment of LiNi0.8Co0.1Mn0.1O2 Materials Improve the Cycle Performance. J. Electrochem. Soc. 2022, 169, 020579. [Google Scholar] [CrossRef]
- Fang, K.; Xie, Q.; Wang, C.; Qiu, X.; Wang, Y.; Yang, W.; Yu, X. Understanding the Feasibility of Manganese Substitution for Cobalt in the Synthesis of Nickel-Rich and Cobalt-Free Cathode Materials. ACS Appl. Energy Mater. 2021, 4, 7190–7200. [Google Scholar] [CrossRef]
- Wang, J.-G.; Xie, K.; Wei, B. Advanced Engineering of Nanostructured Carbons for Lithium–Sulfur Batteries. Nano Energy 2015, 15, 413–444. [Google Scholar] [CrossRef]
- Liang, Y.; Ma, C.; Wang, Y.; Yu, H.; Shen, X.; Yao, S.; Li, T.; Qin, S. Cubic pyrite nickel sulfide nanospheres decorated with Ketjen black@sulfur composite for promoting polysulfides redox kinetics in lithium-sulfur batteries. J. Alloys Compd. 2022, 907, 164396. [Google Scholar] [CrossRef]
- Yang, D.; Liang, Z.; Tang, P.; Zhang, C.; Tang, M.; Li, Q.; Biendicho, J.J.; Li, J.; Heggen, M.; Dunin-Borkowski, R.E.; et al. A High Conductivity 1D π–d Conjugated Metal–Organic Framework with Efficient Polysulfide Trapping-Diffusion-Catalysis in Lithium–Sulfur Batteries. Adv. Mater. 2022, 34, 2108835. [Google Scholar] [CrossRef]
- Riley, L.A.; Cavanagh, A.S.; George, S.M.; Jung, Y.S.; Yan, Y.; Lee, S.-H.; Dillon, A.C. Conformal Surface Coatings to Enable High Volume Expansion Li-Ion Anode Materials. ChemPhysChem 2010, 11, 2124–2130. [Google Scholar] [CrossRef]
- Ali, T.; Yan, C. 2D Materials for Inhibiting the Shuttle Effect in Advanced Lithium–Sulfur Batteries. ChemSusChem 2020, 13, 1447–1479. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, G.; Cui, Y. Mitigation of Shuttle Effect in Li–S Battery Using a Self-Assembled Ultrathin Molybdenum Disulfide Interlayer. ACS Appl. Mater. Interfaces 2019, 11, 3080–3086. [Google Scholar]
- Liu, J.; Xiao, S.H.; Zhang, Z.; Chen, Y.; Xiang, Y.; Liu, X.; Chen, J.S.; Chen, P. Naturally Derived Honeycomb-like N,S-Codoped Hierarchical Porous Carbon with MS2 (M = Co, Ni) Decoration for High-Performance Li–S Battery. Nanoscale 2020, 12, 5114–5124. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Zhang, Z.; Huang, X.; Huang, Y.; Yu, J.; Cai, J.; Yang, Z. Boosting the Polysulfide Confinement in B/N–Codoped Hierarchically Porous Carbon Nanosheets via Lewis Acid–Base Interaction for Stable Li–S Batteries. J. Energy Chem. 2020, 51, 90–100. [Google Scholar] [CrossRef]
- Zhang, J.; You, C.; Wang, J.; Xu, H.; Zhu, C.; Guo, S.; Zhang, W.; Yang, R.; Xu, Y. Confinement of Sulfur Species into Heteroatom-Doped, Porous Carbon Container for High Areal Capacity Cathode. Chem. Eng. J. 2019, 368, 340–349. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, W.; Hu, J.; Xie, Y.; Lai, Y.; Hong, B.; Zhang, K.; Zhang, Z. Highly Dispersed MoP Encapsulated in P-Doped Porous Carbon Boosts Polysulfide Redox Kinetics of Lithium-Sulfur Batteries. Mater. Today Energy 2020, 18, 100531. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, K.; Zhu, Z.; Zhang, R.; Li, N.; Zhao, C. CoP/C Nanocubes-Modified Separator Suppressing Polysulfide Dissolution for High-Rate and Stable Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 2497–2504. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, N.; VP, S.K.; Rathis, G.; Shabariganesh, T.K. Carbon Nanotubes and Their Properties-The Review. Mater. Today Proc. 2021, 47, 4682–4685. [Google Scholar]
- Jia, X.; Zhang, C.; Liu, J.; Lv, W.; Wang, D.-W.; Tao, Y.; Li, Z.; Zheng, X.; Yu, J.-S.; Yang, Q.-H. Evolution of the Effect of Sulfur Confinement in Graphene-Based Porous Carbons for Use in Li–S Batteries. Nanoscale 2016, 8, 4447–4451. [Google Scholar] [CrossRef]
- Cao, G.; Bi, D.; Zhao, J.; Zheng, J.; Wang, Z.; Lai, Q.; Liang, Y. Transformation of ZIF-8 Nanoparticles into 3D Nitrogen-Doped Hierarchically Porous Carbon for Li–S Batteries. RSC Adv. 2020, 10, 17345–17352. [Google Scholar] [CrossRef]
- Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z.W.; Zhuo, D.; Liu, Y.; Sun, J.; et al. Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li−S Batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-J.; Xi, K.; Wang, W.; Liu, S.; Li, G.-R.; Gao, X.-P. Quantitatively Regulating Defects of 2D Tungsten Selenide to Enhance Catalytic Ability for Polysulfide Conversion in a Lithium Sulfur Battery. Energy Storage Mater. 2022, 45, 1229–1237. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, X.-C.; Wu, Y.; Shu, Y.; Gong, X.; Ke, F.-S.; Deng, H. Metal–Organic Frameworks for High Charge–Discharge Rates in Lithium–Sulfur Batteries. Angew. Chem. Int. Edit. 2018, 57, 3916–3921. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Abouimrane, A.; Lu, J.; Bolin, T.; Ren, Y.; Weng, W.; Sun, C.; Maroni, V.A.; Heald, S.M.; Amine, K. (De)Lithiation Mechanism of Li/SeSx (x = 0–7) Batteries Determined by in Situ Synchrotron X-Ray Diffraction and X-ray Absorption Spectroscopy. J. Am. Chem. Soc. 2013, 135, 8047–8056. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Fan, L.; Sun, X.; Guan, B.; Jiang, B.; Wu, X.; Tian, D.; Sun, K.; Qiu, Y.; Yin, X.; et al. Nitrogen-Doped CoSe2 as a Bifunctional Catalyst for High Areal Capacity and Lean Electrolyte of Li–S Battery. ACS Energy Lett. 2020, 5, 3041–3050. [Google Scholar] [CrossRef]
- Yuan, H.; Peng, H.-J.; Li, B.-Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J.-Q.; Zhang, Q. Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium–Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1802768. [Google Scholar] [CrossRef]
- Yin, F.; Ren, J.; Zhang, Y.; Tan, T.; Chen, Z. A PPy/ZnO Functional Interlayer to Enhance Electrochemical Performance of Lithium/Sulfur Batteries. Nanoscale Res Lett 2018, 13, 307. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Huang, N.; Wang, J.; Ren, H.; Joo, S.W.; Huang, J. Fabrication of Polypyrrole Coated Cobalt Manganate Porous Nanocubes by a Facile Template Precipitation and Annealing Method for Lithium–Sulfur Batteries. J. Alloys Compd. 2021, 885, 161350. [Google Scholar] [CrossRef]
- Geng, P.; Cao, S.; Guo, X.; Ding, J.; Zhang, S.; Zheng, M.; Pang, H. Polypyrrole Coated Hollow Metal–Organic Framework Composites for Lithium–Sulfur Batteries. J. Mater. Chem. A 2019, 7, 19465–19470. [Google Scholar] [CrossRef]
- Wei, W.; Li, J.; Liu, D.; Pan, C.; Liu, P. Well-Defined Hierarchically Porous Double-Shell Hollow Polypyrrole@Sulfur Microspheres with Outer Sulfur Shells for Lithium–Sulfur Batteries with Superior Electrochemical Performance. Energy Fuel. 2020, 34, 7676–7683. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, H.; Ning, S.; Lin, J.; Wen, J.; Kang, X. Polypyrrole/Graphene Composite Interlayer: High Redox Kinetics of Polysulfides and Electrochemical Performance of Lithium–Sulfur Batteries Enabled by Unique Pyrrolic Nitrogen Sites. ChemElectroChem 2021, 8, 1798–1806. [Google Scholar] [CrossRef]
- Yuan, B.; Hua, D.; Gu, X.; Shen, Y.; Xu, L.-C.; Li, X.; Zheng, B.; Wu, J.; Zhang, W.; Li, S.; et al. Polar, Catalytic, and Conductive CoSe2/C Frameworks for Performance Enhanced S Cathode in Li–S Batteries. J. Energy Chem. 2020, 48, 128–135. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Y.; Cao, G.; Sari, H.M.K.; Duan, R.; Wang, J.; Xie, C.; Li, W.; Li, X. Bifunctional Catalytic Effect of CoSe2 for Lithium–Sulfur Batteries: Single Doping versus Dual Doping. Adv. Funct. Mater. 2022, 32, 2107838. [Google Scholar] [CrossRef]
- Qiu, Y.; Yin, X.-J.; Wang, M.-X.; Li, M.; Sun, X.; Jiang, B.; Zhou, H.; Tang, D.-Y.; Zhang, Y.; Fan, L.-S.; et al. Constructed Conductive CoSe2 Nanoarrays as Efficient Electrocatalyst for High-Performance Li–S Battery. Rare Met. 2021, 40, 3147–3155. [Google Scholar] [CrossRef]
- Xu, W.; Wu, Q.; Che, Z.; Fan, B.; Zhao, D.; Wang, S.; Han, A.; Li, L. A Novel Synthesizing Strategy of 3D CoSe2 Porous Hollow Flowers for High Performance Lithium–Sulfur Batteries. Catalysts 2021, 11, 273. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, H.; Lu, Q.; Liu, Y.; Li, J.; He, X.; Liu, X.; Mikhailova, D. Designing Hierarchical MnO/Polypyrrole Heterostructures to Couple Polysulfides Adsorption and Electrocatalysis in Lithium-Sulfur Batteries. J. Power Sources 2022, 520, 230885. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Ma, Q.; Chen, X.; Sun, S.; Xu, H.; Zhu, L.; Wang, Z.; Feng, J.; Yan, W. Elastic Three-Dimensional Fe-Doped Polypyrrole Aerogel Current Collector for High-Loading and High-Energy-Density Lithium-Sulfur Batteries. J. Alloys Compd. 2022, 899, 163298. [Google Scholar] [CrossRef]
- Sadd, M.; Agostini, M.; Xiong, S.; Matic, A. Polysulfide Speciation and Migration in Catholyte Lithium−Sulfur Cells. ChemPhysChem 2022, 23, e202100853. [Google Scholar] [CrossRef]
- Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves. Angew Chem. Int. Edit. 2021, 60, 21310–21318. [Google Scholar] [CrossRef]
- Zheng, J.; Li, X.; He, C.; Zhou, C.; Zhang, H.; Tang, B.; Rui, Y. Preparation and Electrochemical Performance of CoSe2−MnSe2 for Application in Lithium-Ion Batteries. ChemElectroChem 2020, 7, 782–791. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Feng, Y.; Qiu, X.; Ren, F.; Cen, J.; Chong, Q.; Tian, Y.; Yang, W. Construction of Polypyrrole-Coated CoSe2 Composite Material for Lithium-Sulfur Battery. Nanomaterials 2023, 13, 865. https://doi.org/10.3390/nano13050865
Wu Y, Feng Y, Qiu X, Ren F, Cen J, Chong Q, Tian Y, Yang W. Construction of Polypyrrole-Coated CoSe2 Composite Material for Lithium-Sulfur Battery. Nanomaterials. 2023; 13(5):865. https://doi.org/10.3390/nano13050865
Chicago/Turabian StyleWu, Yinbo, Yaowei Feng, Xiulian Qiu, Fengming Ren, Jian Cen, Qingdian Chong, Ye Tian, and Wei Yang. 2023. "Construction of Polypyrrole-Coated CoSe2 Composite Material for Lithium-Sulfur Battery" Nanomaterials 13, no. 5: 865. https://doi.org/10.3390/nano13050865
APA StyleWu, Y., Feng, Y., Qiu, X., Ren, F., Cen, J., Chong, Q., Tian, Y., & Yang, W. (2023). Construction of Polypyrrole-Coated CoSe2 Composite Material for Lithium-Sulfur Battery. Nanomaterials, 13(5), 865. https://doi.org/10.3390/nano13050865