Periodic Surface Structuring of Copper with Spherical and Cylindrical Lenses
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vorobyev, A.Y.; Guo, C. Direct Femtosecond Laser Surface Nano/Microstructuring and Its Applications. Laser Photonics Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
- Bonse, J.; Hohm, S.; Kirner, S.V.; Rosenfeld, A.; Kruger, J. Laser-Induced Periodic Surface Structures-A Scientific Evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 9000615. [Google Scholar] [CrossRef]
- Stratakis, E.; Bonse, J.; Heitz, J.; Siegel, J.; Tsibidis, G.D.; Skoulas, E.; Papadopoulos, A.; Mimidis, A.; Joel, A.C.; Comanns, P.; et al. Laser Engineering of Biomimetic Surfaces. In Materials Science and Engineering R: Reports; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; p. 100562. [Google Scholar] [CrossRef]
- Bonse, J. Quo Vadis LIPSS?—Recent and Future Trends on Laser-Induced Periodic Surface Structures. Nanomaterials 2020, 10, 1950. [Google Scholar] [CrossRef] [PubMed]
- Bonse, J.; Kirner, S.V.; Krüger, J. Laser-Induced Periodic Surface Structures (LIPSS). In Handbook of Laser Micro- and Nano-Engineering; Springer Nature: Cham, Switzerland, 2020; pp. 879–936. [Google Scholar] [CrossRef]
- Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast Laser Processing of Materials: From Science to Industry. Light Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef] [Green Version]
- Ruiz de la Cruz, A.; Lahoz, R.; Siegel, J.; de la Fuente, G.F.; Solis, J. High Speed Inscription of Uniform, Large-Area Laser-Induced Periodic Surface Structures in Cr Films Using a High Repetition Rate Fs Laser. Opt. Lett. 2014, 39, 2491. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Edfuf, Y.; Sánchez-Gil, J.A.; Florian, C.; Giannini, V.; Solis, J.; Siegel, J. Surface Plasmon Polaritons on Rough Metal Surfaces: Role in the Formation of Laser-Induced Periodic Surface Structures. ACS Omega 2019, 4, 6939–6946. [Google Scholar] [CrossRef]
- Gnilitskyi, I.; Derrien, T.J.Y.; Levy, Y.; Bulgakova, N.M.; Mocek, T.; Orazi, L. High-Speed Manufacturing of Highly Regular Femtosecond Laser-Induced Periodic Surface Structures: Physical Origin of Regularity. Sci. Rep. 2017, 7, 8485. [Google Scholar] [CrossRef] [Green Version]
- Gnilitskyi, I.; Gruzdev, V.; Bulgakova, N.M.; Mocek, T.; Orazi, L. Mechanisms of High-Regularity Periodic Structuring of Silicon Surface by Sub-MHz Repetition Rate Ultrashort Laser Pulses. Appl. Phys. Lett. 2016, 109, 143101. [Google Scholar] [CrossRef]
- JJ Nivas, J.; Allahyari, E.; Amoruso, S. Direct Femtosecond Laser Surface Structuring with Complex Light Beams Generated by Q-Plates. Adv. Opt. Techn. 2020, 9, 53–66. [Google Scholar] [CrossRef]
- JJ Nivas, J.; He, S.; Song, Z.; Rubano, A.; Vecchione, A.; Paparo, D.; Marrucci, L.; Bruzzese, R.; Amoruso, S. Femtosecond Laser Surface Structuring of Silicon with Gaussian and Optical Vortex Beams. Appl. Surf. Sci. 2017, 418, 565–571. [Google Scholar] [CrossRef]
- Buividas, R.; Mikutis, M.; Juodkazis, S. Surface and Bulk Structuring of Materials by Ripples with Long and Short Laser Pulses: Recent Advances. Prog. Quantum Electron. 2014, 38, 119–156. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast Lasers—Reliable Tools for Advanced Materials Processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wu, L.C.; Ueki, M.; Ito, Y.; Sugioka, K. Femtosecond Laser Shockwave Peening Ablation in Liquids for Hierarchical Micro/Nanostructuring of Brittle Silicon and Its Biological Application. Int. J. Extrem. Manuf. 2020, 2, 045001. [Google Scholar] [CrossRef]
- Fraggelakis, F.; Tsibidis, G.D.; Stratakis, E. Ultrashort Pulsed Laser Induced Complex Surface Structures Generated by Tailoring the Melt Hydrodynamics. Opto-Electron. Adv. 2022, 5, 210052. [Google Scholar] [CrossRef]
- Bonse, J.; Gräf, S. Maxwell Meets Marangoni—A Review of Theories on Laser-Induced Periodic Surface Structures. Laser Photon. Rev. 2020, 14, 2000215. [Google Scholar] [CrossRef]
- Bonse, J.; Gräf, S. Ten Open Questions about Laser-Induced Periodic Surface Structures. Nanomaterials 2021, 11, 3326. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Fu, Y.; Yao, Q.; Li, Z.; Sugioka, K.; Zhang, D.; Li, X.; Fu, Y.; Yao, Q.; et al. Liquid Vortexes and Flows Induced by Femtosecond Laser Ablation in Liquid Governing Formation of Circular and Crisscross LIPSS. Opto-Electron. Adv. 2022, 5, 210066-1. [Google Scholar] [CrossRef]
- Zhang, D.; Ranjan, B.; Tanaka, T.; Sugioka, K. Carbonized Hybrid Micro/Nanostructured Metasurfaces Produced by Femtosecond Laser Ablation in Organic Solvents for Biomimetic Antireflective Surfaces. ACS Appl. Nano Mater. 2020, 3, 1855–1871. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liu, R.; Li, Z. Irregular LIPSS Produced on Metals by Single Linearly Polarized Femtosecond Laser. Int. J. Extrem. Manuf. 2021, 4, 015102. [Google Scholar] [CrossRef]
- Austin, D.R.; Kafka, K.R.P.; Trendafilov, S.; Shvets, G.; Li, H.; Yi, A.Y.; Szafruga, U.B.; Wang, Z.; Lai, Y.H.; Blaga, C.I.; et al. Laser induced periodic surface structure formation in germanium by strong field mid IR laser solid interaction at oblique incidence. Opt. Exp. 2015, 23, 19522. [Google Scholar] [CrossRef] [PubMed]
- Navickas, M.; Grigutis, R.; Jukna, V.; Tamošauskas, G.; Dubietis, A. Low spatial frequency laser-induced periodic surface structures in fused silica inscribed by widely tunable femtosecond laser pulses. Sci. Rep. 2022, 12, 20231. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Rusli; Wang, X.C.; Zheng, H.Y.; Wang, H.; Yu, H.Y. Femtosecond Laser Fabrication of Large-Area Periodic Surface Ripple Structure on Si Substrate. Appl. Surf. Sci. 2014, 297, 134–138. [Google Scholar] [CrossRef]
- Le Harzic, R.; Dörr, D.; Sauer, D.; Neumeier, M.; Epple, M.; Zimmermann, H.; Stracke, F. Large-Area, Uniform, High-Spatial-Frequency Ripples Generated on Silicon Using a Nanojoule-Femtosecond Laser at High Repetition Rate. Opt. Lett. 2011, 36, 229. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, G.; Liu, L.; Zhao, Y.; Liang, Q.; Wu, A.; Zhou, Y.N. Time-Dependent Wettability of Nano-Patterned Surfaces Fabricated by Femtosecond Laser with High Efficiency. Appl. Surf. Sci. 2016, 389, 554–559. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Jiang, Q.; Cao, K.; Liu, J.; Jia, T.; Sun, Z.; Xu, H. Regular Periodic Surface Structures on Indium Tin Oxide Film Efficiently Fabricated by Femtosecond Laser Direct Writing with a Cylindrical Lens. Materials 2022, 15, 5092. [Google Scholar] [CrossRef]
- Rumolo, G.; Bartosik, H.; Belli, E.; Dijkstal, P.; Iadarola, G.; Li, K.; Mether, L.; Romano, A.; Schenk, M.; Zimmermann, F. Electron Cloud Effects at the LHC and LHC Injectors. In Proceedings of the 8th International Particle Accelerator Conference (IPAC), No. THPVA027, Copenhagen, Denmark, 14–19 May 2017; pp. 30–36. [Google Scholar] [CrossRef]
- Dai, P.; Li, H.; Huang, X.; Wang, N.; Zhu, L. Highly Sensitive and Stable Copper-Based SERS Chips Prepared by a Chemical Reduction Method. Nanomaterials 2021, 11, 2770. [Google Scholar] [CrossRef]
- Ankamwar, B.; Sur, U.K. Copper micro/nanostructures as effective SERS active substrates for pathogen detection. Adv. Nano Res. 2020, 9, 113. [Google Scholar] [CrossRef]
- Bhavyasree, P.G.; Xavier, T.S. Green synthesised copper and copper oxide based nanomaterials using plantextracts and their application in antimicrobial activity: Review. Curr. Res. Green Sustain. Chem. 2022, 5, 100249. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef]
- JJ Nivas, J.; Valadan, M.; Salvatore, M.; Fittipaldi, R.; Himmerlich, M.; Rimoldi, M.; Passarelli, A.; Allahyari, E.; Oscurato, S.L.; Vecchione, A.; et al. Secondary Electron Yield Reduction by Femtosecond Pulse Laser-Induced Periodic Surface Structuring. Surf. Interfaces 2021, 25, 101179. [Google Scholar] [CrossRef]
- Bez, E.; Himmerlich, M.; Lorenz, P.; Ehrhardt, M.; Gunn, A.G.; Pfeiffer, S.; Rimoldi, M.; Taborelli, M.; Zimmer, K.; Chiggiato, P.; et al. Influence of wavelength and accumulated fluence at picosecond laser-induced surface roughening of copper on secondary electron yield. J. Appl. Phys. 2023, 133, 035303. [Google Scholar] [CrossRef]
- Liu, J.M. Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Gecys, P.; Markauskas, E.; Gedvilas, M.; Raciukaitis, G.; Repins, I.; Beall, C. Ultrashort Pulsed Laser Induced Material Lift-off Processing of CZTSe Thin-Film Solar Cells. Sol. Energy 2014, 102, 82–90. [Google Scholar] [CrossRef]
- Krüger, J.; Kautek, W. Ultrashort Pulse Laser Interaction with Dielectrics and Polymers. In Polymers and Light Advances in Polymer Science 168; Lippert, T., Ed.; Springer: Berlin, Heidelberg, 2004; pp. 247–290. [Google Scholar] [CrossRef]
- Bouilly, D.; Perez, D.; Lewis, L.J. Damage in Materials Following Ablation by Ultrashort Laser Pulses: A Molecular-Dynamics Study. Phys. Rev. B—Condens. Matter Mater. Phys. 2007, 76, 184119. [Google Scholar] [CrossRef]
- Semaltianos, N.G.; Perrie, W.; Vishnyakov, V.; Murray, R.; Williams, C.J.; Edwardson, S.P.; Dearden, G.; French, P.; Sharp, M.; Logothetidis, S.; et al. Nanoparticle Formation by the Debris Produced by Femtosecond Laser Ablation of Silicon in Ambient Air. Mater. Lett. 2008, 62, 2165–2170. [Google Scholar] [CrossRef]
- Pereira, A.; Delaporte, P.; Sentis, M.; Marine, W.; Thomann, A.L.; Boulmer-Leborgne, C. Optical and Morphological Investigation of Backward-Deposited Layer Induced by Laser Ablation of Steel in Ambient Air. J. Appl. Phys. 2005, 98, 064902. [Google Scholar] [CrossRef]
- Allahyari, E.; JJ Nivas, J.; Oscurato, S.L.; Salvatore, M.; Ausanio, G.; Vecchione, A.; Fittipaldi, R.; Maddalena, P.; Bruzzese, R.; Amoruso, S. Laser Surface Texturing of Copper and Variation of the Wetting Response with the Laser Pulse Fluence. Appl. Surf. Sci. 2019, 470, 817–824. [Google Scholar] [CrossRef]
- D’Andrea, M. Femtosecond Laser Surface Texturing of a Metallic Target, MSc Thesis, Università degli Studi di Napoli Federico II. 2022. Available online: http://www.fisica.unina.it/documents/12375590/13725484/3256_D%27AndreaM.pdf/3d1ff70a-8824-4ba2-aac4-0d50ba7576a7 (accessed on 1 February 2023).
- Messaoudi, H.; Das, S.K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R. Femtosecond-Laser Induced Periodic Surface Structures for Surface Enhanced Raman Spectroscopy of Biomolecules. In Progress in Nonlinear Nano-Optics, Nano-Optics and Nanophotonics; Sakabe, S., Lienau, C., Grunwald, R., Eds.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Li, T.; Zhu, H.; Wu, Z. Viewing Aggregation-Induced Emission of Metal Nanoclusters from Design Strategies to Applications. Nanomaterials 2023, 13, 470. [Google Scholar] [CrossRef]
- Bai, S.; Hu, A.; Hu, Y.; Ma, Y.; Obata, K.; Sugioka, K. Plasmonic Superstructure Arrays Fabricated by Laser Near-Field Reduction for Wide-Range SERS Analysis of Fluorescent Materials. Nanomaterials 2022, 12, 970. [Google Scholar] [CrossRef]
- Bhaskar, S.; Rai, A.; Ganesh, K.M.; Reddy, R.; Reddy, N.; Ramamurthy, S.S. Sericin-Based Bio-Inspired Nano-Engineering of Heterometallic AgAu Nanocubes for Attomolar Mefenamic Acid Sensing in the Mobile Phone-Based Surface Plasmon-Coupled Interface. Langmuir 2022, 38, 12035. [Google Scholar] [CrossRef] [PubMed]
- Orazi, L.; Gnilitskyi, I.; Serro, A.P. Laser Nanopatterning for Wettability Applications. J. Micro Nano-Manuf. 2017, 5, 021008. [Google Scholar] [CrossRef] [Green Version]
- JJ Nivas, J.; Amoruso, S. Generation of Supra-Wavelength Grooves in Femtosecond Laser Surface Structuring of Silicon. Nanomaterials 2021, 11, 174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Nivas, J.J.; D’Andrea, M.; Valadan, M.; Fittipaldi, R.; Lettieri, M.; Vecchione, A.; Altucci, C.; Amoruso, S. Periodic Surface Structuring of Copper with Spherical and Cylindrical Lenses. Nanomaterials 2023, 13, 1005. https://doi.org/10.3390/nano13061005
Hu M, Nivas JJ, D’Andrea M, Valadan M, Fittipaldi R, Lettieri M, Vecchione A, Altucci C, Amoruso S. Periodic Surface Structuring of Copper with Spherical and Cylindrical Lenses. Nanomaterials. 2023; 13(6):1005. https://doi.org/10.3390/nano13061005
Chicago/Turabian StyleHu, Meilin, Jijil JJ Nivas, Martina D’Andrea, Mohammadhassan Valadan, Rosalba Fittipaldi, Mariateresa Lettieri, Antonio Vecchione, Carlo Altucci, and Salvatore Amoruso. 2023. "Periodic Surface Structuring of Copper with Spherical and Cylindrical Lenses" Nanomaterials 13, no. 6: 1005. https://doi.org/10.3390/nano13061005
APA StyleHu, M., Nivas, J. J., D’Andrea, M., Valadan, M., Fittipaldi, R., Lettieri, M., Vecchione, A., Altucci, C., & Amoruso, S. (2023). Periodic Surface Structuring of Copper with Spherical and Cylindrical Lenses. Nanomaterials, 13(6), 1005. https://doi.org/10.3390/nano13061005