One Pot Self-Assembling Fe@PANI Core–Shell Nanowires for Radar Absorption Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fe@PANI Core–Shell Nanowire Preparation and Characterization
2.2. RAMs Preparation and Evaluation
3. Results and Discussion
3.1. Characterization of Fe and Fe@PANI Nanowires
3.2. Microwave Absorption Performance of Fe and Fe@PANI Nanowires
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, P.; Huang, Y.; Yan, J.; Yang, Y.; Zhao, Y. Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties. ACS Appl. Mater. Interfaces 2016, 8, 5536–5546. [Google Scholar] [CrossRef]
- Si, Y.; Guo, Z.; Liu, W. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications. ACS Appl. Mater. Interfaces 2016, 8, 16511–16520. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Xing, H.; Shi, R.; Ji, X. Electromagnetic wave absorption of hierarchical porous MWCNTs@ZnO/NiO composites enhanced by multiple polarization and dielectric loss. J. Mater. Sci. Mater. Electron. 2020, 31, 17339–17350. [Google Scholar] [CrossRef]
- Melvin, G.J.H.; Ni, Q.Q.; Natsuki, T. Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites. J. Alloys. Compd. 2014, 615, 84–90. [Google Scholar] [CrossRef]
- Duan, Y.; Xiao, Z.; Yan, X.; Gao, Z.; Tang, Y.; Hou, L.; Li, Q.; Ning, G.; Li, Y. Enhanced Electromagnetic Microwave Absorption Property of Peapod-like MnO@carbon Nanowires. ACS Appl. Mater. Interfaces 2018, 10, 40078–40087. [Google Scholar] [CrossRef]
- Shukla, V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019, 1, 1640–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruthi, N.; Faisal, M.; Raghavendra, N. Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects. Synth. Met. 2021, 272, 116664. [Google Scholar] [CrossRef]
- Kim, S.; Vu, C.M.; Kim, S.; In, I.; Lee, J. Improved Mechanical Strength of Dicatechol Crosslinked MXene Films for Electromagnetic Interference Shielding Performance. Nanomaterials 2023, 13, 787. [Google Scholar] [CrossRef]
- Yang, R.B.; Liang, W.F.; Choi, S.T.; Lin, C.K. The Effects of Size and Shape of Iron Particles on the Microwave Absorbing Properties of Composite Absorbers. IEEE Trans. Magn. 2013, 49, 4180–4183. [Google Scholar] [CrossRef]
- Lin, W.S.; Lin, H.M.; Chen, H.-H.; Hwu, Y.K.; Chiou, Y.J. Shape Effects of Iron Nanowires on Hyperthermia Treatment. J. Nanomater. 2013, 2013, 9. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.S.; Lin, H.M.; Hwu, Y.K.; Chiou, Y.J. Synthesis and Characterization of Functionalied Iron Nanowires. Procedia Eng. 2014, 92, 42–45. [Google Scholar] [CrossRef]
- Talebi, H.; Olad, A.; Nosrati, R. Fe3O4/PANI nanocomposite core-shell structure in epoxy resin matrix for the application as electromagnetic waves absorber. Prog. Org. Coat. 2022, 163, 106665. [Google Scholar] [CrossRef]
- Lagarkov, A.N.; Rozanov, K.N. High-frequency behavior of magnetic composites. J. Magn. Magn. Mater. 2009, 321, 2082–2092. [Google Scholar] [CrossRef]
- Wirecka, R.; Maćkosz, K.; Żywczak, A.; Marzec, M.M.; Zapotoczny, S.; Bernasik, A. Magnetoresistive Properties of Nanocomposites Based on Ferrite Nanoparticles and Polythiophene. Nanomaterials 2023, 13, 879. [Google Scholar] [CrossRef]
- Zhang, B.; Du, Y.; Zhang, P.; Zhao, H.; Kang, L.; Han, X.; Xu, P. Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 2013, 130, 1909–1916. [Google Scholar] [CrossRef]
- He, Z.; Fang, Y.; Wang, X.; Pang, H. Microwave absorption properties of PANI/CIP/Fe3O4 composites. Synth. Met. 2011, 161, 420–425. [Google Scholar] [CrossRef]
- Praveena, K.; Bououdina, M. Tunable Microwave Absorbing Properties of CoFe2O4/PANI Nanocomposites. J. Electron. Mater. 2020, 49, 6187–6198. [Google Scholar] [CrossRef]
- Yang, P.A.; Huang, Y.; Li, R.; Huang, X.; Ruan, H.; Shou, M.; Li, W.; Zhang, Y.; Li, N.; Dong, L. Optimization of Fe@Ag core–shell nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 2022, 430, 132878. [Google Scholar] [CrossRef]
- Huang, W.; Tong, Z.; Bi, Y.; Ma, M.; Liao, Z.; Wu, G.; Ma, Y.; Guo, S.; Jiang, X.; Liu, X. Synthesis and microwave absorption properties of coralloid core-shell structure NiS/Ni3S4@PPy@MoS2 nanowires. J. Colloid. Interface Sci. 2021, 599, 262–270. [Google Scholar] [CrossRef]
- Kaur, A.; Bajaj, B.; Kaushik, A.; Saini, A.; Sud, D. A review on template assisted synthesis of multi-functional metal oxide nanostructures: Status and prospects. Mater. Sci. Eng. B 2022, 286, 116005. [Google Scholar] [CrossRef]
- Spreitzer, D.; Schenk, J. Reduction of Iron Oxides with Hydrogen—A Review. Steel Res. Int. 2019, 90, 1900108. [Google Scholar] [CrossRef] [Green Version]
- Hudson, R.; Feng, Y.; Varma, R.S.; Moores, A. Bare magnetic nanoparticles: Sustainable synthesis and applications in catalytic organic transformations. Green Chem. 2014, 16, 4493–4505. [Google Scholar] [CrossRef]
- Bláha, M.; Riesová, M.; Zedník, J.; Anžlovar, A.; Žigon, M.; Vohlídal, J. Polyaniline synthesis with iron(III) chloride–hydrogen peroxide catalyst system: Reaction course and polymer structure study. Synth. Met. 2011, 161, 1217–1225. [Google Scholar] [CrossRef]
- Ayad, M.M.; Amer, W.A.; Whdan, M. In situ polyaniline film formation using ferric chloride as an oxidant. J. Appl. Polym. Sci. 2012, 125, 2695–2700. [Google Scholar] [CrossRef]
- Liang, W.F.; Yang, R.B.; Lin, W.S.; Jian, Z.J.; Tsay, C.Y.; Wu, S.H.; Lin, H.M.; Choi, S.T.; Lin, C.K. Electromagnetic characteristics of surface modified iron nanowires at x-band frequencies. J. Appl. Phys. 2012, 111, 07B545. [Google Scholar] [CrossRef]
- Yang, R.B.; Liang, W.F.; Wu, C.H.; Chen, C.C. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites. AIP Adv. 2016, 6, 055910. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.S.; Jo, S.B.; Gueon, K.I.; Choi, K.K.; Kim, J.M.; Churn, K.S. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 1991, 27, 3. [Google Scholar] [CrossRef]
- ISO/IEC Guide 98-3:2008; Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM: 1995). International Organization for Standardization: Geneva, Switzerland, 2008.
- Sundaya, K.J.; Hanejkob, F.G.; Taheri, M.L. Magnetic and microstructural properties of Fe3O4-coated Fe powder soft magnetic composites. J. Magn. Magn. Mater. 2017, 423, 164–170. [Google Scholar] [CrossRef]
- Sun, L.; Zhan, L.; Shi, Y.; Chu, L.; Ge, G.; He, Z. Microemulsion synthesis and electromagnetic wave absorption properties of monodispersed Fe3O4/polyaniline core–shell nanocomposites. Synth. Met. 2014, 187, 102–107. [Google Scholar] [CrossRef]
- Gryc, A.; Malczewska, M.; Rzychoń, T.; Kiełbus, A. Technological Problems in Fabrication of Mg-Based Thermoelectric Materials by Conventional Casting Methods. Acta Phys. Pol. 2020, 137, 1050–1054. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Felix, J.F.; Barros, R.A.; de Azevedo, W.M.; da Silva, E.F. X-ray irradiation: A non-conventional route for the synthesis of conducting polymers. Synth. Met. 2011, 161, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Peymanfar, R.; Javanshir, S.; Naimi-Jamal, M.R.; Tavassoli, S.H. Morphology and medium influence on microwave characteristics of nanostructures: A review. J. Mater. Sci. 2021, 56, 17457–17477. [Google Scholar] [CrossRef]
- Yang, C.; Xing, J.; Guan, Y.; Liu, J.; Liu, H. Synthesis and characterization of superparamagnetic iron nanocomposites by hydrazine reduction. J. Alloys Compd. 2004, 385, 283–287. [Google Scholar] [CrossRef]
- Cheng, J.B.; Zhao, H.B.; Zhang, A.N.; Wang, Y.Q.; Wang, Y.Z. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 266–274. [Google Scholar] [CrossRef]
- Yang, R.B.; Liang, W.F.; Lin, C.K. Electromagnetic characteristics of manganese oxide-coated Fe3O4 nanoparticles at 2-18 GHz. J. Appl. Phys. 2011, 109.7, 07D722. [Google Scholar] [CrossRef]
- Lim, J.H.; Ryu, Y.H.; Kim, S.S. Dual-band microwave absorption properties of metamaterial absorber composed of split ring resonator on carbonyl iron powder composites. Electron. Mater. Lett. 2015, 11, 447–451. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, Z.; Zhan, Q.; Dong, Y.; Xu, Q.; Wu, G. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600. [Google Scholar] [CrossRef]
- Kaur, P.; Bahel, S.; Narang, S.B. Electromagnetic wave absorption properties of La-doped strontium M-type hexagonal ferrite in a 18–40 GHz frequency range. J. Electron. Mater. 2020, 49, 1654–1659. [Google Scholar] [CrossRef]
Sample Code | Fe (wt.%) | PANI (wt.%) |
---|---|---|
Fe NW | 100 | 0 |
Fe@PANI-95/5 | 95 | 5 |
Fe@PANI-90/10 | 90 | 10 |
Fe@PANI-80/20 | 80 | 20 |
Fe@PANI-70/30 | 70 | 30 |
Sample | Average Diameter (nm) | s | N | u |
---|---|---|---|---|
Fe NW | 124.72 | 14.72 | 101 | 1.46 |
Fe@PANI-95/5 | 207.76 | 24.48 | 103 | 2.41 |
Fe@PANI-90/10 | 244.03 | 38.03 | 100 | 3.82 |
Fe@PANI-80/20 | 258.11 | 27.54 | 105 | 2.69 |
Fe@PANI-70/30 | 309.73 | 23.14 | 102 | 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-K.; Chiou, Y.-J.; Tsou, S.-J.; Chung, C.-Y.; Chao, C.-C.; Yang, R.-B. One Pot Self-Assembling Fe@PANI Core–Shell Nanowires for Radar Absorption Application. Nanomaterials 2023, 13, 1100. https://doi.org/10.3390/nano13061100
Lin C-K, Chiou Y-J, Tsou S-J, Chung C-Y, Chao C-C, Yang R-B. One Pot Self-Assembling Fe@PANI Core–Shell Nanowires for Radar Absorption Application. Nanomaterials. 2023; 13(6):1100. https://doi.org/10.3390/nano13061100
Chicago/Turabian StyleLin, Chung-Kwei, Yuh-Jing Chiou, Sheng-Jung Tsou, Chih-Yi Chung, Chen-Chun Chao, and Ruey-Bing Yang. 2023. "One Pot Self-Assembling Fe@PANI Core–Shell Nanowires for Radar Absorption Application" Nanomaterials 13, no. 6: 1100. https://doi.org/10.3390/nano13061100
APA StyleLin, C. -K., Chiou, Y. -J., Tsou, S. -J., Chung, C. -Y., Chao, C. -C., & Yang, R. -B. (2023). One Pot Self-Assembling Fe@PANI Core–Shell Nanowires for Radar Absorption Application. Nanomaterials, 13(6), 1100. https://doi.org/10.3390/nano13061100