Are Non-Six-Membered Ring Defects Formed in Single-Walled Carbon Nanotubes Treated by a Fluorination–Defluorination Process?
Abstract
:1. Introduction
1.1. Single-Walled Carbon Nanotubes
1.2. Vacancy Defects
1.3. Non-Six-Membered Ring Defects and Conductivity
1.4. Introduction of Non-Six-Membered Rings
2. Materials and Methods
2.1. Preparation of Purified SWCNTs
2.2. Preparation of Samples via the Fluorination–Defluorination Process
2.3. Characterization
2.4. Conductivity Measurement by Operating a Temperature Program
3. Results and Discussion
3.1. Structural Characterization
3.2. Conductivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Bethune, D.S.; Kiang, C.H.; Devries, M.S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607. [Google Scholar] [CrossRef]
- Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Electronic structure of graphene tubules based on C60. Phys. Rev. B 1992, 46, 1804. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60, 2204. [Google Scholar] [CrossRef]
- Hamada, N.; Sawada, S.; Oshiyama, A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 1992, 68, 1579. [Google Scholar] [CrossRef]
- Tans, S.J.; Devoret, M.H.; Dai, H.J.; Thess, A.; Smalley, R.E.; Geerligs, L.J.; Dekker, C. Individual single-wall carbon nanotubes as quantum wires. Nature 1997, 386, 474–477. [Google Scholar] [CrossRef] [Green Version]
- Odom, T.W.; Huang, J.L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64. [Google Scholar] [CrossRef]
- Ouyang, M.; Huang, J.L.; Cheung, C.L.; Lieber, C.M. Energy gaps in “metallic” single-walled carbon nanotubes. Science 2001, 292, 702–705. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Koyama, T.; Kishida, H.; Asaka, K.; Saito, Y.; Yoshida, Y.; Saito, G. Facile synthetic route to atomically thin conductive wires from single-species molecules in one-dimensionally confined space: Doped conjugated polymers inside single-walled carbon nanotubes. J. Phys. Chem. Lett. 2017, 8, 1702–1706. [Google Scholar] [CrossRef]
- Sun, D.M.; Timmermans, M.Y.; Tian, Y.; Nasibulin, A.G.; Kauppinen, E.I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156–161. [Google Scholar] [CrossRef]
- Battie, Y.; Ducloux, O.; Thobois, P.; Dorval, N.; Lauret, J.S.; Attal-Tretout, B.; Loiseau, A. Gas sensors based on thick films of semi-conducting single walled carbon nanotubes. Carbon 2011, 49, 3544–3552. [Google Scholar] [CrossRef]
- Guo, S.Y.; Hou, P.X.; Zhang, F.; Liu, C.; Cheng, H.M. Gas Sensors based on single-wall carbon nanotubes. Molecules 2022, 27, 5381. [Google Scholar] [CrossRef] [PubMed]
- Rajanna, P.M.; Meddeb, H.; Sergeev, O.; Tsapenko, A.P.; Bereznev, S.; Vehse, M.; Volobujeva, O.; Danilson, M.; Lund, P.D.; Nasibulin, A.G. Rational design of highly efficient flexible and transparent p-type composite electrode based on single-walled carbon nanotubes. Nano Energy 2020, 67, 104183. [Google Scholar] [CrossRef]
- Shimoi, N.; Sato, Y.; Tohji, K. Highly crystalline single-walled carbon nanotube field emitters: Energy-loss-free high current output and long durability with high power. ACS Appl. Electron. Mater. 2019, 1, 163–171. [Google Scholar] [CrossRef]
- Collins, P.G. Defect and disorder in carbon nanotubes. In The Oxford Handbook of Nanoscience and Technology: Materials: Structures, Properties and Characterization Techniques, 1st ed.; Narlikar, A.V., Fu, Y.Y., Eds.; Oxford University Press: Oxford, UK, 2010; Volume 2, pp. 78–85. [Google Scholar]
- Ebbesen, T.W.; Takada, T. Topological and sp3 defect structures in nanotubes. Carbon 1995, 30, 973–978. [Google Scholar] [CrossRef]
- Lee, Y.S.; Marzari, N. Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. Phys. Rev. Lett. 2006, 97, 116801. [Google Scholar] [CrossRef] [Green Version]
- Bower, C.; Kleinhammes, A.; Wu, Y.; Zhou, O. Intercalation and partial exfoliation of single-walled carbon nanotubes by nitric acid. Chem. Phys. Lett. 1998, 288, 481–486. [Google Scholar] [CrossRef]
- Smith, B.W.; Luzzi, D.E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 2001, 90, 3509–3515. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Kobayashi, Y. Threshold energy of low-energy irradiation damage in single-walled carbon nanotubes. Jpn. J. Appl. Phys. 2008, 47, 2040–2043. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V.; Lehtien, P.O.; Foster, A.S.; Nieminen, R.M. Bending the rules: Contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem. Phys. Lett. 2006, 418, 132–136. [Google Scholar] [CrossRef]
- Lee, G.D.; Wang, C.Z.; Yoon, E.; Hwang, N.M.; Ho, K.M. The formation of pentagon-heptagon pair defect by the reconstruction of vacancy defects in carbon nanotubes. Appl. Phys. Lett. 2008, 92, 043104. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Ravikumar, V.; Charlier, J.C. Surface reconstructions and dimensional change in single-walled carbon nanotubes. Phys. Rev. Lett. 1998, 81, 1437–1440. [Google Scholar] [CrossRef]
- Lee, G.D.; Wang, C.Z.; Yoon, E.; Hwang, N.M.; Ho, K.M. Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys. Rev. Lett. 2005, 95, 205501. [Google Scholar] [CrossRef] [PubMed]
- Stone, A.J.; Wales, D.J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 1986, 128, 501–503. [Google Scholar] [CrossRef]
- Kotakoski, J.; Meyer, J.C.; Kurasch, S.; Cotton, D.S.; Kaiser, U.; Krasheninnikov, A.V. Stone-wales-type transformations in carbon nanotubes driven by electron irradiation. Phys. Rev. B 2011, 83, 245420. [Google Scholar] [CrossRef] [Green Version]
- Charlier, J.C. Defects in carbon nanotubes. Acc. Chem. Res. 2002, 35, 1063–1069. [Google Scholar] [CrossRef]
- Pierard, N.; Fonseca, A.; Konya, Z.; Willems, I.; Tendeloo, G.V.; Nagy, J.B. Production of short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett. 2001, 335, 1–8. [Google Scholar] [CrossRef]
- Yokoyama, K.; Sato, Y.; Yamamoto, M.; Nishida, T.; Motomiya, K.; Tohji, K.; Sato, Y. Work function, carrier type, and conductivity of nitrogen-doped single-walled carbon nanotube catalysts prepared by annealing via defluorination and efficient oxygen reduction reaction. Carbon 2019, 142, 518–527. [Google Scholar] [CrossRef]
- Yokoyama, K.; Mamiya, I.; Morita, H.; Sato, Y.; Nishida, T.; Sato, Y. Controlled introduction of defects into single-walled carbon nanotubes via a fluorination–defluorination strategy using xenon difluoride and their alkaline oxygen reduction reaction catalytic activity. J. Colloid Inter. Sci. 2022, 627, 168–179. [Google Scholar] [CrossRef]
- Bushimata, K.; Ogino, S.; Hirano, K.; Yabune, T.; Sato, K.; Itoh, T.; Motomiya, K.; Yokoyama, K.; Mabuchi, D.; Nishizaka, H.; et al. Structural and electrochemical characterization of ethylenediaminated single-walled carbon nanotubes prepared from fluorinated SWCNTs. J. Phys. Chem. C 2014, 118, 14948–14956. [Google Scholar] [CrossRef]
- Yokoyama, K.; Sato, Y.; Hirano, K.; Ohta, H.; Motomiya, K.; Tohji, K.; Sato, Y. Defluorination-assisted nanotube-substitution reaction with ammonia gas for synthesis of nitrogen-doped single-walled carbon nanotubes. Carbon 2015, 94, 1052–1060. [Google Scholar] [CrossRef]
- Yokoyama, K.; Sato, Y.; Yamamoto, M.; Nishida, T.; Itoh, T.; Motomiya, K.; Sato, Y. Functionalization of primary amine groups to single-walled carbon nanotubes by reacting fluorinated SWCNTs with ammonia gas at a low temperature. Carbon 2021, 172, 360–371. [Google Scholar] [CrossRef]
- Rinzler, A.G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C.B.; Rodríguez-Macías, F.J.; Boul, P.J.; Lu, A.H.; Heymann, D.; Colbert, D.T.; et al. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A 1998, 67, 29–37. [Google Scholar] [CrossRef]
- Furtado, C.A.; Kim, U.J.; Gutierrez, R.H.; Pan, L.; Dickey, E.C.; Eklund, P.C. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc. 2004, 126, 6095–6105. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.J.; Gutiérrez, H.R.; Gupta, A.K.; Eklund, P.C. Raman scattering study of the thermal conversion of bundled carbon nanotubes into graphitic nanoribbons. Carbon 2008, 46, 729–740. [Google Scholar] [CrossRef]
- Contarini, S.; Howlett, S.P.; Risso, C.; Deangelsi, B.A. XPS study on the dispersion of carbon additives in silicon carbide powders. Appl. Surf. Sci. 1991, 51, 177–183. [Google Scholar] [CrossRef]
- George, B.C.; Das, A.; Roy, M.; Dua, A.K.; Raj, P.; Zahn, D.R.T. Bias enhanced deposition of highly oriented β-SiC thin films using low pressure hot filament chemical vapour deposition technique. Thin Solid Films 2002, 419, 114–117. [Google Scholar] [CrossRef]
- Bùi, L.N.; Thompson, M.; McKeown, N.B.; Romaschin, A.D.; Kalman, P.G. Surface modification of the biomedical polymer poly(ethylene terephthalate). Analyst 1993, 118, 463–474. [Google Scholar] [CrossRef]
- Avila, A.; Montero, I.; Galán, L.; Ripalda, J.M.; Levy, R. Behavior of oxygen doped SiC thin films: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 2001, 89, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.; Pichon, L.E.; Dussart, R.; Cardinaud, C.; Duluard, C.Y.; Oubensaid, E.H.; Lefaucheux, P.; Boufnichel, M.; Ranson, P. In situ x-ray photoelectron spectroscopy analysis of SiOxFy passivation layer obtained in a SF6/O2 cryoetching process. Appl. Phys. Lett. 2009, 94, 071501. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Waltham, MA, USA, 1992. [Google Scholar]
- Wang, X.; Chen, Y.; Dai, Y.Y.; Wang, Q.; Gao, J.; Huang, J.Y.; Yang, J.; Liu, X.Y. Preparing highly fluorinated multiwall carbon nanotube by direct heating-fluorination during the elimination of oxygen-related groups. J. Phys. Chem. C 2013, 117, 12078–12085. [Google Scholar] [CrossRef]
- Wu, Y.; Mayer, J.T.; Garfunkel, E.; Madey, T.E. X-ray photoelectron spectroscopy study of water adsorption on BaF2 (111) and CaF2 (111) surfaces. Langmuir 1994, 10, 1482–1487. [Google Scholar] [CrossRef]
- Zielke, U.; Hüttinger, K.J.; Hoffman, W.P. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon 1996, 34, 983–998. [Google Scholar] [CrossRef]
- Chamssedine, F.; Claves, D. Selective substitution of fluorine atoms grafted to the surface of carbon nanotubes and application to an oxyfluorination sreategy. Carbon 2008, 46, 957–962. [Google Scholar] [CrossRef]
- Yamada, Y.; Kim, J.; Matsuo, S.; Sato, S. Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 2014, 70, 59–74. [Google Scholar] [CrossRef]
- Fujimoto, A.; Yamada, Y.; Koinuma, M.; Sato, S. Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal. Chem. 2016, 88, 6110–6114. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Wang, Y.; Xia, W.; Muhler, M. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high-resolution XPS and TPD/TPR study. J. Phys. Chem. C 2008, 112, 16869–16878. [Google Scholar] [CrossRef]
- Tressaud, A.; Durand, E.; Labrugère, S. Surface modification of several carbon-based materials: Comparison between CF4 rf plasma and direct F2-gas fluorination routes. J. Fluor. Chem. 2004, 125, 1639–1648. [Google Scholar] [CrossRef]
- Nakajima, T. Synthesis, structure, and physicochemical properties of fluorine-graphite intercalation compounds. In Fluorine-Carbon and Fluoride-Carbon Materials: Chemistry, Physics, and Applications, 1st ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 11–17. [Google Scholar]
- Palchan, I.; Crespin, M.; Estrade-Szwarckopf, H.; Rousseau, B. Graphite fluorides: An XPS study of a new type of C-F bonding. Chem. Phys. Lett. 1989, 157, 321–327. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, S.J.; Kim, J.W.; Kang, P.H.; Nho, Y.C.; Lee, Y.S. A high resolution XPS study of sidewall functionalized MWCNTs by fluorination. J. Ind. Eng. Chem. 2009, 15, 66–71. [Google Scholar] [CrossRef]
- Touhara, H.; Goto, Y.; Watanabe, N.; Imaeda, K.; Enoki, T.; Inokuchi, H.; Mizutani, Y. Fluorine-graphite HOPG intercalation compounds. Synth. Met. 1988, 23, 461–466. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Takahagi, T.; Ishitani, A.; Kuroda, H.; Nagasawa, Y. Fluorine-containing species on the hydrofluoric acid etched silicon single-crystal surface. J. Appl. Phys. 1991, 69, 803–807. [Google Scholar] [CrossRef]
- Duncan, C.T.; Biradar, A.V.; Rangan, S.; Mishler, R.E.; Asefa, T. Trimming nanostructured walls while fluorinating their surfaces: A route to making and widening pores of nanoporous materials and efficient catalysts. Chem. Mater. 2010, 22, 4950–4963. [Google Scholar] [CrossRef]
- An, K.H.; Heo, J.G.; Jeon, K.G.; Bae, D.; Jo, C.S.; Yang, C.W.; Park, C.Y.; Lee, Y.H.; Lee, Y.S.; Chung, Y.S. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl. Phys. Lett. 2002, 80, 4235–4237. [Google Scholar] [CrossRef] [Green Version]
- Araujo, P.T.; Doorn, S.K.; Kilina, S.; Tretiak, S.; Einarsson, E.; Maruyama, S.; Chacham, H.; Pimenta, M.A.; Jorio, A. Third and fourth optical transitions in semiconducting carbon nanotubes. Phys. Rev. Lett. 2007, 98, 067401. [Google Scholar] [CrossRef] [Green Version]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Gu, Z.; Peng, H.; Hauge, R.H.; Smalley, R.E.; Margrave, J.L. Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2002, 2, 1009–1013. [Google Scholar] [CrossRef]
- Cançado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [Green Version]
- Zahab, A.; Spina, L.; Poncharal, P.; Marlière, C. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Phys. Rev. B 2000, 62, 10000. [Google Scholar] [CrossRef]
- Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Jhi, S.H.; Louie, S.G.; Cohen, M.L. Electronic properties of oxidized carbon nanotubes. Phys. Rev. Lett. 2000, 85, 1710–1713. [Google Scholar] [CrossRef] [PubMed]
- Grujicic, M.; Cao, G.; Singh, R. The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes. Appl. Surf. Sci. 2003, 211, 166–183. [Google Scholar] [CrossRef]
- Carlsson, J.M. Curvature and chirality dependence of the properties of point defects in nanotubes. Phys. Stat. Sol. 2006, 243, 3452–3457. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.M.; An, K.H.; Park, J.S.; Park, K.A.; Lim, S.C.; Cho, S.H.; Lee, Y.S.; Park, W.; Park, C.Y.; Lee, Y.H. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 2006, 73, 075419. [Google Scholar]
- Itkis, M.E.; Perea, D.E.; Jung, R.; Niyogi, S.; Haddon, R.C. Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 3439–3448. [Google Scholar] [CrossRef]
- Zhang, W.; Bonnet, P.; Dubois, M.; Ewels, C.P.; Guérin, K.; Petit, E.; Mevellec, J.Y.; Vidal, L.; Ivanov, D.A.; Hamwi, A. Comparative study of SWCNT fluorination by atomic and molecular fluorine. Chem. Mater. 2012, 24, 1744–1751. [Google Scholar] [CrossRef]
Samples | Chemical Composition (at.%) | Component of Fluorine Species (at.%) | ||||||
---|---|---|---|---|---|---|---|---|
C | O | F | Si | F1 | F2 | F3 | F4 | |
P-SWCNTs | 99.34 | 0.42 | - | 0.24 | - | - | - | - |
F-RT-3m | 94.68 | 3.77 | 0.53 | 1.02 | 0.07 | 0.28 | 0.11 | 0.07 |
F-RT-4h | 91.78 | 4.37 | 2.88 | 0.95 | 0.13 | 1.51 | 0.67 | 0.57 |
deF-RT-3m | 99.00 | 0.65 | 0.00 | 0.35 | - | - | - | - |
deF-RT-4h | 99.09 | 0.61 | 0.00 | 0.30 | - | - | - | - |
Samples | Length (μm) | Crystallite Size La (μm) | Apparent Number of Defects L/La | Apparent Linear Density of Defects per Unit Nanotube Length 1/La (1/μm) |
---|---|---|---|---|
P-SWCNTs | 3.06 | 0.28 | 10.93 | 3.57 |
F-RT-3m | 2.75 | 0.12 | 22.92 | 8.33 |
F-RT-4h | 2.78 | 0.03 | 92.67 | 33.33 |
deF-RT-3m | 3.09 | 0.15 | 20.60 | 6.67 |
deF-RT-4h | 2.96 | 0.07 | 42.29 | 14.29 |
Samples | Conductivity at 25 °C in Vacuum before Applying Heat (S cm−1) | Conductivity at 25 °C in Vacuum after Applying Heat (S cm−1) |
---|---|---|
P-SWCNTs | 26.20 ± 3.22 | 22.66 ± 1.04 |
deF-RT-3m | 8.92 ± 0.05 | 10.25 ± 0.29 |
deF-RT-4h | 1.90 ± 0.10 | 1.71 ± 0.01 |
Samples | Integral Intensity | Percentage of Metallic SWCNTs | |
---|---|---|---|
IM11 | IS22 | ||
P-SWCNTs | 4.84 | 34.19 | 12.40 |
deF-RT-3m | 4.70 | 30.89 | 13.21 |
deF-RT-4h | 0.97 | 12.87 | 7.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omoto, Y.; Morita, H.; Sato, Y.; Nishida, T.; Motomiya, K.; Katsui, H.; Goto, T.; Sato, Y. Are Non-Six-Membered Ring Defects Formed in Single-Walled Carbon Nanotubes Treated by a Fluorination–Defluorination Process? Nanomaterials 2023, 13, 1086. https://doi.org/10.3390/nano13061086
Omoto Y, Morita H, Sato Y, Nishida T, Motomiya K, Katsui H, Goto T, Sato Y. Are Non-Six-Membered Ring Defects Formed in Single-Walled Carbon Nanotubes Treated by a Fluorination–Defluorination Process? Nanomaterials. 2023; 13(6):1086. https://doi.org/10.3390/nano13061086
Chicago/Turabian StyleOmoto, Yoji, Hiromu Morita, Yoshinori Sato, Tetsuo Nishida, Kenichi Motomiya, Hirokazu Katsui, Takashi Goto, and Yoshinori Sato. 2023. "Are Non-Six-Membered Ring Defects Formed in Single-Walled Carbon Nanotubes Treated by a Fluorination–Defluorination Process?" Nanomaterials 13, no. 6: 1086. https://doi.org/10.3390/nano13061086
APA StyleOmoto, Y., Morita, H., Sato, Y., Nishida, T., Motomiya, K., Katsui, H., Goto, T., & Sato, Y. (2023). Are Non-Six-Membered Ring Defects Formed in Single-Walled Carbon Nanotubes Treated by a Fluorination–Defluorination Process? Nanomaterials, 13(6), 1086. https://doi.org/10.3390/nano13061086