Towards Digital Twin Implementation in Roll-To-Roll Gravure Printed Electronics: Overlay Printing Registration Error Prediction Based on Printing Process Parameters
Abstract
:1. Introduction
2. The Overlay Printing Registration Accuracy (OPRA) Prediction in R2R Gravure Printing
2.1. R2R Gravure Printing Process Parameters
2.2. The Prediction Model
3. Experimental Results
3.1. Data Acquisition
3.2. Prediction Model Training and Evaluation
4. Effects of the Nip Force Variation on MD Error under Various Printing Speeds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hyun Kim, S.; Hong, K.; Xie, W.; Hyung Lee, K.; Zhang, S.; Lodge, T.P.; Daniel Frisbie, C.; Kim, S.H.; Hong, K.; Xie, W.; et al. Electrolyte-Gated Transistors for Organic and Printed Electronics. Adv. Mater. 2013, 25, 1822–1846. [Google Scholar] [CrossRef]
- Kang, J.; Tok, J.B.H.; Bao, Z. Self-Healing Soft Electronics. Nat. Electron. 2019, 2, 144–150. [Google Scholar] [CrossRef]
- Dai, Y.; Hu, H.; Wang, M.; Xu, J.; Wang, S. Stretchable Transistors and Functional Circuits for Human-Integrated Electronics. Nat. Electron. 2021, 4, 17–29. [Google Scholar] [CrossRef]
- Lee, G.H.; Moon, H.; Kim, H.; Lee, G.H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S.H.; Bao, Z.; Hahn, S.K. Multifunctional Materials for Implantable and Wearable Photonic Healthcare Devices. Nat. Rev. Mater. 2020, 5, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Bonnassieux, Y.; Brabec, C.J.; Cao, Y.; Carmichael, T.B.; Chabinyc, M.L.; Cheng, K.T.; Cho, G.; Chung, A.; Cobb, C.L.; Distler, A.; et al. The 2021 Flexible and Printed Electronics Roadmap. Flex. Print. Electron. 2021, 6, 023001. [Google Scholar] [CrossRef]
- Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A.D.; et al. All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-Bit RF Tag on Plastic Foils. IEEE Trans Electron Devices 2010, 57, 571–580. [Google Scholar] [CrossRef]
- Krebs, F.C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Ng, T.N.; Schwartz, D.E.; Lavery, L.L.; Whiting, G.L.; Russo, B.; Krusor, B.; Veres, J.; Bröms, P.; Herlogsson, L.; Alam, N.; et al. Scalable Printed Electronics: An Organic Decoder Addressing Ferroelectric Non-Volatile Memory. Sci. Rep. 2012, 2, 585. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Asare-Yeboah, K.; Zhang, Z.; Bi, S. Manipulate Organic Crystal Morphology and Charge Transport. Org. Electron. 2022, 103, 106448. [Google Scholar] [CrossRef]
- Sun, J.; Park, H.; Jung, Y.; Rajbhandari, G.; Maskey, B.B.; Sapkota, A.; Azuma, Y.; Majima, Y.; Cho, G. Proving Scalability of an Organic Semiconductor to Print a TFT-Active Matrix Using a Roll-to-Roll Gravure. ACS Omega 2017, 2, 5766–5774. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Z.; Asare-Yeboah, K.; Bi, S. Binary Solvent Engineering for Small-Molecular Organic Semiconductor Crystallization. Mater. Adv. 2023, 4, 769–786. [Google Scholar] [CrossRef]
- Kang, D.; Kim, H.; Kim, H.; Jo, J.; Lee, T.-M. Actively Compensated Precision Overlay in a Reverse-Offset Printing System for Realizing Printed Electronics of a Large-Area and Multi-Layer Structure. Flex. Print. Electron. 2022, 7, 014010. [Google Scholar] [CrossRef]
- Noh, J.; Yeom, D.; Lim, C.; Cha, H.; Han, J.; Kim, J.; Park, Y.; Subramanian, V.; Cho, G. Scalability of Roll-to-Roll Gravure-Printed Electrodes on Plastic Foils. IEEE Trans. Electron. Packag. Manuf. 2010, 33, 275–283. [Google Scholar] [CrossRef]
- Sneck, A.; Ailas, H.; Gao, F.; Leppäniemi, J. Reverse-Offset Printing of Polymer Resist Ink for Micrometer-Level Patterning of Metal and Metal-Oxide Layers. ACS Appl. Mater. Interfaces 2021, 13, 41782–41790. [Google Scholar] [CrossRef]
- Kusaka, Y.; Sugihara, K.; Koutake, M.; Ushijima, H. Overlay of Semi-Dried Functional Layers in Offset Printing for Rapid and High-Precision Fabrication of Flexible TFTs. J. MicroMech. MicroEng. 2014, 24, 035020. [Google Scholar] [CrossRef]
- Moonen, P.F.; Yakimets, I.; Huskens, J.; Huskens, J.; Moonen, P.F.; Yakimets, I. Fabrication of Transistors on Flexible Substrates: From Mass-Printing to High-Resolution Alternative Lithography Strategies. Adv. Mater. 2012, 24, 5526–5541. [Google Scholar] [CrossRef]
- Fukuda, K.; Someya, T. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology. Adv. Mater. 2017, 29, 1602736. [Google Scholar] [CrossRef]
- Takeda, Y.; Hayasaka, K.; Shiwaku, R.; Yokosawa, K.; Shiba, T.; Mamada, M.; Kumaki, D.; Fukuda, K.; Tokito, S. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications. Sci. Rep. 2016, 6, 25714. [Google Scholar] [CrossRef] [Green Version]
- Hammock, M.L.; Chortos, A.; Tee, B.C.K.; Tok, J.B.H.; Bao, Z. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Adv. Mater. 2013, 25, 5997–6038. [Google Scholar] [CrossRef]
- Choi, K.; Thanh, T.; Kim, D.-K. A Precise Control Algorithm for Single-Span Roll-to-Roll Web System Using the Back-Stepping Controller. In Proceedings of the 2009 IEEE International Symposium on Industrial Electronics, Seoul, Republic of Korea, 5–8 July 2009. [Google Scholar]
- Choi, K.H.; Tran, T.T.; Ganeshthangaraj, P.; Lee, K.H.; Nguyen, M.N.; Jo, J.D.; Kim, D.S. Web Register Control Algorithm for Roll-to-Roll System Based Printed Electronics. In Proceedings of the 2010 IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada, 21–24 August 2010. [Google Scholar]
- Lee, J.; Shin, K.; Jung, H. Control Scheme for Rapidly Responding Register Controller Using Response Acceleration Input in Industrial Roll-To-Roll Manufacturing Systems. IEEE Trans. Ind. Electron. 2022, 69, 5215–5224. [Google Scholar] [CrossRef]
- Gafurov, A.N.; Jeong, J.; Park, P.; Kim, I.; Phung, T.H.; Kim, H.C.; Kang, D.; Oh, D.; Lee, T.M. Registration Error Analysis and Compensation of Roll-to-Roll Screen Printing System for Flexible Electronics. Flex. Print. Electron. 2021, 6, 024003. [Google Scholar] [CrossRef]
- Kang, H.; Lee, C.; Shin, K. Modeling and Compensation of the Machine Directional Register in Roll-to-Roll Printing. Control Eng Pract. 2013, 21, 645–654. [Google Scholar] [CrossRef]
- Kang, H.K.; Lee, C.W.; Lee, J.M.; Shin, K.H. Cross Direction Register Modeling and Control in a Multi-Layer Gravure Printing. J. Mech. Sci. Technol. 2010, 24, 391–397. [Google Scholar] [CrossRef]
- Research, A.K.-I.J. of P.; 2018, undefined Smart Manufacturing. Taylor Fr. 2018, 56, 508–517. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Garetti, M.; Tanca, L. Requirements and Languages for the Semantic Representation of Manufacturing Systems. Comput. Ind. 2016, 81, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Cimino, C.; Negri, E.; Fumagalli, L. Review of Digital Twin Applications in Manufacturing. Comput. Ind. 2019, 113, 103130. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural. Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.R.; Hinton, G. Speech Recognition with Deep Recurrent Neural Networks. Neural Evol. Comput. 2013, 6645–6649. [Google Scholar] [CrossRef]
- Eyben, F.; Wollmer, M.; Schuller, B.; Graves, A. From Speech to Letters—Using a Novel Neural Network Architecture for Grapheme Based ASR. In Proceedings of the 2009 IEEE Workshop on Automatic Speech Recognition & Understanding, Moreno, Italy, 13 November–17 December 2009. [Google Scholar]
- Graves, A.; Jaitly, N.; Mohamed, A.R. Hybrid Speech Recognition with Deep Bidirectional LSTM. In Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December 2013. [Google Scholar] [CrossRef]
- Yao, L.; Guan, Y. An Improved LSTM Structure for Natural Language Processing. Proceedings of 2018 IEEE International Conference of Safety Produce Informatization, IICSPI, Chongqing, China, 10–12 December 2018. [Google Scholar] [CrossRef]
- Bhandari, H.N.; Rimal, B.; Pokhrel, N.R.; Rimal, R.; Dahal, K.R.; Khatri, R.K.C. Predicting Stock Market Index Using LSTM. Mach. Learn. Appl. 2022, 9, 100320. [Google Scholar] [CrossRef]
- Sak, H.H.; Senior, A.; Google, B. Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling. Available online: https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/43905.pdf (accessed on 5 February 2014).
- Rajagukguk, R.A.; Ramadhan, R.A.A.; Lee, H.J. A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power. Energies 2020, 13, 6623. [Google Scholar] [CrossRef]
- Das, K.; Jiang, J.; Rao, J.N.K. Mean Squared Error of Empirical Predictor. Ann. Statist. 2004, 32, 818–840. [Google Scholar] [CrossRef] [Green Version]
- Lewis-Beck, C.; Lewis-Beck, M. Applied Regression: An Introduction. In Applied Regression: An Introduction; SAGE Publications, Inc.: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
T2_Mean | T2_Std | T2_Min | T2_Max | … | NIP2_F_Min | NIP2_F_Max |
---|---|---|---|---|---|---|
4.92 | 0.192353841 | 4.6 | 5.1 | … | 5.6 | 6.1 |
4.86 | 0.260768096 | 4.6 | 5.2 | … | 6.3 | 7.0 |
4.92 | 0.044721361 | 4.9 | 5.0 | … | 7.1 | 7.8 |
4.82 | 0.334664011 | 4.5 | 5.3 | … | 6.1 | 7.2 |
… | … | … | … | … | … | … |
5.12 | 0.083666003 | 5.0 | 5.2 | … | 5.5 | 6.9 |
5.14 | 0.089442719 | 5.0 | 5.2 | … | 6.0 | 7.4 |
Sequence length (seconds) | 4 s | 6 s | 8 s | 10 s |
R2 value | 62% | 71% | 66% | 77% |
Process Parameter | Units | Values |
---|---|---|
Nip force | Kgf | [4, 6, 8] |
Printing speed | mm/s | [30, 60, 90, 120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakeel, A.; Maskey, B.B.; Shrestha, S.; Parajuli, S.; Jung, Y.; Cho, G. Towards Digital Twin Implementation in Roll-To-Roll Gravure Printed Electronics: Overlay Printing Registration Error Prediction Based on Printing Process Parameters. Nanomaterials 2023, 13, 1008. https://doi.org/10.3390/nano13061008
Shakeel A, Maskey BB, Shrestha S, Parajuli S, Jung Y, Cho G. Towards Digital Twin Implementation in Roll-To-Roll Gravure Printed Electronics: Overlay Printing Registration Error Prediction Based on Printing Process Parameters. Nanomaterials. 2023; 13(6):1008. https://doi.org/10.3390/nano13061008
Chicago/Turabian StyleShakeel, Anood, Bijendra Bishow Maskey, Sagar Shrestha, Sajjan Parajuli, Younsu Jung, and Gyoujin Cho. 2023. "Towards Digital Twin Implementation in Roll-To-Roll Gravure Printed Electronics: Overlay Printing Registration Error Prediction Based on Printing Process Parameters" Nanomaterials 13, no. 6: 1008. https://doi.org/10.3390/nano13061008
APA StyleShakeel, A., Maskey, B. B., Shrestha, S., Parajuli, S., Jung, Y., & Cho, G. (2023). Towards Digital Twin Implementation in Roll-To-Roll Gravure Printed Electronics: Overlay Printing Registration Error Prediction Based on Printing Process Parameters. Nanomaterials, 13(6), 1008. https://doi.org/10.3390/nano13061008