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Abstract: The one-pot process, which combines the polymerization of polyaniline (i.e., PANI) with
subsequent reduction of iron nanowire (i.e., Fe NW) under a magnetic field, was developed to produce
Fe@PANI core–shell nanowires. The synthesized nanowires with various PANI additions (0–30 wt.%)
were characterized and used as microwave absorbers. Epoxy composites with 10 wt.% absorbers were
prepared and examined using the coaxial method to reveal their microwave absorbing performance.
Experimental results showed that the Fe NWs with PANI additions (0–30 wt.%) had average diameters
ranging from 124.72 to 309.73 nm. As PANI addition increases, the α-Fe phase content and the grain
size decrease, while the specific surface area increases. The nanowire-added composites exhibited
superior microwave absorption performance with wide effective absorption bandwidths. Among
them, Fe@PANI-90/10 exhibits the best overall microwave absorption performance. With a thickness
of 2.3 mm, effective absorption bandwidth was the widest and reached 3.73 GHz, ranging from 9.73
to 13.46 GHz. Whereas with a thickness of 5.4 mm, Fe@PANI-90/10 reached the best reflection loss of
−31.87 dB at 4.53 GHz.

Keywords: iron nanowire; polyaniline; one pot and radar absorption

1. Introduction

The current human lifestyle continuously increases the demand for electromagnetic
(EM) energy for various devices in industrial, military, aerospace, and commercial appli-
cations [1–3]. While electromagnetic waves have brought tremendous development to
human society, their adverse effects on the natural environment and even human health
have become obvious [4,5]. Preventing the electromagnetic interference (EMI) threat has
attracted increasing research and development interests concerning radar absorption ma-
terials (RAMs) [6–12]. Conventional iron-based microwave absorbing materials such as
polycrystalline ferrites and carbonyl iron epoxy composites with appropriate complex
permittivity and permeability can be used for EMI suppression. Such materials with high
microwave permeability, high magnetic loss, a favorable form of frequency dependence
of permeability, and a proper ratio between the permeability and permittivity (i.e., for
impedance matching) exhibit superior microwave absorption performance [13,14].

Concerning permittivity, modifications of iron-based materials with conducting poly-
mers have been attempted to improve the dielectric loss and interfacial loss. For instance,
Zhang et al. [15] introduced polyaniline (PANI) to coat Fe3O4 microspheres. With 50 wt%
of the obtained products used as absorbers in paraffin wax, the optimal Fe3O4/PANI core–
shell structure (300 nm Fe3O4 coated with 100 nm thickness PANI) exhibited a reflection loss
of −37.4 dB at 15.4 GHz. He et al. [16] synthesized PANI/carbonyl iron/Fe3O4 composite
powder by mechanical mixing and the RAMs exhibited a reflection loss of −48.3 dB at
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9.6 GHz. Praveena et al. [17] prepared CoFe2O4/PANI nanocomposites that exhibited a
wide effective absorption at frequencies ranging from 11 to 12 and 15 to 18 GHz with a re-
flection loss lower than −10 dB. In addition to core–shell powder and nanocomposite, high
aspect ratio nanowire materials were also used as RAMs. Yang et al. [18] synthesized Fe@Ag
core–shell nanowires. With a 2:1 molar ratio of Fe:Ag, the core–shell nanowires exhibited
optimal reflection loss (−58.69 dB at 7.53 GHz) at a mass fraction of 25% and a thickness of
3.36 mm, whereas Huang et al [19] synthesized coralloid NiS/Ni3S4@PPy@MoS2 nanowires
using a three-step route. They reported that a composite with 50% fillers and a thickness
of 2.29 mm exhibited the best microwave absorption performance with a reflection loss of
−51.29 dB at 10.1 GHz and an effective absorption bandwidth of 3.24 GHz.

The above-mentioned reports revealed that microwave absorption performance can be
improved by using conducting polymers, core–shell structures, and nanowires. However,
the required sophisticated procedures may make practical applications of these nanoma-
terials difficult. Fe-based materials can be prepared by the reduction of Fe salts. They
include thermal cracking, hydrothermal method, template-assisted development method,
and borohydride sodium reduction method [20]. In addition, hydrogen gas can be used as
a reducing agent for the formation of iron-based materials under relatively high tempera-
tures [21]. In the present study, the novel one-pot process, combined with polymerization
and iron nanowire reduction in a magnetic field via NaBH4 reduction under mild con-
ditions [22], was applied for the synthesis of Fe@PANI nanowires to be used as radar
absorption material. FeCl3 not only be used as the catalyst for polymerization but also as
the precursor for the preparation of Fe NW. The one-pot prepared Fe@PANI core–shell
nanowires were characterized, and their microwave absorption properties were deter-
mined. The development of this simple process will be beneficial to the mass production of
nanosized RAMs materials.

2. Materials and Methods
2.1. Fe@PANI Core–Shell Nanowire Preparation and Characterization

The iron nanowires with PANI coating on the surface (denoted as Fe@PANI) were
prepared in one pot process that includes PANI polymerization and Fe nanowire formation.
PANI (5, 10, 20, and 30 wt.%) was prepared from aniline via the catalysis of FeCl3 in a room
temperature 24 h polymerization in a batch pot [23,24]. A 95% Ar and 5% H2 gas mixture
was used to purge the solution for 30 min to reduce the oxygen concentration and minimize
the oxidation of iron nanowires. Next, sodium borohydride was added to the solution at
room temperature to reduce FeCl3 in a parallel magnetic field [25]. The solid products were
washed subsequently with deionized water, ethanol, and acetone. The products were heat
treated at 200 ◦C for 2 h under a 95% Ar and 5% H2 gas mixture environment to remove the
impurities. Figure 1 shows the schematic illustrations of this one-pot Fe@PANI nanowire
preparation process. Table 1 summarizes the sample codes for the Fe@PANI nanowires
prepared in this study.

Table 1. Summary of the sample codes for the Fe@PANI nanowires.

Sample Code Fe (wt.%) PANI (wt.%)

Fe NW 100 0

Fe@PANI-95/5 95 5

Fe@PANI-90/10 90 10

Fe@PANI-80/20 80 20

Fe@PANI-70/30 70 30
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Figure 1. Schematic illustrations of this one-pot Fe@PANI core–shell nanowire preparation pro-
cess. (a) Aniline monomers were polymerized into polyaniline (PANI) by Fe3+ ions. (b) Fe3+ ions 
were reduced into Fe nanoparticles with NaBH4 addition. Fe nanoparticles were attracted and 
aligned by magnetic field. (c) Ribbon-like PANI enveloped Fe NW to form Fe@PANI core–shell 
nanowires. 
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frared spectroscopy (FTIR, Jasco FT/IR-6700 FT-IR Spectrometer, Tokyo, Japan ) analyti-
cal techniques were conducted to observe the morphologies and to characterize the 
structures of the Fe@PANI nanomaterials, respectively. Brunauer–Emmett–Teller (BET, 
Porous Materials Inc BET-201A, NY., USA) measurement was conducted to obtain the 
specific surface area of the prepared Fe@PANI nanowire. SQUID VSM test (SQUID-VSM 
Magnetometry—Quantum Design MPMS 3, CA., USA) was used to aid the evaluation of 
the magnetic behavior of the prepared nanowire under a lower magnetic field. 

2.2. RAMs Preparation and Evaluation 
The synthesized Fe@PANI core–shell nanowires (10 wt.%) were dispersed in an 

epoxy resin matrix to evaluate their microwave absorbing performance by coaxial 
method [26]. Ring-shaped specimens were prepared with a 3.04 mm inner diameter, a 
7.00 mm outer diameter, and a 1.80 mm thickness. Before measurement, calibration was 
performed using an Agilent precision kit (85050C). The complex permittivity (εr = ε′ + iε″) 
and complex permeability (μ r =  μ′ + j μ″) were obtained using an Agilent 8510C vector 
network analyzer with an Agilent coaxial transmission airline (850151-60010) at fre-
quencies ranging from 2 to 18 GHz. The reflection loss (R) of electromagnetic waves can 
be calculated from the measured data using the following equations [27]:  
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In these equations, Zin is the input impedance when the electromagnetic wave inci-
dence is normal to the absorber, Z0 is the free space impedance, f is the frequency of the 
electromagnetic wave, d is the thickness of the absorber, and c is the velocity of light in 
vacuum. The reflection loss (R) can be calculated with unit in dB. 

3. Results and Discussion 
3.1. Characterization of Fe and Fe@PANI Nanowires 

Figure 1. Schematic illustrations of this one-pot Fe@PANI core–shell nanowire preparation process.
(a) Aniline monomers were polymerized into polyaniline (PANI) by Fe3+ ions. (b) Fe3+ ions were
reduced into Fe nanoparticles with NaBH4 addition. Fe nanoparticles were attracted and aligned by
magnetic field. (c) Ribbon-like PANI enveloped Fe NW to form Fe@PANI core–shell nanowires.

Field emission scanning electron microscope (FE-SEM, Hitachi SU8000 Series UHR
Cold-Emission Field Emission Scanning Microscope, Tokyo, Japan), X-ray diffraction (XRD,
Bruker D2 PHASER X-ray Diffractometer, Billerica, MA, USA), and Fourier transform
infrared spectroscopy (FTIR, Jasco FT/IR-6700 FT-IR Spectrometer, Tokyo, Japan) analytical
techniques were conducted to observe the morphologies and to characterize the struc-
tures of the Fe@PANI nanomaterials, respectively. Brunauer–Emmett–Teller (BET, Porous
Materials Inc. BET-201A, Ithaca, NY, USA) measurement was conducted to obtain the
specific surface area of the prepared Fe@PANI nanowire. SQUID VSM test (SQUID-VSM
Magnetometry—Quantum Design MPMS 3, CA, USA) was used to aid the evaluation of
the magnetic behavior of the prepared nanowire under a lower magnetic field.

2.2. RAMs Preparation and Evaluation

The synthesized Fe@PANI core–shell nanowires (10 wt.%) were dispersed in an epoxy
resin matrix to evaluate their microwave absorbing performance by coaxial method [26].
Ring-shaped specimens were prepared with a 3.04 mm inner diameter, a 7.00 mm outer
diameter, and a 1.80 mm thickness. Before measurement, calibration was performed using
an Agilent precision kit (85050C). The complex permittivity (εr = ε′ + iε”) and complex
permeability (µ r = µ′ + j µ”) were obtained using an Agilent 8510C vector network analyzer
with an Agilent coaxial transmission airline (850151-60010) at frequencies ranging from
2 to 18 GHz. The reflection loss (R) of electromagnetic waves can be calculated from the
measured data using the following equations [27]:

Zin = Z0

√
µr
εr

tanh
[

j
(

2πfd
c

)
√
εrµr

]
(1)

R = 20 log
∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣ (2)

In these equations, Zin is the input impedance when the electromagnetic wave inci-
dence is normal to the absorber, Z0 is the free space impedance, f is the frequency of the
electromagnetic wave, d is the thickness of the absorber, and c is the velocity of light in
vacuum. The reflection loss (R) can be calculated with unit in dB.

3. Results and Discussion
3.1. Characterization of Fe and Fe@PANI Nanowires

Figure 2 shows the FE-SEM images of the PANI, Fe nanowires, and Fe@PANI nanowires
with various PANI weight percentages. The PANI showed a ribbon-like microstructure
with large surface area as shown in Figure 2a. The prepared Fe nanowires (Figure 2b)
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exhibited a typical linear structure. This is due to the assistance of the external magnetic
field during the reduction of Fe ion to Fe metal. The reduced Fe nanoparticles were lined
up and formed Fe nanowires. As PANI were added into the process, the Fe@PANI prod-
ucts with 5–30 weight percentages of PANI maintained nanowire structure. As shown in
Figure 2c–f, the higher the PANI addition, the larger the diameter of the nanowire. Su-
perfluous PANI not covering nanowires can also be observed, especially for the 30 wt.%
Fe@PANI nanowires (Figure 2f)
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Figure 2. FE-SEM images of (a) PANI, (b) Fe nanowires, and Fe@PANI in different PANI weight
percentages (c) 5wt%, (d) 10wt%, (e) 20wt%, and (f) 30wt%.

The electron microscope images were further analyzed to determine the diameter
distribution. Figure 3 shows the probability density (bar chart) and the cumulative density
(line with symbols) of nanowires with different PANI weight percentages of 0, 5, 10, 20, and
30wt%. For pure Fe nanowires (0% PANI added), Figure 3a, the diameter of the nanowires
ranged from 90–150 nm. After adding PANI, Figure 3b–e, the diameter distribution ranges
were 160–260, 160–320, 200–340, and 260–360 nm for 5, 10, 20, and 30 wt% PANI, respectively.
Figure 3f shows the average diameter with an error bar as a function of PANI concentration.
The average diameters for nanowires with 0, 5, 10, 20, and 30 wt% PANI were 124.72, 207.76,
244.03, 258.11, and 309.73 nm, respectively. The greater the added PANI amount, the larger
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the nanowire diameter. Table 2 summarizes the average diameter, standard deviation (s),
number of input quantities (N), and standard uncertainty (u) for nanowires, calculated
according to the guide to the expression of uncertainty in measurement [28]. It can be noted
that, compared to the shell-less Fe NW, the values of standard deviations and standard
uncertainties increase after PANI addition.
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Figure 3. Nanowire diameter distribution, the probability density (bar chart) and the cumulative
density (line with symbols), of (a) Fe nanowires, (b) Fe@PANI-95/5, (c) Fe@PANI-90/10, (d) Fe@PANI-
80/20, (e) Fe@PANI-70/30, and (f) average diameter vs. PANI content. The connecting spline dotted
curves are only to guide the eyes for the observation of the trend.
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Table 2. Summary of average diameter, standard deviation (s), number of input quantities (N), and
standard uncertainty (u) for nanowires.

Sample Average Diameter (nm) s N u

Fe NW 124.72 14.72 101 1.46
Fe@PANI-95/5 207.76 24.48 103 2.41

Fe@PANI-90/10 244.03 38.03 100 3.82
Fe@PANI-80/20 258.11 27.54 105 2.69
Fe@PANI-70/30 309.73 23.14 102 2.29

Figure 4 shows the FE-SEM images with higher magnification for Fe, Fe@PANI-95/5,
and Fe@PANI-90/10 nanowires. As shown in Figure 4a, the Fe nanowires were formed by
round-shape Fe nanoparticles with a relatively smooth surface. After adding 5 and 10 wt.%
PANI (Figure 4b,c), the Fe@PANI nanowires remained straight long-chain nanowires
composed of round Fe nanoparticles but were now coated with PANI. It should be pointed
out that with 5wt% PANI addition, Fe nanowires were not fully enveloped with PANI, as
shown in the middle of Figure 4b. Fe nanowires can be fully covered by PANI with at least
10 wt.% PANI addition, Figure 4c.
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Figure 4. FE-SEM images of (a) Fe nanowires, (b) Fe@PANI-95/5, and (c) Fe@PANI-90/10.

Since all Fe@PANI nanowires exhibited similar X-ray diffraction patterns, Figure 5
shows the XRD patterns of pure Fe, selected Fe@PANI nanowires (10 and 30 wt.% PANI),
and pure PANI. For Fe nanowires without PANI addition, shown in curve (a), there were
main characteristic peaks (solid black circles) at 44.6◦, 65.16◦ and 82.53◦ corresponding to
α-Fe (PDF card No. 01-087-0722) in (110), (200) and (211) reflections, respectively. Fe3O4
(hollow square, PDF card No. 01-088-0315) in (220), (311), (400), and (511) reflections can
also be found at 30.15◦, 35.52◦, 43.17◦, and 57.10◦, respectively. This suggests the formation
of iron oxide (Fe3O4) outside the Fe nanoparticles and shows a similar trend as reported in
the literature [29]. Both α-Fe and Fe3O4 structures are ferromagnetic. As more PANI were
coated on Fe nanowires, curves (b) and (c) show XRD patterns more similar to that of curve
(a) where both α-Fe and Fe3O4 exhibited. For 30 wt.% PANI addition, the Fe@PANI-70/30
nanowire (curve (c)) exhibited an extra broadened peak at ~20◦ due to the existence of
PANI (curve (d)) [30].

By analyzing the XRD patterns, the phase content and grain size of α-Fe and Fe3O4
for the prepared nanowires were plotted in Figure 6, where the curves with black solid
circle symbols and red hollow square symbols are α-Fe and Fe3O4, respectively. The phase
content was estimated by the Rietveld fitting method [31]. One XRD pattern resulted
in one estimated phase content and can only show the trend of variation. As shown in
Figure 6a, the pure Fe nanowires have a phase content of 98.3 and 1.7 mol.% for α-Fe and
Fe3O4, respectively. With the addition of PANI, a decrease in α-Fe phase content can be
observed, accompanied by the increase in Fe3O4 phase content (red hollow square symbols
shown in Figure 6a). The α-Fe phase content was 85.9 and 90.4 mol.% for 10 and 20 wt.%
PANI additions, while there was a significant decrease to 51.9 mol.% for Fe@PANI-70/30
nanowires (30 wt.% PANI addition). Oxidation of Fe nanowire is inevitable. The higher
the oxygen concentration, the more the Fe3O4 phase content of Fe@PANI nanowires. In
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addition to phase content, grain sizes were estimated according to Sherrer’s formula [32]
and Figure 6b shows the variation of grain size as a function of PANI concentration. For
pure Fe nanowires, the grain sizes are 25.8 and 14.1 nm for α-Fe and Fe3O4, respectively.
With the addition of PANI, the grain size of α-Fe decreased significantly. With 10% PANI
addition, the grain size of α-Fe decreased to 10.7 nm compared to 25.8nm for Fe nanowires.
The higher the PANI addition, the smaller the grain size of α-Fe. It further decreased to
7.6 and 6.4 nm for 20 and 30 wt.% PANI addition, respectively. It is, however, interesting
to note that the grain sizes of Fe3O4 (red hollow square symbols in Figure 6b) for various
Fe@PANI nanowires were similar. They were 14.1, 13.7, 10.2, and 13.5 nm for 0, 10, 20, and
30 wt.% Fe@PANI nanowires.
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Figure 6. (a) Phase content and (b) grain size of α-Fe and Fe3O4 analysis via XRD. The connecting
spline dotted curves are only to guide the eyes for the observation of the trend.

In order to confirm the polyaniline was successfully polymerized by the Fe3+ oxidation
method, FTIR analysis was performed before and after the polymerization and Figure 7a
shows the corresponding FTIR spectra within the wavenumber ranging from 1000 to
4000 cm−1. Before polymerization, aniline monomer exhibited characteristic absorption
peaks at 3359 cm−1 and 3431 cm−1 (assigned to amines -NH2 stretching vibration) and
1609 cm−1 and 1280 cm−1 (corresponded to N-H and C-N stretching vibration, respec-
tively). After polymerization of polyaniline, N-H and C-N stretching vibration slightly
shifted to 1562 cm−1 and ~1299 cm−1, respectively. The major difference can be observed
at a broadened peak around 3363 cm−1 corresponding to amines –NH- stretching vibra-



Nanomaterials 2023, 13, 1100 8 of 15

tion [33]. Figure 7b shows a series of Fe@PANI nanowires with 0–30 wt.% PANI additions.
As shown in Figure 7b, no obvious peaks can be observed for pure Fe nanowires, whereas
all PANI-coated Fe nanowires exhibited a broadened peak around 3363 cm−1 similar to that
of polyaniline. The C-N stretching vibration (~1299 cm−1) did not show obvious variation,
whereas N-H stretching vibration (~1562 cm−1), due to its benzenoid unit revealed a signifi-
cant change after adding sodium borohydride for FeCl3 reduction [33]. The transformation
of the benzenoid unit into the quinoid unit can be observed and was accompanied by the
appearance of a C=N characteristic peak at around 1627–1594 cm−1 and the disappearance
of N-H stretching vibration (~1562 cm−1).
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Since PANI exhibits a fiber-like structure, the addition of PANI may induce porous
structure and increase the specific surface area and pore volume within the Fe@PANI
core–shell nanowire structure. Figure 8a shows the BET results of the prepared pure Fe and
Fe@PANI nanowires with different PANI concentrations. The values of specific surface area
with 0, 5, 10, 20, and 30% PANI addition were 4.95, 20.34, 35.72, 50.43, and 117.07 m2/g,
respectively. The higher the PANI added (especially with 30% PANI addition), the larger
the specific surface area. The corresponding pore volume of the nanowires exhibited a
similar trend. The measured total pore volumes are 0.09, 0.10, 0.12, 0.15, and 0.16 cc/g for
PANI in 0, 5, 10, 20, and 30%, respectively. Peymanfar et al. have reported that the high
surface area-to-volume ratio may enhance the interfacial interactions at grain boundaries
and improve the microwave absorbing performance [34]. In this study, the ratio of surface
area to volume value was calculated by dividing the two values of every Fe@PANI sample
and they were 55.0, 203.4, 297.7, 336.2, and 731.7 m2/cc for PANI in 0, 5, 10, 20, and 30%,
respectively. As shown in Figure 8b, a significant increase in surface area-to-volume ratio
can be observed with PANI addition and the morphological effects may contribute to the
microwave absorbing performance.

The low frequency (<1000 Hz) magnetic properties of the Fe and Fe@PANI-90/10
nanowires were measured via SQUID VSM at 300K with an external magnetic field of
12 KOe. Figure 9a shows the VSM results where these nanowires exhibit a typical soft
magnetic hysteresis loop similar to that of α-Fe [35]. The saturation magnetization (Ms), of
Fe NW (black curve), was 106.4 emu/g and decreased to 71.64 emu/g for Fe@PANI-90/10
NW. As shown in Figure 9b, the coercivity (Hc) values were 184.77 and 77.0 Oe for Fe and
Fe@PANI-90/10 NWs, respectively. Recall the XRD results shown in Figure 6b, in which
the grain size of α-Fe significantly decreased with PANI addition, whereas that of Fe3O4
exhibited no obvious difference. This suggests that the decrease in Ms and Hc may be
mainly caused by the decrease in α-Fe grain size.
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Figure 8. (a) BET specific surface area (black hollow circle) and total pore volume (red filled square),
(b) ratio of surface area to volume (blue filled circle) as a function of PANI content. The connecting
spline dotted curves are only to guide the eyes for the observation of the trend.
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Figure 9. SQUID VSM results of some typical Fe@PANI nanowires.

3.2. Microwave Absorption Performance of Fe and Fe@PANI Nanowires

It is known that microwave absorption performance generally increases with increas-
ing amounts of added absorbers [36]. The usage of nanomaterials can reduce the relative
number of added absorbers. In the present study, magnetic Fe NW was coated with
conductive PANI shells. The Fe@PANI core–shell nanowires were expected to exhibit
different microwave absorption performances compared to their shell-less counterpart
(pristine Fe NW).

The prepared Fe@PANI-epoxy composite rings, containing 10 wt.% Fe@PANI nanowires
were examined using the coaxial method to obtain the electromagnetic parameters (i.e., com-
plex permittivity and complex permeability) at frequencies ranging from 2 to 18 GHz. Elec-
tromagnetic parameters mainly affect the microwave absorption performance and Figure 10
shows the frequency-dependent electromagnetic parameters for Fe@PANI with different
weight percentages of PANI (0–30 wt.%). The real parts of complex permittivity and complex
permeability represent energy storage by the microwave absorbing material with respect to
its electric and magnetic properties, respectively, whereas the imaginary parts represent
the electric and magnetic energy consumptions by the absorber, respectively. It can be
noted that Fe NW exhibited the largest real part of permittivity (ε′, Figure 10a) compared to
those of Fe@PANI. Generally, the small amount of PANI addition (5%) showed the lowest
ε′ value and Fe@PANI-90/10 significantly increased to the second best within the test
samples. ε′ further decreased with the increasing amount of PANI. ε′ generally decreased
with increasing test frequency ranging from 2 to 12 GHz and fluctuated within 13–18 GHz.
Figure 10b shows the imaginary part of permittivity (ε”) where generally Fe@PANI-90/10
exhibited slightly better values when compared to other samples. The intrinsic electric
dipole and interfacial polarization of the prepared RAMs can affect the dielectric proper-
ties [37]. Fe@PANI-90/10 exhibited the best permittivity performance among the prepared
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Fe@PANI core–shell nanowires. The permeability of the real part (µ′, shown in Figure 10c)
tended to fluctuate close to 1 at 2–13 GHz and showed an increasing fluctuation at higher
frequencies ranging from 13–18 GHz. It is interesting to note that µ′ of Fe@PANI-90/10 was
larger than those of the other samples. Similar behavior can be observed for the imaginary
part of permeability (µ”, Figure 10d). Fe@PANI -90/10 possessed better magnetic storage
and magnetic loss capability than the others. The fluctuation phenomena in permittivity
and permeability revealed the feature of the prepared Fe nanowires with or without PANI
modification in high frequency.
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Figure 10. The measured dielectric (a) real part ε′, (b) imaginary part ε”, the magnetic (c) real part µ′,
and (d) imaginary part µ” of Fe@PANI nanowires composites in epoxy resin.

Higher electric and magnetic loss may result in better microwave absorption per-
formance. In order to compare the dielectric and magnetic dissipation of the Fe@PANI
nanowires, Figure 11 shows the dielectric loss factor (tan δε = ε′′/ε′) and the magnetic loss
factor (tan δµ = µ′′/µ′). Generally, dielectric loss capability exhibited two major peaks at
~13 and 15 GHz, Figure 11a. Whereas the magnetic loss capability, shown in Figure 11b,
shows a downward trend within ~2–14 GHz, exhibiting a peak at ~15 GHz, and another
one at ~17 GHz. It can be noted that both tanδε (Figure 11a, max. ~0.28) and tan δµ
(Figure 11b, max. ~0.5) were less than one. As shown in Figure 11, this suggests that
Fe@PANI-90/10 (red curve) may exhibit the best overall performance when considering
both tan δε and tan δµ.
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The reflection loss (R) of various Fe@PANI nanowires in different thicknesses (0–6 mm,
in a step of 0.1 mm) as a function of frequency were calculated from the permittivity and
permeability measurement (Figure 10) using the equations shown in Section 2.2. In order
to better observe the absorption performance, only the selected curves (1–5 mm in a step
of 1 mm, maximum absorption, and the one with largest effective absorption bandwidth)
were shown in Figure 12. For Fe NW, Figure 12a, no effective absorption (lower than
−10 dB) can be observed with a thickness of less than 2 mm. For a simulated thickness of
3 mm and above, absorption peaks at 5–9 GHz for R lower than −10 dB, i.e., more than
90% radar wave loss in the material, can be observed. The absorption peak shifted to a
lower frequency with increasing thickness. For a simulated thickness larger than 4 mm,
two effective absorption peaks can be observed. In general, the absorption peak at low
frequency was related to the property of the absorption material, and the second absorption
peak at high frequency was related to the thickness [38]. The lowest reflection loss thickness
can be written according to the following equation [39,40]:

tm =
nc

4fm
√
|εr||µr|

(n = 1, 3, 5 . . .) (3)

where tm is the matching thickness of the absorber for minimum R, fm is the matching
frequency, c is the velocity of the light, εr, and µ r are the complex permittivity and complex
permeability, respectively. Due to the limitation of the present vector network analyzer,
only n = 1 and n = 3 are studied.

Fe NW with a thickness of 4.6 mm (green curve) exhibited the lowest reflection loss
of −35.06 dB (absorption efficiency 99.97%) at 16.13 GHz. For a thickness of 5.3 mm, it
possessed a maximum effective absorption bandwidth of 2 GHz (13.6–15.6 GHz). Figure 12b
shows the reflection loss of Fe@PANI–95/5 for which most of them (<15 GHz) were lower
than −10 dB. It is, however, interesting to note that a composite with a thickness of 5.4 mm
exhibited the best reflection loss of -43.66 dB (corresponding absorption efficiency 99.99%) at
15.87 GHz. The 5.0 mm thick sample possessed a maximum effective absorption bandwidth
of 2 GHz ranging from 16 GHz to 18 GHz. As more PANI was added, Fe@PANI-90/10 NWs
revealed various thicknesses with wide frequency ranges of effective absorption, Figure 12c.
Composites with a thickness larger than 2 mm possessed effective absorption bandwidth
and the 2.3 mm thick one exhibited a maximum effective absorption bandwidth of 3.73 GHz
(9.73–13.46 GHz). For a simulated thickness larger than 4 mm, the reflection loss exhibited
two effective absorption ranges, similar to that of Fe NW shown in Figure 12a. The 5.4 mm
thick composite exhibited the best reflection loss of−31.87 dB (absorption efficiency 99.93%)
at 4.53 GHz. After further increasing the PANI addition, Fe@PANI-80/20 and Fe@PANI-
70/30, respectively, shown in Figure 12d,e exhibited a general decrease in absorption
performance compared to that of Fe@PANI-90/10. For Fe@PANI-80/20, a composite with a
thickness of 4.4 mm possessed the best reflection loss of −26.61 dB (absorption efficiency
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is 99.76%) at 16.27 GHz and the 2.0 mm thick one had the maximum effective absorption
bandwidth of 2.66 GHz (12.67–15.33 GHz). Meanwhile, Fe@PANI-70/30 had the best
reflection loss of −36.03 dB at 14.4 GHz with a thickness of 5.6 mm and a maximum
effective absorption bandwidth ranging from 16 to 18 GHz with a thickness of 4.7 mm.
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Figure 12. Reflection loss (R) of (a) Fe nanowires, (b) Fe@PANI-95/5, (c) Fe@PANI-90/10,
(d) Fe@PANI-80/20, and (e) Fe@PANI-70/30 with different thicknesses.

As discussed in Figure 12, it can be noted that the composite prepared by adding
10 wt.% Fe@PANI-90/10 core–shell nanowires exhibited the best overall microwave ab-
sorption performance compared to the other PANI-modified Fe NW. In order to better
illustrate the absorption performance, Figure 13 shows the three-dimensional contour
plots of frequency–thickness–reflection loss patterns for Fe@PANI-90/10 and its shell-less
counterpart (Fe NW).
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In addition, the projection on the X-Y plane shows the relation between frequency and
thickness with a reflection loss lower than −10 dB (absorption efficiency > 90%). As shown
in Figure 10a, when the thickness of Fe nanowires exceeds 1.3 mm, the reflection loss starts
to be lower than −10 dB (−12.26 dB at 18 GHz). As the thickness increases, the absorption
peaks move to lower frequencies. For thicknesses larger than 4 mm, there are two absorption
peaks at both high and low frequencies. Compared to its shell-less counterpart, Fe@PANI-
90/10 exhibits superior microwave absorption performance, Figure 13b. When the thickness
is 1 mm, the reflection loss at 18 GHz is −13.53 dB. The maximum reflection losses move
to lower frequencies with increasing thickness. The wider green band in the projection of
Figure 13b reveals that Fe@PANI-90/10 exhibits a larger maximum effective absorption
band compared to Fe nanowires (Figure 13a).

It is suggested that a high surface area to volume ratio is beneficial for microwave
absorbing via interfacial interactions at grain boundaries. Recall Figure 8b, in which the
surface area to volume ratio was 55 m2/cc for pristine iron nanowire. It increased with
increasing PANI addition. It was 297.7 m2/cc for Fe@PANI-90/10 and reached 731.7 m2/cc
by adding 30 wt% PANI. Superfluous PANI may contribute a lot to the high surface area
to volume ratio, but limited improvement on microwave absorption. The modification
of 10 wt% PANI can properly coat the Fe NW and significantly enhance the microwave
absorption effect via both better dielectric and magnetic attenuation.

4. Conclusions

Fe@PANI core–shell nanowires were prepared by combining the polymerization of
polyaniline followed by magnetizing reduction of iron nanowires in one pot. The average
diameters, the specific surface area, and the surface area to volume ratio increased with
increasing PANI concentration. The average diameter was 125 nm for pristine Fe NW and
increased to 244 nm for Fe@PANI-90/10, whereas the specific surface area and the surface
area to volume ratio for shell-less iron NW were 4.95 m2/g and 55.0 m2/cc and, , increased
to 35.72 m2/g and 297.7 m2/cc with 10% PANI addition.

The composite rings were prepared by adding 10 wt.% Fe@PANI nanowires exhibited
good microwave absorption performance. All of them exhibited wide effective absorption
bandwidths ranging from 2–3.7 GHz. Among the Fe NW with or without PANI shells,
Fe@PANI-90/10 exhibits the best overall microwave absorption performance with effective
absorption bandwidths at broad ranges as a function of frequency and thickness.
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14. Wirecka, R.; Maćkosz, K.; Żywczak, A.; Marzec, M.M.; Zapotoczny, S.; Bernasik, A. Magnetoresistive Properties of Nanocompos-

ites Based on Ferrite Nanoparticles and Polythiophene. Nanomaterials 2023, 13, 879. [CrossRef]
15. Zhang, B.; Du, Y.; Zhang, P.; Zhao, H.; Kang, L.; Han, X.; Xu, P. Microwave absorption enhancement of Fe3O4/polyaniline

core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 2013, 130, 1909–1916. [CrossRef]
16. He, Z.; Fang, Y.; Wang, X.; Pang, H. Microwave absorption properties of PANI/CIP/Fe3O4 composites. Synth. Met. 2011, 161,

420–425. [CrossRef]
17. Praveena, K.; Bououdina, M. Tunable Microwave Absorbing Properties of CoFe2O4/PANI Nanocomposites. J. Electron. Mater.

2020, 49, 6187–6198. [CrossRef]
18. Yang, P.A.; Huang, Y.; Li, R.; Huang, X.; Ruan, H.; Shou, M.; Li, W.; Zhang, Y.; Li, N.; Dong, L. Optimization of Fe@Ag core–shell

nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 2022, 430, 132878. [CrossRef]
19. Huang, W.; Tong, Z.; Bi, Y.; Ma, M.; Liao, Z.; Wu, G.; Ma, Y.; Guo, S.; Jiang, X.; Liu, X. Synthesis and microwave absorption

properties of coralloid core-shell structure NiS/Ni3S4@PPy@MoS2 nanowires. J. Colloid. Interface Sci. 2021, 599, 262–270.
[CrossRef]

20. Kaur, A.; Bajaj, B.; Kaushik, A.; Saini, A.; Sud, D. A review on template assisted synthesis of multi-functional metal oxide
nanostructures: Status and prospects. Mater. Sci. Eng. B 2022, 286, 116005. [CrossRef]

21. Spreitzer, D.; Schenk, J. Reduction of Iron Oxides with Hydrogen—A Review. Steel Res. Int. 2019, 90, 1900108. [CrossRef]
22. Hudson, R.; Feng, Y.; Varma, R.S.; Moores, A. Bare magnetic nanoparticles: Sustainable synthesis and applications in catalytic

organic transformations. Green Chem. 2014, 16, 4493–4505. [CrossRef]

http://doi.org/10.1021/acsami.5b10511
http://doi.org/10.1021/acsami.6b04668
http://www.ncbi.nlm.nih.gov/pubmed/27265834
http://doi.org/10.1007/s10854-020-04290-x
http://doi.org/10.1016/j.jallcom.2014.06.191
http://doi.org/10.1021/acsami.8b11395
http://doi.org/10.1039/C9NA00108E
http://www.ncbi.nlm.nih.gov/pubmed/36134227
http://doi.org/10.1016/j.synthmet.2020.116664
http://doi.org/10.3390/nano13050787
http://doi.org/10.1109/TMAG.2013.2239973
http://doi.org/10.1155/2013/237439
http://doi.org/10.1016/j.proeng.2013.10.006
http://doi.org/10.1016/j.porgcoat.2021.106665
http://doi.org/10.1016/j.jmmm.2008.08.099
http://doi.org/10.3390/nano13050879
http://doi.org/10.1002/app.39332
http://doi.org/10.1016/j.synthmet.2010.12.020
http://doi.org/10.1007/s11664-020-08352-y
http://doi.org/10.1016/j.cej.2021.132878
http://doi.org/10.1016/j.jcis.2021.04.107
http://doi.org/10.1016/j.mseb.2022.116005
http://doi.org/10.1002/srin.201900108
http://doi.org/10.1039/C4GC00418C


Nanomaterials 2023, 13, 1100 15 of 15

23. Bláha, M.; Riesová, M.; Zedník, J.; Anžlovar, A.; Žigon, M.; Vohlídal, J. Polyaniline synthesis with iron(III) chloride–hydrogen
peroxide catalyst system: Reaction course and polymer structure study. Synth. Met. 2011, 161, 1217–1225. [CrossRef]

24. Ayad, M.M.; Amer, W.A.; Whdan, M. In situ polyaniline film formation using ferric chloride as an oxidant. J. Appl. Polym. Sci.
2012, 125, 2695–2700. [CrossRef]

25. Liang, W.F.; Yang, R.B.; Lin, W.S.; Jian, Z.J.; Tsay, C.Y.; Wu, S.H.; Lin, H.M.; Choi, S.T.; Lin, C.K. Electromagnetic characteristics of
surface modified iron nanowires at x-band frequencies. J. Appl. Phys. 2012, 111, 07B545. [CrossRef]

26. Yang, R.B.; Liang, W.F.; Wu, C.H.; Chen, C.C. Synthesis and microwave absorbing characteristics of functionally graded carbonyl
iron/polyurethane composites. AIP Adv. 2016, 6, 055910. [CrossRef]

27. Kim, S.S.; Jo, S.B.; Gueon, K.I.; Choi, K.K.; Kim, J.M.; Churn, K.S. Complex permeability and permittivity and microwave
absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 1991, 27, 3. [CrossRef]

28. ISO/IEC Guide 98-3:2008; Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:
1995). International Organization for Standardization: Geneva, Switzerland, 2008.

29. Sundaya, K.J.; Hanejkob, F.G.; Taheri, M.L. Magnetic and microstructural properties of Fe3O4-coated Fe powder soft magnetic
composites. J. Magn. Magn. Mater. 2017, 423, 164–170. [CrossRef]

30. Sun, L.; Zhan, L.; Shi, Y.; Chu, L.; Ge, G.; He, Z. Microemulsion synthesis and electromagnetic wave absorption properties of
monodispersed Fe3O4/polyaniline core–shell nanocomposites. Synth. Met. 2014, 187, 102–107. [CrossRef]
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