Defect-Enriched Graphene Nanoribbons Tune the Adsorption Behavior of the Mediator to Boost the Lactate/Oxygen Biofuel Cell
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Synthesis of Defect-Enriched GNRs
2.3. Preparation of the LOx/TTF/GNRs/GCE Bioanode
2.4. Preparation of the BOD/ABTS/GNRs/GCE Biocathode
2.5. Electrochemical Measurements
2.6. Characterizations
2.7. Computational Methods and Models
3. Results and Discussion
3.1. Characterization of the GNRs
3.2. Electrochemical Performance of the Bioelectrodes
3.3. Evaluation of the Membrane-Less Lactate/O2 EBFCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Zhang, L.; Zhang, Z.; Guo, S.; Shang, H.; Li, Y.; Liu, J. Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens. Bioelectron. 2019, 124, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, Y.; Kjøniksen, A.L.; Zhou, X.; Zhou, X. Wearable Biofuel Cells: Advances from Fabrication to Application. Adv. Funct. Mater. 2021, 31, 2103976. [Google Scholar] [CrossRef]
- Kwon, C.H.; Ko, Y.; Shin, D.; Kwon, M.; Park, J.; Bae, W.K.; Lee, S.W.; Cho, J. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nat. Commun. 2018, 9, 4479. [Google Scholar] [CrossRef] [Green Version]
- Blaik, R.A.; Lan, E.; Huang, Y.; Dunn, B. Gold-Coated M13 Bacteriophage as a Template for Glucose Oxidase Biofuel Cells with Direct Electron Transfer. ACS Nano 2016, 10, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.E.; Gai, P.; Song, R.; Chen, Y.; Zhang, J.; Zhu, J.J. Nanostructured material-based biofuel cells: Recent advances and future prospects. Chem. Soc. Rev. 2017, 46, 1545–1564. [Google Scholar] [CrossRef]
- Yang, Y.; Su, Y.; Zhu, X.; Ye, D.; Chen, R.; Liao, Q. Flexible enzymatic biofuel cell based on 1, 4-naphthoquinone/MWCNT-Modified bio-anode and polyvinyl alcohol hydrogel electrolyte. Biosens. Bioelectron. 2022, 198, 113833. [Google Scholar] [CrossRef] [PubMed]
- Sedenho, G.C.; Hassan, A.; Macedo, L.J.A.; Crespilho, F.N. Stabilization of bilirubin oxidase in a biogel matrix for high-performance gas diffusion electrodes. J. Power Sources 2021, 482, 229035. [Google Scholar] [CrossRef]
- Ji, C.; Hou, J.; Wang, K.; Ng, Y.H.; Chen, V. Single-Enzyme Biofuel Cells. Angew. Chem. Int. Ed. 2017, 129, 9894–9898. [Google Scholar] [CrossRef]
- Ni, J.; Li, Y. Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage. Adv. Energy Mater. 2016, 6, 1600278. [Google Scholar] [CrossRef]
- Cheng, D.J.; Fisher, A.C.; Lee, J.M. Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells. Nat. Energy 2018, 3, 574–581. [Google Scholar]
- Wu, Z.; Li, Z.; Li, G.; Zheng, X.; Su, Y.; Yang, Y.; Liao, Y.; Hu, Z. DNA derived N-doped 3D conductive network with enhanced electrocatalytic activity and stability for membrane-less biofuel cells. Anal. Chim. Acta 2021, 1165, 338546. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ren, G.; Wang, W.A.; Hu, Z. Rational design of N-doped CNTs@C3N4 network for dual-capture of biocatalysts in enzymatic glucose/O2 biofuel cells. Nanoscale 2021, 13, 7774–7782. [Google Scholar] [CrossRef]
- Li, G.; Wu, Z.; Xu, C.; Hu, Z. Hybrid catalyst cascade for enhanced oxidation of glucose in glucose/air biofuel cell. Bioelectrochemistry 2022, 143, 107983. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Jiao, K.; Cheng, J.; Peng, R.; Jiao, S.; Hu, Z. A novel three-dimensional carbonized PANI1600@CNTs network for enhanced enzymatic biofuel cell. Biosens. Bioelectron. 2018, 101, 60–65. [Google Scholar] [CrossRef]
- Mishra, A.; Bhatt, R.; Bajpai, J. Nanomaterials based biofuel cells: A review. Int. J. Hydrogen Energy 2021, 46, 19085–19105. [Google Scholar] [CrossRef]
- Assad, H.; Kaya, S.; Kumar, P.S. Insights into the role of nanotechnology on the performance of biofuel cells and the production of viable biofuels: A review. Fuel 2022, 323, 124277. [Google Scholar] [CrossRef]
- Li, G.; Li, Z.; Xiao, X.; An, Y.; Wang, W.; Hu, Z. An ultrahigh electron-donating quaternary-N-doped reduced graphene ox-ide@carbon nanotube framework: A covalently coupled catalyst support for enzymatic bioelectrodes. J. Mater. Chem. A 2019, 7, 11077–11085. [Google Scholar] [CrossRef]
- Chen, W.; Duan, L.; Zhu, D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 2007, 41, 8295–8300. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Javed, R.M.N.; Al-Othman, A.; Almomani, F. The novel advancements of nanomaterials in biofuel cells with a focus on electrodes’ applications. Fuel 2022, 322, 124237. [Google Scholar] [CrossRef]
- Hoang, C.; Dave, K.; Gomes, G. Carbon quantum dot-based composites for energy storage and electrocatalysis: Mechanism, applications and future prospects. Nano Energy 2019, 66, 104093. [Google Scholar] [CrossRef]
- Johnson, P.; Gangadharappa, H.; Pramod, K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J. Control Release 2020, 325, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Olga, V.; Elena, E.; Kirill, S.; Alexander, A. Graphene Nanoribbons: Prospects of Application in Biomedicine and Toxicity. Nanomaterials 2021, 11, 2425. [Google Scholar]
- Talirz, L.; Ruffieux, P.; Fasel, R. On-Surface Synthesis of Atomically Precise Graphene Nanoribbons. Adv. Mater. 2016, 28, 6222–6231. [Google Scholar] [CrossRef]
- Pradip, P.; Dhanraj, S.; Mainak, M.; Qiang, X. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework nature chemistry. Nat. Chem. 2016, 8, 718–724. [Google Scholar]
- Sun, H.; Wang, W.; Yu, Z.; Yuan, Y.; Wanga, S.; Jiao, S. A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 2015, 51, 11892–11895. [Google Scholar] [CrossRef]
- Aída, M.; Javier, H.; María, T.; Alberto, E. Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochim. Acta 2015, 172, 2–6. [Google Scholar]
- Kalra, J.; Sitharaman, B. Gene delivery to mammalian cells using a graphene nanoribbon platform. J. Mater. Chem. B 2017, 5, 2347–2354. [Google Scholar]
- Karnicka, K.; Miecznikowski, K.; Kowalewska, B.; Skunik, M.; Opallo, M.; Rogalski, J.; Schuhmann, W.; Kulesza, P.J. ABTS-Modified Multiwalled Carbon Nanotubes as an Effective Mediating System for Bioelectrocatalytic Reduction of Oxygen. Anal. Chem. 2008, 80, 7643–7648. [Google Scholar] [CrossRef]
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- Lian, P.; Wang, J.; Cai, D.; Ding, L.; Jia, Q.; Wang, H. Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochim. Acta 2014, 116, 103–110. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Yu, F.; Lei, Y.; Hu, Z. Deep oxidization of glucose driven by 4-acetamido-TEMPO for a glucose fuel cell at room temperature. Chem. Commun. 2021, 57, 4051–4054. [Google Scholar] [CrossRef]
- Sandoval, S.; Kumar, N.; Oro-Solé, J.; Sundaresan, A.; Rao, C.; Fuertes, A.; Tobias, G. Tuning the nature of nitrogen atoms in N-containing reduced graphene oxide. Carbon 2016, 96, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Mu, S. Defect Engineering in the Carbon-Based Electrocatalysts: Insight into the Intrinsic Carbon Defects. Adv. Funct. Mater. 2020, 30, 2001097. [Google Scholar] [CrossRef]
- Li, G.; Kou, M.; Tu, J.; Luo, Y.; Wang, M.; Jiao, S. Coordination interaction boosts energy storage in rechargeable Al battery with a positive electrode material of CuSe. Chem. Eng. J. 2021, 421, 127792. [Google Scholar] [CrossRef]
- Yasujima, R.; Yasueda, K.; Horiba, T.; Komaba, S. Multi-Enzyme Immobilized Anodes Utilizing Maltose Fuel for Biofuel Cell Applications. ChemElectroChem 2018, 5, 2271–2278. [Google Scholar] [CrossRef]
- Azharuddin, M.; Bera, S.K.; Datta, H.; Dasgupta, A.K. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging. Exp. Eye Res. 2014, 120, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Frei, M.; Martin, J. Power supply for electronic contact lenses: Abiotic glucose fuel cells vs. Mg/air batteries. J. Power Sources 2018, 401, 403–414. [Google Scholar] [CrossRef]
- Falk, M.; Andoralov, V.; Silow, M.; Toscano, M.D.; Shleev, S. Miniature biofuel cell as a potential power source for glu-cose-sensing contact lenses. Anal. Chem. 2013, 85, 6342–6348. [Google Scholar] [CrossRef]
- Xiao, X.; Siepenkoetter, T.; Conghaile, P.O.; Leech, D.; Magner, E. Nanoporous Gold-Based Biofuel Cells on Contact Lenses. ACS Appl. Mater. Inter. 2018, 10, 7107–7116. [Google Scholar] [CrossRef]
- Jayapiriya, U.S.; Goel, S. Flexible and optimized carbon paste electrodes for direct electron transfer-based glucose biofuel cell fed by various physiological fuids. Appl. Nanosci. 2020, 10, 4315–4324. [Google Scholar] [CrossRef]
- Falk, M.; Andoralov, V.; Blum, Z.; Sotres, J.; Suyatin, D.B.; Ruzgas, T.; Arnebrant, T.; Shleev, S. Biofuel cell as a power source for electronic contact lenses. Biosens. Bioelectron. 2012, 37, 38–45. [Google Scholar] [CrossRef]
- Reid, R.C.; Jones, S.R.; Hickey, D.P.; Minteer, S.D.; Gale, B.K. Modeling Carbon Nanotube Connectivity and Surface Activity in a Contact Lens Biofuel Cell. Electrochim. Acta 2016, 203, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ang, J.; Liu, J.; Ma, X.Y.D.; Kong, J.; Zhang, Y.; Yan, T.; Lu, X. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Appl. Catal. B Environ. 2020, 263, 118344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Ning, Y.; Wu, Z.; Li, Z.; Xu, C.; Li, G.; Hu, Z. Defect-Enriched Graphene Nanoribbons Tune the Adsorption Behavior of the Mediator to Boost the Lactate/Oxygen Biofuel Cell. Nanomaterials 2023, 13, 1089. https://doi.org/10.3390/nano13061089
Feng X, Ning Y, Wu Z, Li Z, Xu C, Li G, Hu Z. Defect-Enriched Graphene Nanoribbons Tune the Adsorption Behavior of the Mediator to Boost the Lactate/Oxygen Biofuel Cell. Nanomaterials. 2023; 13(6):1089. https://doi.org/10.3390/nano13061089
Chicago/Turabian StyleFeng, Xiaoyu, Yongyue Ning, Zhongdong Wu, Zihan Li, Cuixing Xu, Gangyong Li, and Zongqian Hu. 2023. "Defect-Enriched Graphene Nanoribbons Tune the Adsorption Behavior of the Mediator to Boost the Lactate/Oxygen Biofuel Cell" Nanomaterials 13, no. 6: 1089. https://doi.org/10.3390/nano13061089
APA StyleFeng, X., Ning, Y., Wu, Z., Li, Z., Xu, C., Li, G., & Hu, Z. (2023). Defect-Enriched Graphene Nanoribbons Tune the Adsorption Behavior of the Mediator to Boost the Lactate/Oxygen Biofuel Cell. Nanomaterials, 13(6), 1089. https://doi.org/10.3390/nano13061089