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Abstract: Abundant research findings have proved the value of two-dimensional (2D) materials in
the study of nonlinear optics in fiber lasers. However, there remains two problems: how to reduce the
start-up threshold, and how to improve the damage threshold, of fiber lasers based on 2D materials.
A 15.1 mW low-threshold mode-locked fiber laser, based on a Cr2Si2Te6 saturable absorber (SA)
prepared by the liquid-phase exfoliation method, is demonstrated successfully in this work. This
provides a useful and economical method to produce SAs with low insertion loss and low saturation
intensity. Besides, multiple high-order harmonics, from the fundamental frequency (12.6 MHz) to the
49th-order harmonic (617.6 MHz), mode-locked operations are recorded. The experimental results
indicate the excellent potential of Cr2Si2Te6 as an optical modulator in exploring the soliton dynamics,
harmonic mode locking, and other nonlinear effects in fiber lasers.

Keywords: low-threshold fiber laser; harmonic mode locking; 2D material

1. Introduction

Two-dimensional (2D) materials, with a van der Waals layered structure, possess
attractive properties including quantum effects, microsize effects, and surface effects, for
technical and practical applications such as in biomedicine, optical sensors, photodetectors,
ultrafast photonics, and optical modulations [1–8]. Especially, distinctive physical singular-
ities will occur as charge or heat transfer are determined on a plane, which has aroused the
interest of researchers. One of the most active research directions is the preparation of 2D
materials-based saturable absorbers (SAs) and their corresponding application in ultrafast
fiber lasers [9–12]. This has great significance for the exploration of soliton dynamics,
harmonic mode locking, and abundant other and complex nonlinear optical effects. The
nonlinear saturable absorption effect is the basis of 2D materials used as SAs. The mecha-
nism of saturation absorption of an SA is the Pauli blocking principle. When high-intensity
light enters, the electrons in the 2D material will be excited from the valence band to the
conduction band. After the conduction band is completely occupied, the photons will no
longer be absorbed by the material, and SAs will show the saturable absorption property.
Since the ultrafast fiber lasers realized by SAs have the advantages of simple structure and
low cost [13], researchers have never stopped looking for more improved 2D materials,
with better nonlinear effects and exceptional air stability, to realize excellent laser output.

There are two problems: (i) how to reduce the start-up threshold, and (ii) how to
improve the damage threshold of fiber lasers based on 2D materials, that researchers are
attempting to solve [9,14]. Among them, low-threshold fiber lasers have attracted great
attention due to their advantages: a low mode-locked threshold means that ultrashort
pulses can be obtained under a low operating voltage and current, corresponding to a low
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cost. Besides, a lower threshold leads to a lower intensity of spontaneous radiation noise
and so the laser can operate with better stability. In addition, in the field of biomedicine,
low-power lasers are needed, since proteins are vulnerable to damage in strong light fields.
So low-threshold ultrafast lasers have great application potential. Currently, research on
fiber lasers with a low threshold is developing rapidly [15–17]. The threshold concept arises
due to the inevitable presence of self-radiating noise in fiber lasers [18], the magnitude of
which can be reduced, but not eliminated completely. The advantages of low-threshold
fiber lasers are also indirectly demonstrated by the direct relationship between the laser
generation threshold and the laser emission. Therefore, it is important to study the factors
affecting the start-up threshold, and to provide solutions. We find that, in addition to
the self-radiating noise of fiber lasers, there are some crucial factors that affect the start-
up threshold of 2D materials-based fiber lasers, which are, insertion loss and saturation
intensity of 2D materials-based SAs. So, finding a suitable material, and optimizing the
preparation method of SAs, is one of the ideas to reduce the start-up threshold.

Due to the continuous exploration in the field of materials, various materials have been
applied to the research of low-threshold mode-locked fiber lasers, since graphene [19–24]. The
availability of topological insulators (TIs) offers the possibility of making high-performance
SAs [25–27]. Yin et al. prepared a Bi2Te3-based SA and output mode-locked pulses, with
a pulse width of 1.26 ps, but the threshold power was still as high as 315 mW [28]. The
appearance of black phosphorus (BP) provided researchers with more options to improve
the performance of mode-locked fiber lasers [29,30]. Yu et al. prepared a BP-based SA, with
a modulation depth of ~9.8%, and a mode-locked laser output with a pulse width of 1.58 ps
was achieved, at a threshold power of 303 mW [31]. Later, transition metal dichalcogenides
(TMDs) were extensively studied [32,33]. Lee et al. prepared a molybdenum diselenide
(MoSe2) SA, by a liquid-phase exfoliation (LPE) method, and it was successfully applied
in a fiber laser, with a threshold power of 274 mW [34]. Wu et al. achieved mode-locked
operation in a fiber laser by using tungsten disulfide (WS2), at 1500 nm, for which the
pump power reached 260 mW [35]. Some newly reported two-dimensional materials,
such as single-element materials (Xenes) [36,37], and transition metal carbides or nitrides
(MXenes) [38,39], were found to have great potential to realize low-threshold power mode-
locked fiber lasers. This has created a new wave of interest among researchers in the search
for new 2D materials with better properties.

Cr2Si2Te6, a new layered material belonging to the hexatellurosilicate family [40],
has received a lot of attention in the fields of sensors [41,42] and optical devices [43,44].
The atomic layers of Cr2Si2Te6 are bound together by weak van der Waals forces, which
also means that multilayered or few-layer 2D nanosheets can be obtained from their
bulk-phase materials, by the liquid-phase exfoliation (LPE) method [45]. As a typical
low-dimensional semiconductor material, the unique electronic, magnetic, and topological
properties of Cr2Si2Te6 have been demonstrated by using first-principle calculations and
simulations, based on density functional theory [46,47]. In addition, Cr2Si2Te6 has been
used in a variety of applications, benefiting from its magnetic and electronic properties [48].
At the same time, Cr2Si2Te6 has an indirect band gap value of ~0.6 eV, which makes
it suitable for applications in near-infrared lasers [49]. Moreover, the ferromagnetism
property of Cr2Si2Te6 can exist not only in bulk, but also in single layers, which means
that Cr2Si2Te6 may have the possibility to create robust and single-layer ferromagnetic
insulators. Researchers are also continuing to explore its curious properties, such as
thermoelectric effect, superconductivity, and photovoltaic effect. However, there are few
studies on Cr2Si2Te6-based optical modulators, especially in low-threshold and harmonic
mode-locked fiber lasers. In 2021, Zhu et al. reported a large-energy Er-doped fiber
laser, with a Cr2Si2Te6-based saturable absorber, the threshold was over 200 mW and the
frequency of mode-locked operation was only 1.61 MHz. In 2022, based on Cr2Si2Te6,
Yang et al. reported a traditional soliton fiber laser whose threshold and frequency were
120 mW and 6.7 MHz.



Nanomaterials 2023, 13, 1038 3 of 12

In this work, a 15.1 mW low-threshold mode-locked fiber laser is demonstrated
successfully. Such a low start-up threshold is mainly attributable to the low insertion loss
and low saturation intensity of Cr2Si2Te6-based saturable absorber. The results indicate
that the liquid-phase exfoliation (LPE) method is a useful and economical way to produce
high-performance saturable absorbers. Besides, multiple high-order harmonics, from the
fundamental frequency (12.6 MHz) to the 49th-order harmonic (617.6 MHz), mode-locked
operations are recorded. All of these prove the excellent potential of Cr2Si2Te6 in exploring
the soliton dynamics, harmonic mode locking, and other nonlinear optical effects in fiber
lasers, as optical modulators.

2. Preparation and Characteristics of the Cr2Si2Te6-Based SA

The Cr2Si2Te6-based SA was prepared by the commonly adopted LPE method, consid-
ering the air stability property of Cr2Si2Te6. The preparation process is shown in Figure 1.
Cr2Si2Te6 bulk (20 mg) was ground into powder and mixed with 50 mL 99% ethanol, in
the first step. After 24 h of soaking, the mixture was placed in an ultrasonic cleaner for
48 h, in order to obtain Cr2Si2Te6 nanosheets. Then, 10 mL of the solution was taken and
mixed with 10 mL 4 wt% polyvinyl alcohol (PVA) solution. This 20 mL solution was then
put in the ultrasonic cleaner for 6 h. After this, the Cr2Si2Te6-PVA solution was pipetted
onto a clean glass sheet. The glass sheet was then rotated at a constant speed. The solution
formed a Cr2Si2Te6-PVA film after ~24 h of natural drying. Finally, the Cr2Si2Te6-based SA
was prepared successfully by cutting the film into a sheet of appropriate size, and clamping
the film between the end faces of two optical fiber patch cables.
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Figure 1. Preparation process of the Cr2Si2Te6-based SA.

In order to test the purity and physicochemical properties of the prepared Cr2Si2Te6
nanosheets, we characterized the material as follows. Figure 2a shows the picture from a
scanning electron microscope (SEM), at a resolution of 5 µm. An obvious layered structure
can be observed and the thickness of one Cr2Si2Te6 sheet is about 14 µm. The Cr2Si2Te6
spectrum from an energy dispersive spectrometer (EDS) is given in Figure 2b, in which the
ratios of Cr, Si, and Te are 21.75%, 15.63%, and 62.67%, respectively, which correspond well
with 1:1:3 in the chemical formula of Cr2Si2Te6. In addition, we used Raman spectroscopy
to test the structural properties. Two strong Raman peaks were located at 120 cm−1,
140 cm−1, which correspond to the Eg3 and Ag3 modes of Cr2Si2Te6 [50]. The images from
the high-resolution transmission electron microscope (HRTEM), shown in Figure 2d–f, exhibit
an obvious layered structure, and clear crystal lattices, with a d-spacing of ~0.25 nm, can
be observed, which indicates the prepared Cr2Si2Te6 nanosheets have excellent crystallinity
properties. In addition, a femtosecond laser was used to test the nonlinear saturable absorp-
tion properties of the homemade SA. The testing setup is shown in Figure 3a. The central
wavelength, pulse width, and frequency of the femtosecond laser are 1565 nm, 348 fs, and
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10.8 MHz, respectively. A variable optical amplifier (VOA) is used to adjust the input
pulse’s intensity. The input pulses are split into two beams through a 1:1 optical coupler
(OC) and the SA is injected into one part of the OC. The output power of the two parts
of the OC is recorded by a power meter (PM). The experimental data and fitting curve,
fitted by

T(I) = 1 − Tns − ∆ exp
(
− I

Isat

)
(1)

are shown in Figure 3b. T(I) is the transmission rate, Tns is the non-saturable loss, ∆ is
the modulation depth, I is the input intensity, and Isat is the saturation intensity. From
the formula, the saturation intensity, non-saturable loss, and modulation depth can be
calculated, which are 28.6 MW/cm2, 15.78%, and 10.7%, respectively.
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3. Results and Discussion

A low-threshold mode-locked fiber laser, based on a Cr2Si2Te6 SA, was constructed,
with the structure shown in Figure 4. A 5 m Er-doped fiber (OFS-MP980) was utilized
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as the gain medium, which was pumped by a 976 nm laser diode (976 nm/600 mW)
through a 1550 nm/980 nm wavelength division multiplexer (WDM). Two polarization
controllers (PCs) were used to adjust the birefringence and polarization state of the cavity.
Besides, a polarization-independent isolator (PI-ISO) was used to ensure the unidirectional
transmission of the laser. A part of a single-mode fiber was inserted to control the dispersion,
gain, and loss of the cavity. In order to realize mode-locked operation, the Cr2Si2Te6 SA
was utilized as a mode locker. The operating condition of the fiber laser was recorded by
an optical spectrum analyzer (Yokogawa, AQ6317B), a digital oscilloscope (Wavesurfer,
3054z) with a 2 GHz photo-detector, a radio frequency (RF) spectrum analyzer (Rohde &
Schwarz, FPC1000), an auto-correlator (Femtochrome, FR-103XL), and an optical power
meter through an optical coupler (OC, 10% output).
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The output characteristics of the low-threshold mode-locked fiber laser are given in
Figures 5–9. Figure 5a shows the tendency of the output power. Mode-locked operation
under the fundamental (1st) frequency can be observed, as the pump power is lower
than 24.4 mW. When the pump power is larger than 24.4 mW, a stable harmonic mode-
locked state is obtained, where the repulsive and attractive forces between pulses are
balanced [51]. In our work, the threshold of the fiber laser is as low as 15.1 mW, which is
mainly attributable to the low insertion loss and low saturable intensity of the Cr2Si2Te6 SA.
Table 1 shows a comparison of mode-locked fiber lasers based on different 2D materials.
The used Cr2Si2Te6 SA has a relatively large modulation depth and a smaller saturation
intensity. Especially, the non-saturable loss is much lower than most other saturable
absorbers. Benefiting from these excellent nonlinear properties of the homemade Cr2Si2Te6
SA, a lower start-up threshold and a higher signal-to-noise ratio (SNR) are realized in our
work. The pulse trains and optical spectrum under the fundamental frequency (1st), are
shown in Figure 5b,c. The fundamental frequency is 12.61 MHz, corresponding to the
pulse interval of 79.3 ns. The center wavelength is located at 1556.4 nm, and there is a
small peak caused by the continuous wavelength (CW) component, located at 1531.3 nm.
Figure 5d exhibits the trend of the order of harmonic and the pulse width changing with
pump power, in which the order of harmonic increases from the fundamental frequency to
the 22nd harmonic, while the pulse width stays around 1.6 ps. Besides, the shortest pulse
width recorded in our work was 1.4 ps, corresponding to the 15th harmonic, when the
pump power was 86 mW. The auto-correlator trace of the 15th harmonic pulse is shown in
Figure 5e, and the corresponding optical spectrum with the full width of half maximum
(FWHM), of 3.6 nm, is given in Figure 5f.
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Figure 6. (a) Pulse trains from 1st–8th, (b) corresponding RF spectra, (c) changing trend of the optical
spectra of the harmonic order from 1st–8th.
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Figure 7. (a) Pulse trains from 10th–22nd, (b) corresponding RF spectra, (c) changing trend of the
optical spectra of the harmonic order from 10th–22nd.
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Figure 8. (a) Pulse trains from 21st–49th, (b) corresponding RF spectra.
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Figure 9. (a) Changing trend of the optical spectra of the harmonic order from 21st–49th, (b) changing
trend of the FWHM and pulse width with the order of harmonics.

Table 1. Comparison of threshold of 1.5 µm mode-locked fiber lasers based on different 2D materials.

Materials Preparation Method MD (%) SI (MW/cm2) NSL (%) SNR (dB) Threshold (mW) Ref.

Graphene CVD 2.7 - - 64 47 [52]
ME 3.6 0.08 44.2 70 38 [53]

Bi2Te3 LPE 4.8 - 73.4 60 80 [54]
Bi2Se3 Polyol 98 0.49 GW/cm2 - - 65 [55]
Sb2Te3 LPE 3.9 106 87 74 44 [56]

BP ME 0.6 - - 65 80 [57]
LPE 9 25 - 50 30 [58]

WS2 PLD 7.8 189 25.7 64 65 [59]
MoS2 MSD 19.48 4.137 38.53 75 40 [60]
WSe2 LPE 0.5 - 47.2 - 35 [61]
MoSe2 LPE 0.8 - 52 52 30.7 [62]

Ti3C2Tx LPE 0.96 256.9 73.5 71 146 [63]
Antimonene LPE 9 1.3 GW/cm2 9 - 130 [36]
Bismuthene LPE 2.03 30 82.5 55 153 [64]

Tellurene LPE 5.06 34.3 58.6 55 85 [21]
Cr2Si2Te6 LPE 10.7 28.6 15.78 81 15.1 ours

MD: modulation depth, SI: saturation intensity, CVD: chemical vapor deposition, ME: mechanical stripping,
PLD: pulse laser deposition, MSD: magnetron sputtering deposition, NSL: non-saturable loss.

Under a large pump power, multiple pulses will be aroused in the laser cavity, with
appropriate net dispersion and strong nonlinear effects [65]. The attractive force between
these multiple pulses will lead to the generation of soliton rain and bound state [66,67].
In contrast, the repulsive force between them will drive them away from each other, in a
regular or irregular arrangement [51]. The generation of harmonic mode locking has been
proved to be a result of the interaction of multiple pulses under gain depletion and recovery
mechanism, the non-soliton component of radiation, and the acoustic wave effect [68–70].
In our work, when the pump power increases from 15.1 mW to 58 mW, the order of
harmonic varies from 1st to 8th continuously. The pulse trains of the 1st–8th harmonics
are given in Figure 6a. The corresponding RF spectra are exhibited in Figure 6b, in which
the SNR is around 80 dB, which indicates that the fiber laser operates stably under both
the fundamental frequency and harmonic states. Besides, the changing trend of optical
spectra can be observed in Figure 6c. The intensity of the peak located at 1531.3 nm clearly
increases with the increase in the pump power, and there is a tendency for it to split.

The pulse trains become a little unstable when the pump power is over 58 mW. So one
of the PCs was turned slightly and we obtained the 10th harmonic pulse, under the pump
power of 58.7 mW. The pulse trains of the 10th–22nd harmonics are given in Figure 7a, and
the corresponding RF spectra are exhibited in Figure 7b. With the increase in the order, there
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is a marked decline in the SNR. But all of them are larger than 60 dB, which indicates the
operating state of our fiber laser is stable enough. The optical spectra corresponding to the
10th–22nd harmonics can be observed in Figure 7c. The intensity of the peak of 1531.3 nm is
equal to that of 1556.6 nm, and obvious splits can be observed in the higher-order harmonic.
At the time, the Kelly sidebands have a trend of decline with the increase in the order of
harmonics.

A higher order of harmonic pulses from the 21st to 49th can also be recorded by
adjusting the PC, under the pump power of 113.1 mW. Figure 8a shows the pulse trains and
Figure 8b gives the corresponding RF spectra. The SNR can be maintained between 70 dB
and 80 dB, illustrating the stable operating state of the high-order harmonic. Different from
the varying trend of the optical spectra, when the order is lower than the 22nd, the peak
at 1531.3 nm changes in a completely opposite trend, with an increase in the order of the
harmonic, which can be observed in Figure 9a. Besides, there is an obvious narrowing
process of the FWHM of the optical spectra from 3.1 nm to 1.8 nm, which can be seen in
Figure 9b. In addition, the pulse width increases from 1.7–3.2 ps with the increase in the
order of harmonics.

When the pump power is higher than 113.1 mW, chaotic pulse generation can also be
observed, but no matter how we adjust the PC, no stable pulse sequence is obtained. This
is mainly limited by the deficiency of the intracavity nonlinear effect and dispersion [65].

4. Conclusions

A 15.1-mW low-threshold mode-locked fiber laser is demonstrated successfully in
this work. Such a low start-up threshold is mainly attributable to the Cr2Si2Te6-based
saturable absorber, which has low insertion loss and low saturation intensity. Besides,
multiple high-order harmonics, from the fundamental frequency to 49th-order harmonic,
mode-locked operations are recorded. The results indicate that the liquid-phase exfoliation
method is a useful and economical way to produce high-performance saturable absorbers,
and prove the excellent potential of Cr2Si2Te6 in exploring the soliton dynamics, harmonic
mode locking, and other nonlinear optical effects in fiber lasers, as an optical modulator.
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