Multifunctional Layered Double Hydroxides for Drug Delivery and Imaging
Abstract
:1. Introduction
2. Synthetic Methods for Bio-Applicable Molecule–LDH Nanohybrids
2.1. Coprecipitation Method
2.2. Ion Exchange Method
2.3. Exfoliation-Reassembling Method
2.4. Calcination-Reconstruction Method
3. Design of Functional LDH Nanohybrids for Drug Delivery
3.1. Drug Release Profile (In-Vitro)
3.2. Cell Viability Test (In-Vitro)
3.3. In-Vivo Study
4. Design of Functional LDH Nanohybrids for Imaging
4.1. Fluorescence Imaging Techniques
4.2. MRI Techniques
4.3. Positron Emission Tomography
5. Design of Functional LDH Nanohybrids for Theranostics
Evaluation Based on In-Vivo Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, G.; Lee, J.-H.; Oh, Y.-J.; Choy, Y.B.; Park, M.C.; Chang, H.C.; Choy, J.-H. Inorganic-polymer nanohybrid carrier for delivery of a poorly-soluble drug, ursodeoxycholic acid. Int. J. Pharm. 2010, 402, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-J.; Choi, G.E.; Oh, J.-M.; Oh, Y.-J.; Park, M.-C.; Choy, J.-H. Anticancer drug encapsulated in inorganic lattice can overcome drug resistance. J. Mater. Chem. 2010, 20, 9463–9469. [Google Scholar] [CrossRef]
- Choi, G.; Yang, J.H.; Park, G.Y.; Vinu, A.; Elzatahry, A.; Yo, C.H.; Choy, J.H. Intercalative ion-exchange route to amino acid layered double hydroxide nanohybrids and their sorption properties. Eur. J. Inorg. Chem. 2015, 2015, 925–930. [Google Scholar] [CrossRef]
- Yang, J.-H.; Pei, Y.-R.; Kim, S.-J.; Choi, G.; Vinu, A.; Choy, J.-H. Highly enhanced photocatalytic water-splitting activity of gallium zinc oxynitride derived from flux-assisted Zn/Ga layered double hydroxides. Ind. Eng. Chem. Res. 2018, 57, 16264–16271. [Google Scholar] [CrossRef]
- Yu, S.; Piao, H.; Rejinold, N.S.; Lee, H.; Choi, G.; Choy, J.-H. pH-Responsive inorganic/organic nanohybrids system for controlled nicotinic acid drug release. Molecules 2022, 27, 6439. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gu, Z.; Kurniawan, N.; Chen, W.; Xu, Z.P. Manganese-based layered double hydroxide nanoparticles as a T1-MRI contrast agent with ultrasensitive pH response and high relaxivity. Adv. Mater. 2017, 29, 1700373. [Google Scholar] [CrossRef]
- Wang, L.; Xing, H.; Zhang, S.; Ren, Q.; Pan, L.; Zhang, K.; Bu, W.; Zheng, X.; Zhou, L.; Peng, W. A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials 2013, 34, 3390–3401. [Google Scholar] [CrossRef]
- Kim, S.Y.; Oh, J.-M.; Lee, J.S.; Kim, T.-J.; Choy, J.-H. Gadolinium (III) diethylenetriamine pentaacetic acid/layered double hydroxide nanohybrid as novel T1-magnetic resonant nanoparticles. J. Nanosci. Nanotechnol. 2008, 8, 5181–5184. [Google Scholar] [CrossRef]
- Vigna, L.; Nigro, A.; Verna, A.; Ferrari, I.V.; Marasso, S.L.; Bocchini, S.; Fontana, M.; Chiodoni, A.; Pirri, C.F.; Cocuzza, M. Layered double hydroxide-based gas sensors for VOC detection at room temperature. ACS Omega 2021, 6, 20205–20217. [Google Scholar] [CrossRef]
- Huang, S.-H.; Liu, S.-J.; Uan, J.-Y. Controllable luminescence of a Li–Al layered double hydroxide used as a sensor for reversible sensing of carbonate. J. Mater. Chem. C 2019, 7, 11191–11206. [Google Scholar] [CrossRef]
- Oh, Y.J.; Choi, G.; Choy, Y.B.; Park, J.W.; Park, J.H.; Lee, H.J.; Yoon, Y.J.; Chang, H.C.; Choy, J.H. Aripiprazole–montmorillonite: A new organic–inorganic nanohybrid material for biomedical applications. Chem. Eur. J. 2013, 19, 4869–4875. [Google Scholar] [CrossRef]
- Park, C.G.; Choi, G.; Kim, M.H.; Kim, S.-N.; Lee, H.; Lee, N.K.; Choy, Y.B.; Choy, J.-H. Brimonidine–montmorillonite hybrid formulation for topical drug delivery to the eye. J. Mater. Chem. B 2020, 8, 7914–7920. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Piao, H.; Rejinold, N.S.; Jin, G.; Choi, G.; Choy, J.-H. Niclosamide–clay intercalate coated with nonionic polymer for enhanced bioavailability toward covid-19 treatment. Polymers 2021, 13, 1044. [Google Scholar] [CrossRef]
- Ryu, H.-J.; Hang, N.T.; Lee, J.-H.; Choi, J.Y.; Choi, G.; Choy, J.-H. Effect of organo-smectite clays on the mechanical properties and thermal stability of EVA nanocomposites. Appl. Clay Sci. 2020, 196, 105750. [Google Scholar] [CrossRef]
- Piao, H.; Choi, G.; Jin, X.; Hwang, S.-J.; Song, Y.J.; Cho, S.-P.; Choy, J.-H. Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 2022, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.; Piao, H.; Park, S.; Yang, J.-H.; Choi, G.; Wu, Q.; Kang, H.; Woo, H.J.; Jung, S.J.; Kim, H. Atomic and electronic structures of graphene-decorated graphitic carbon nitride (g-C3N4) as a metal-free photocatalyst under visible-light. Appl. Catal. B 2019, 256, 117850. [Google Scholar] [CrossRef]
- Lyu, Z.; Ding, S.; Du, D.; Qiu, K.; Liu, J.; Hayashi, K.; Zhang, X.; Lin, Y. Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 2022, 185, 114269. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z. 2D nanomaterials for cancer theranostic applications. Adv. Mater. 2020, 32, 1902333. [Google Scholar] [CrossRef]
- Hu, T.; Mei, X.; Wang, Y.; Weng, X.; Liang, R.; Wei, M. Two-dimensional nanomaterials: Fascinating materials in biomedical field. Sci. Bull. 2019, 64, 1707–1727. [Google Scholar] [CrossRef] [Green Version]
- Murali, A.; Lokhande, G.; Deo, K.A.; Brokesh, A.; Gaharwar, A.K. Emerging 2D nanomaterials for biomedical applications. Mater. Today 2021, 50, 276–302. [Google Scholar] [CrossRef]
- Jin, W.; Park, D.-H. Functional layered double hydroxide nanohybrids for biomedical imaging. Nanomaterials 2019, 9, 1404. [Google Scholar] [CrossRef] [Green Version]
- Park, D.-H.; Hwang, S.-J.; Oh, J.-M.; Yang, J.-H.; Choy, J.-H. Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog. Polym. Sci. 2013, 38, 1442–1486. [Google Scholar] [CrossRef]
- Choy, J.-H.; Kwak, S.-Y.; Park, J.-S.; Jeong, Y.-J.; Portier, J. Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J. Am. Chem. Soc. 1999, 121, 1399–1400. [Google Scholar] [CrossRef]
- Paek, S.M.; Oh, J.M.; Choy, J.H. A lattice-engineering route to heterostructured functional nanohybrids. Chem. Asian J. 2011, 6, 324–338. [Google Scholar] [CrossRef]
- Shinde, R.; Padalkar, N.; Sadavar, S.; Patil, A.; Kale, S.; Magdum, V.; Chitare, Y.; Kulkarni, S.; Patil, U.; Parale, V. Lattice engineering route for self-assembled nanohybrids of 2D layered double hydroxide with 0D isopolyoxovanadate: Chemiresistive SO2 sensor. Mater. Today Chem. 2022, 24, 100801. [Google Scholar] [CrossRef]
- Kim, N.; Gu, T.-H.; Shin, D.; Jin, X.; Shin, H.; Kim, M.G.; Kim, H.; Hwang, S.-J. Lattice engineering to simultaneously control the defect/stacking structures of layered double hydroxide nanosheets to optimize their energy functionalities. ACS Nano 2021, 15, 8306–8318. [Google Scholar] [CrossRef]
- Pooresmaeil, M.; Namazi, H. Facile coating of the methotrexate-layered double hydroxide nanohybrid via carboxymethyl starch as a pH-responsive biopolymer to improve its performance for colon-specific therapy. Eur. Polym. J. 2022, 165, 111026. [Google Scholar] [CrossRef]
- Eom, S.; Kim, M.H.; Yoo, R.; Choi, G.; Kang, J.H.; Lee, Y.J.; Choy, J.-H. Dilute lattice doping of 64Cu into 2D-nanoplates: Its impact on radio-labeling efficiency and stability for target selective PET imaging. J. Mater. Chem. B 2022, 10, 9389–9399. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Lee, J.Y.; Kim, T.-H.; Gwak, G.-H.; Park, J.H.; Oh, J.-M. Radioisotope and anticancer agent incorporated layered double hydroxide for tumor targeting theranostic nanomedicine. Appl. Clay Sci. 2020, 186, 105454. [Google Scholar] [CrossRef]
- Kankala, R.K. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv. Drug Deliv. Rev. 2022, 186, 114270. [Google Scholar] [CrossRef]
- Oh, J.-M.; Choi, S.-J.; Kim, S.-T.; Choy, J.-H. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: Enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug. Chem. 2006, 17, 1411–1417. [Google Scholar] [CrossRef]
- Oh, J.M.; Choi, S.J.; Lee, G.E.; Kim, J.E.; Choy, J.H. Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chem. Asian J. 2009, 4, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Choy, J.-H.; Jung, J.-S.; Oh, J.-M.; Park, M.; Jeong, J.; Kang, Y.-K.; Han, O.-J. Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 2004, 25, 3059–3064. [Google Scholar] [CrossRef]
- Yousefi, V.; Tarhriz, V.; Eyvazi, S.; Dilmaghani, A. Synthesis and application of magnetic@layered double hydroxide as an anti-inflammatory drugs nanocarrier. J. Nanobiotechnol. 2020, 18, 155. [Google Scholar] [CrossRef]
- Yan, Q.; Zhang, Z.; Zhang, Y.; Umar, A.; Guo, Z.; O’Hare, D.; Wang, Q. Hierarchical Fe3O4 core–shell layered double hydroxide composites as magnetic adsorbents for anionic dye removal from wastewater. Eur. J. Inorg. Chem. 2015, 2015, 4182–4191. [Google Scholar] [CrossRef]
- Choi, G.; Jeon, I.R.; Piao, H.; Choy, J.H. Highly condensed boron cage cluster anions in 2D carrier and its enhanced antitumor efficiency for boron neutron capture therapy. Adv. Funct. Mater. 2018, 28, 1704470. [Google Scholar] [CrossRef]
- Yasaei, M.; Khakbiz, M.; Ghasemi, E.; Zamanian, A. Synthesis and characterization of ZnAl-NO3(-CO3) layered double hydroxide: A novel structure for intercalation and release of simvastatin. Appl. Surf. Sci. 2019, 467–468, 782–791. [Google Scholar] [CrossRef]
- Abniki, M.; Moghimi, A.; Azizinejad, F. Synthesis of calcium-layered double hydroxide based nanohybrid for controlled release of an anti-inflammatory drug. J. Chin. Chem. Soc. 2021, 68, 343–352. [Google Scholar] [CrossRef]
- Kang, H.; Kim, H.-J.; Yang, J.-H.; Kim, T.-H.; Choi, G.; Paek, S.-M.; Choi, A.-J.; Choy, J.-H.; Oh, J.-M. Intracrystalline structure and release pattern of ferulic acid intercalated into layered double hydroxide through various synthesis routes. Appl. Clay Sci. 2015, 112, 32–39. [Google Scholar] [CrossRef]
- Ansy, K.M.; Lee, J.-H.; Piao, H.; Choi, G.; Choy, J.-H. Stabilization of antioxidant gallate in layered double hydroxide by exfoliation and reassembling reaction. Solid State Sci. 2018, 80, 65–71. [Google Scholar] [CrossRef]
- Park, D.-H.; Kim, J.-E.; Oh, J.-M.; Shul, Y.-G.; Choy, J.-H. DNA core@inorganic shell. J. Am. Chem. Soc. 2010, 132, 16735–16736. [Google Scholar] [CrossRef]
- Mansouri, E.; Tarhriz, V.; Yousefi, V.; Dilmaghani, A. Intercalation and release of an anti-inflammatory drug into designed three-dimensionally layered double hydroxide nanostructure via calcination–reconstruction route. Adsorption 2020, 26, 835–842. [Google Scholar] [CrossRef]
- Kim, B.-K.; Gwak, G.-H.; Okada, T.; Oh, J.-M. Effect of particle size and local disorder on specific surface area of layered double hydroxides upon calcination-reconstruction. J. Solid State Chem. 2018, 263, 60–64. [Google Scholar] [CrossRef]
- Jia, Q.-Y.; Liu, Z.-L.; Li, X.-D.; Li, S.-P.; Jiang, J.-L.; Li, D.-X. Synthesis of spherical MTX/LDHs nanohybrids by the calcination-reconstruction method. J. Dispers. Sci. Technol. 2021, 42, 1673–1680. [Google Scholar] [CrossRef]
- Szabados, M.; Gácsi, A.; Gulyás, Y.; Kónya, Z.; Kukovecz, Á.; Csányi, E.; Pálinkó, I.; Sipos, P. Conventional or mechanochemically-aided intercalation of diclofenac and naproxen anions into the interlamellar space of CaFe-layered double hydroxides and their application as dermal drug delivery systems. Appl. Clay Sci. 2021, 212, 106233. [Google Scholar] [CrossRef]
- Choi, G.; Eom, S.; Vinu, A.; Choy, J.-H. 2D nanostructured metal hydroxides with gene delivery and theranostic functions; A comprehensive review. Chem. Rec. 2018, 18, 1033–1053. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-M.; Park, D.-H.; Choi, S.-J.; Choy, J.-H. LDH nanocontainers as bio-reservoirs and drug delivery carriers. Recent Pat. Nanotechnol. 2012, 6, 200–217. [Google Scholar] [CrossRef]
- Andrade, K.N.; Pérez, A.M.P.; Arízaga, G.G.C. Passive and active targeting strategies in hybrid layered double hydroxides nanoparticles for tumor bioimaging and therapy. Appl. Clay Sci. 2019, 181, 105214. [Google Scholar] [CrossRef]
- Choi, G.; Choy, J.-H. Recent progress in layered double hydroxides as a cancer theranostic nanoplatform. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1679. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Lee, J.Y.; Xie, J.; Park, J.H.; Oh, J.-M. Topology dependent modification of layered double hydroxide for therapeutic and diagnostic platform. Adv. Drug Deliv. Rev. 2022, 188, 114459. [Google Scholar] [CrossRef]
- Vargason, A.M.; Anselmo, A.C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021, 5, 951–967. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.d.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokhtari, S.; Solati-Hashjin, M.; Khosrowpour, Z.; Gholipourmalekabadi, M. Layered double hydroxide-galactose as an excellent nanocarrier for targeted delivery of curcumin to hepatocellular carcinoma cells. Appl. Clay Sci. 2021, 200, 105891. [Google Scholar] [CrossRef]
- Pontes-Neto, J.; Silva, T.; Ribeiro, F.; Silva, D.; Soares, M.; Soares-Sobrinho, J. Reconstitution as an alternative method for 5-aminosalicylic acid intercalation in layered double hydroxide for drug delivery. J. Therm. Anal. Calorim. 2022, 147, 3141–3149. [Google Scholar] [CrossRef]
- Meneses, C.C.F.; de Sousa, P.R.M.; Pinto, L.C.; Coelho, G.M.; da Silva, T.F.; Ferreira, L.O.; Gustavo, K.S.; Martins-Filho, A.J.; Faial, K.D.C.F.; Yamada, E.S. Layered double hydroxide–indomethacin hybrid: A promising biocompatible compound for the treatment of neuroinflammatory diseases. J. Drug Deliv. Sci. Technol. 2021, 61, 102190. [Google Scholar] [CrossRef]
- Ranjbar, E.; Namazi, H.; Pooresmaeil, M. Carboxymethyl starch encapsulated 5-FU and DOX co-loaded layered double hydroxide for evaluation of its in vitro performance as a drug delivery agent. Int. J. Biol. Macromol. 2022, 201, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Jeung, D.-G.; Oh, J.-M. Boosting the anticancer activity of doxorubicin with a layered double hydroxide nanocarrier. Appl. Clay Sci. 2021, 203, 106000. [Google Scholar] [CrossRef]
- Wang, X.; Yang, B.; Xu, X.; Su, M.; Xi, M.; Yin, Z. Dextran sulfate–modified pH-sensitive layered double hydroxide nanocomposites for treatment of rheumatoid arthritis. Drug Deliv. Transl. Res. 2021, 11, 1096–1106. [Google Scholar] [CrossRef]
- Kiani, M.; Bagherzadeh, M.; Ghadiri, A.M.; Makvandi, P.; Rabiee, N. Multifunctional green synthesized Cu–Al layered double hydroxide (LDH) nanoparticles: Anti-cancer and antibacterial activities. Sci. Rep. 2022, 12, 9461. [Google Scholar] [CrossRef]
- Mohammadzadeh, V.; Norouzi, A.; Ghorbani, M. Multifunctional nanocomposite based on lactose@ layered double hydroxide-hydroxyapatite as a pH-sensitive system for targeted delivery of doxorubicin to liver cancer cells. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129723. [Google Scholar] [CrossRef]
- Phan, V.G.; Mathiyalagan, R.; Nguyen, M.-T.; Tran, T.-T.; Murugesan, M.; Ho, T.-N.; Huong, H.; Yang, D.C.; Li, Y.; Thambi, T. Ionically cross-linked alginate-chitosan core-shell hydrogel beads for oral delivery of insulin. Int. J. Biol. Macromol. 2022, 222, 262–271. [Google Scholar] [CrossRef]
- Choi, G.; Piao, H.; Alothman, Z.A.; Vinu, A.; Yun, C.-O.; Choy, J.-H. Anionic clay as the drug delivery vehicle: Tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model. Int. J. Nanomed. 2016, 11, 337. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-J.; Oh, J.-M.; Choy, J.-H. Biocompatible nanoparticles intercalated with anticancer drug for target delivery: Pharmacokinetic and biodistribution study. J. Nanosci. Nanotechnol. 2010, 10, 2913–2916. [Google Scholar] [CrossRef]
- Meghani, N.M.; Amin, H.H.; Park, C.; Park, J.-B.; Cui, J.-H.; Cao, Q.-R.; Lee, B.-J. Design and evaluation of clickable gelatin-oleic nanoparticles using fattigation-platform for cancer therapy. Int. J. Pharm. 2018, 545, 101–112. [Google Scholar] [CrossRef]
- Cao, Z.; Li, B.; Sun, L.; Li, L.; Xu, Z.P.; Gu, Z. 2D layered double hydroxide nanoparticles: Recent progress toward preclinical/clinical nanomedicine. Small Methods 2020, 4, 1900343. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Kim, H.-M.; Hwang, S.; Jeung, D.-G.; Rhee, K.-J.; Oh, J.-M. Physicochemical properties and hematocompatibility of layered double hydroxide-based anticancer drug methotrexate delivery system. Pharmaceutics 2020, 12, 1210. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Gonca, S.; Zhu, G.; Zhang, W.; Chen, X. Layered double hydroxide nanostructures and nanocomposites for biomedical applications. J. Mater. Chem. B 2019, 7, 5583–5601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.; Fliss, B.C.; Gu, Z.; Zhu, Y.; Hong, H.; Valdovinos, H.F.; Hernandez, R.; Goel, S.; Luo, H.; Chen, F. Chelator-free labeling of layered double hydroxide nanoparticles for in vivo PET imaging. Sci. Rep. 2015, 5, 16930. [Google Scholar] [CrossRef] [Green Version]
- Zuo, H.; Gu, Z.; Cooper, H.; Xu, Z.P. Crosslinking to enhance colloidal stability and redispersity of layered double hydroxide nanoparticles. J. Colloid Interface Sci. 2015, 459, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zuo, H.; Zhang, E.; Li, L.; Henrich-Noack, P.; Cooper, H.; Qian, Y.; Xu, Z.P. Brain targeting delivery facilitated by ligand-functionalized layered double hydroxide nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 20326–20333. [Google Scholar] [CrossRef]
- Liu, J.; Sun, L.; Li, L.; Zhang, R.; Xu, Z.P. Synergistic cancer photochemotherapy via layered double hydroxide-based trimodal nanomedicine at very low therapeutic doses. ACS Appl. Mater. Interfaces 2021, 13, 7115–7126. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Bremner, D.H.; Zhang, H.; Chen, X.; Lou, J.; Zhu, L.-M. Functionalized layered double hydroxide nanoparticles as an intelligent nanoplatform for synergistic photothermal therapy and chemotherapy of tumors. Colloids Surf. B Biointerfaces 2022, 210, 112261. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, K.; Zhang, L.; Zhong, M.; Hong, T.; Zhang, R.; Gao, Y.; Li, R.; Xu, T.; Xu, Z.P. Heat/pH-boosted release of 5-fluorouracil and albumin-bound paclitaxel from Cu-doped layered double hydroxide nanomedicine for synergistical chemo-photo-therapy of breast cancer. J. Control. Release 2021, 335, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Guo, Z.; Che, S.; Gao, F.; Gu, Z.; Xu, J.; Chi, Y.; Xu, W.; Zhang, J.; Takuya, N. Dihydroartemisinin loaded layered double hydroxide nanocomposites for tumor specific photothermal–chemodynamic therapy. J. Mater. Chem. B 2020, 8, 11082–11089. [Google Scholar] [CrossRef]
- Jadam, M.L.; Jubri, Z.; Sarijo, S.H. Release behavior and cytotoxicity of captopril-intercalated layered double hydroxide for an antihypertensive drug delivery system. J. Porous Mater. 2023, 30, 223–233. [Google Scholar] [CrossRef]
- Abdelgalil, R.M.; Khattab, S.N.; Ebrahim, S.; Elkhodairy, K.A.; Teleb, M.; Bekhit, A.A.; Sallam, M.A.; Elzoghby, A.O. Engineered sericin-tagged layered double hydroxides for combined delivery of pemetrexed and ZnO quantum dots as biocompatible cancer nanotheranostics. ACS Omega 2023, 8, 5655–5671. [Google Scholar] [CrossRef]
- Musumeci, A.W.; Mortimer, G.M.; Butler, M.K.; Xu, Z.P.; Minchin, R.F.; Martin, D.J. Fluorescent layered double hydroxide nanoparticles for biological studies. Appl. Clay Sci. 2010, 48, 271–279. [Google Scholar] [CrossRef]
- Xu, T.; Liu, J.; Sun, L.; Zhang, R.; Xu, Z.P.; Sun, Q. Enhancing tumor accumulation and cellular uptake of layered double hydroxide nanoparticles by coating/detaching pH-triggered charge-convertible polymers. ACS Omega 2021, 6, 3822–3830. [Google Scholar] [CrossRef]
- Xie, W.; Guo, Z.; Cao, Z.; Gao, Q.; Wang, D.; Boyer, C.; Kavallaris, M.; Sun, X.; Wang, X.; Zhao, L.; et al. Manganese-based magnetic layered double hydroxide nanoparticle: A pH-sensitive and concurrently enhanced T1/T2-weighted dual-mode magnetic resonance imaging contrast agent. ACS Biomater. Sci. Eng. 2019, 5, 2555–2562. [Google Scholar] [CrossRef]
- Chung, H.-E.; Park, D.-H.; Choy, J.-H.; Choi, S.-J. Intracellular trafficking pathway of layered double hydroxide nanoparticles in human cells: Size-dependent cellular delivery. Appl. Clay Sci. 2012, 65, 24–30. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Yang, X.; Guo, S.; Waterhouse, G.I.; Song, G.; Guan, S.; Liu, A.; Cheng, L.; Zhou, S. Targeted alleviation of ischemic stroke reperfusion via atorvastatin-ferritin Gd-layered double hydroxide. Bioact. Mater. 2023, 20, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Sun Zhou, X.D.; Marzke, R.; Peng, Z.; Szilágyi, I.; Dey, S.K. Understanding the high longitudinal relaxivity of Gd(DTPA)-intercalated (Zn, Al)-layered double hydroxide nanoparticles. Inorg. Chem. 2019, 58, 12112–12121. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.P.; Kurniawan, N.D.; Bartlett, P.F.; Lu, G.Q. Enhancement of relaxivity rates of Gd–DTPA complexes by intercalation into layered double hydroxide nanoparticles. Chem. Eur. J. 2007, 13, 2824–2830. [Google Scholar] [CrossRef]
- Legentil, P.; Leroux, F.; Therias, S.; Mahiou, R.; Chadeyron, G. Revisiting fluorescein and layered double hydroxide using a synergistic approach: A complete optical study. J. Lumin. 2019, 215, 116634. [Google Scholar] [CrossRef]
- Shi, W.; Sun, Z.; Wei, M.; Evans, D.G.; Duan, X. Tunable photoluminescence properties of fluorescein in a layered double hydroxide matrix by changing the interlayer microenvironment. J. Phys. Chem. C 2010, 114, 21070–21076. [Google Scholar] [CrossRef]
- Oh, J.-M.; Park, C.-B.; Choy, J.-H. Intracellular drug delivery of layered double hydroxide nanoparticles. J. Nanosci. Nanotechnol. 2011, 11, 1632–1635. [Google Scholar] [CrossRef]
- Bao, W.; Wang, J.; Wang, Q.; O’Hare, D.; Wan, Y. Layered double hydroxide nanotransporter for molecule delivery to intact plant cells. Sci. Rep. 2016, 6, 26738. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, L.; Fang, L.; Cao, F. Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Acta Biomater. 2020, 104, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Guo, Z.; Sun, Z.; Li, A.; Jin, Q.; Wei, M. Assembly of 8-aminonaphthalene-1,3,6-trisulfonate intercalated layered double hydroxide film for the selective detection of Mg2+. Sens. Actuators B Chem. 2012, 161, 714–720. [Google Scholar] [CrossRef]
- Zhang, C.; Li, L.; Han, F.Y.; Yu, X.; Tan, X.; Fu, C.; Xu, Z.P.; Whittaker, A.K. Integrating fluorinated polymer and manganese-layered double hydroxide nanoparticles as pH-activated 19F MRI agents for specific and sensitive detection of breast cancer. Small 2019, 15, 1902309. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Zhang, Y.; Wu, F.; Wang, Q. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.; Choi, G.; Nakamura, H.; Choy, J.-H. 2-Dimensional nanomaterials with imaging and diagnostic functions for nanomedicine; a review. Bull. Chem. Soc. Jpn. 2020, 93, 1–12. [Google Scholar] [CrossRef]
- Jeong, Y.; Hwang, H.S.; Na, K. Theranostics and contrast agents for magnetic resonance imaging. Biomater. Res. 2018, 22, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Y.; Sherwood, J.; Sun, Z. Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J. Mater. Chem. C 2018, 6, 1280–1290. [Google Scholar] [CrossRef]
- Jeon, M.; Halbert, M.V.; Stephen, Z.R.; Zhang, M. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives. Adv. Mater. 2021, 33, 1906539. [Google Scholar] [CrossRef]
- Gale, E.M.; Atanasova, I.P.; Blasi, F.; Ay, I.; Caravan, P. A manganese alternative to gadolinium for MRI contrast. J. Am. Chem. Soc. 2015, 137, 15548–15557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, W.; Chen, D.; Tang, H.; Li, C.; Zheng, W.; Chen, F.; Song, Q.; Zhao, Y.; Zou, Y.; Zheng, C. Targeted GSH-exhausting and hydroxyl radical self-producing manganese–silica nanomissiles for MRI guided ferroptotic cancer therapy. Nanoscale 2020, 12, 16738–16754. [Google Scholar] [CrossRef] [PubMed]
- Khawaja, A.Z.; Cassidy, D.B.; Al Shakarchi, J.; McGrogan, D.G.; Inston, N.G.; Jones, R.G. Revisiting the risks of MRI with gadolinium based contrast agents—Review of literature and guidelines. Insights Imaging 2015, 6, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, P.; Tal, A.A.; Skallberg, A.; Brommesson, C.; Hu, Z.; Boyd, R.D.; Olovsson, W.; Fairley, N.; Abrikosov, I.A.; Zhang, X. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci. Rep. 2018, 8, 6999. [Google Scholar] [CrossRef] [Green Version]
- Neubertova, V.; Guselnikova, O.; Yamauchi, Y.; Olshtrem, A.; Rimpelova, S.; Čižmár, E.; Orendáč, M.; Duchon, J.; Volfova, L.; Lancok, J. Covalent functionalization of Ti3C2T MXene flakes with Gd-DTPA complex for stable and biocompatible MRI contrast agent. Chem. Eng. J. 2022, 446, 136939. [Google Scholar] [CrossRef]
- Zhang, J.; Di, Z.; Yan, H.; Zhao, Y.; Li, L. One-step synthesis of single-stranded DNA-bridged iron oxide supraparticles as MRI contrast agents. Nano Lett. 2021, 21, 2793–2799. [Google Scholar] [CrossRef]
- Lazaro-Carrillo, A.; Filice, M.; Guillén, M.J.; Amaro, R.; Viñambres, M.; Tabero, A.; Paredes, K.O.; Villanueva, A.; Calvo, P.; del Puerto Morales, M. Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers. Mater. Sci. Eng. C 2020, 107, 110262. [Google Scholar] [CrossRef]
- Tirotta, I.; Dichiarante, V.; Pigliacelli, C.; Cavallo, G.; Terraneo, G.; Bombelli, F.B.; Metrangolo, P.; Resnati, G. 19F magnetic resonance imaging (MRI): From design of materials to clinical applications. Chem. Rev. 2015, 115, 1106–1129. [Google Scholar] [CrossRef]
- Peng, T.; Wang, X.; Li, Z.; Bi, L.; Gao, J.; Yang, M.; Wang, Y.; Yao, X.; Shan, H.; Jin, H. Preclinical evaluation of [64Cu]NOTA-CP01 as a PET imaging agent for metastatic esophageal squamous cell carcinoma. Mol. Pharm. 2021, 18, 3638–3648. [Google Scholar] [CrossRef]
- Zhu, L.; Ploessl, K.; Kung, H.F. PET/SPECT imaging agents for neurodegenerative diseases. Chem. Soc. Rev. 2014, 43, 6683–6691. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Zhang, L.; Zhang, B.; Shi, X.; Yi, C.; Zhang, X. Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: A comparative study in patients with suspected cerebral glioma. BMC Cancer 2019, 19, 332. [Google Scholar] [CrossRef] [PubMed]
- Normand, G.; Lemoine, S.; Le Bars, D.; Merida, I.; Irace, Z.; Troalen, T.; Costes, N.; Juillard, L. PET [11C] acetate is also a perfusion tracer for kidney evaluation purposes. Nucl. Med. Biol. 2019, 76, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Chételat, G.; Arbizu, J.; Barthel, H.; Garibotto, V.; Law, I.; Morbelli, S.; van de Giessen, E.; Agosta, F.; Barkhof, F.; Brooks, D.J. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 2020, 19, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Rahman, W.T.; Wale, D.J.; Viglianti, B.L.; Townsend, D.M.; Manganaro, M.S.; Gross, M.D.; Wong, K.K.; Rubello, D. The impact of infection and inflammation in oncologic 18F-FDG PET/CT imaging. Biomed. Pharmacother. 2019, 117, 109168. [Google Scholar] [CrossRef]
- Luo, Y.; Pan, Q.; Yang, H.; Peng, L.; Zhang, W.; Li, F. Fibroblast activation protein–targeted PET/CT with 68Ga-FAPI for imaging IgG4-related disease: Comparison to 18F-FDG PET/CT. J. Nucl. Med. 2021, 62, 266–271. [Google Scholar] [CrossRef]
- Thomas, G.; Boudon, J.; Maurizi, L.; Moreau, M.; Walker, P.; Séverin, I.; Oudot, A.; Goze, C.; Poty, S.; Vrigneaud, J.-M. Innovative magnetic nanoparticles for PET/MRI bimodal imaging. ACS Omega 2019, 4, 2637–2648. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Shen, S.; Jiang, D.; Jin, Q.; Ellison, P.A.; Ehlerding, E.B.; Goel, S.; Song, G.; Huang, P.; Barnhart, T.E. Chelator-free labeling of metal oxide nanostructures with zirconium-89 for positron emission tomography imaging. ACS Nano 2017, 11, 12193–12201. [Google Scholar] [CrossRef]
- Ma, W.; Fu, F.; Zhu, J.; Huang, R.; Zhu, Y.; Liu, Z.; Wang, J.; Conti, P.S.; Shi, X.; Chen, K. 64Cu-labeled multifunctional dendrimers for targeted tumor PET imaging. Nanoscale 2018, 10, 6113–6124. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Rizk, M.M.; Liang, R.; Wells, C.J.; Gurnani, P.; Zhou, F.; Davies, G.-L.; Williams, G.R. Thermo-responsive nano-in-micro particles for MRI-guided chemotherapy. Mater. Sci. Eng. C 2022, 134, 112716. [Google Scholar] [CrossRef] [PubMed]
- Dragoi, B.; Uritu, C.M.; Agrigoroaie, L.; Lutic, D.; Hulea, V.; Postole, G.; Coroaba, A.; Carasevici, E. MnAl-layered double hydroxide nanosheets infused with fluorouracil for cancer diagnosis and therapy. ACS Appl. Nano Mater. 2021, 4, 2061–2075. [Google Scholar] [CrossRef]
- Wen, J.; Lv, Y.; Xu, Y.; Zhang, P.; Li, H.; Chen, X.; Li, X.; Zhang, L.; Liu, F.; Zeng, W. Construction of a biodegradable, versatile nanocarrier for optional combination cancer therapy. Acta Biomater. 2019, 83, 359–371. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Y.; Zhang, C.; Fan, Y.; Li, D.; Cao, X.; Xia, J.; Shi, X.; Guo, R. LDH-stabilized ultrasmall iron oxide nanoparticles as a platform for hyaluronidase-promoted MR imaging and chemotherapy of tumors. Theranostics 2020, 10, 2791. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.S.; Hussein, M.Z.; Kura, A.U.; Fakurazi, S.; Masarudin, M.J.; Saad, F.F.A. Chlorogenic acid intercalated gadolinium–zinc/aluminium layered double hydroxide and gold nanohybrid for MR imaging and drug delivery. Mater. Chem. Phys. 2020, 240, 122232. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Fu, C.; Li, B.; Li, L.; Zhang, R.; Xu, T.; Xu, Z.P. Charge reversion simultaneously enhances tumor accumulation and cell uptake of layered double hydroxide nanohybrids for effective imaging and therapy. Small 2020, 16, 2002115. [Google Scholar] [CrossRef]
- Liu, C.-G.; Tang, H.-X.; Zheng, X.; Yang, D.-Y.; Zhang, Y.; Zhang, J.-T.; Kankala, R.K.; Wang, S.-B.; Liu, G.; Chen, A.-Z. Near-infrared-activated lysosome pathway death induced by ROS generated from layered double hydroxide-copper sulfide nanocomposites. ACS Appl. Mater. Interfaces 2020, 12, 40673–40683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Smith, L.; Li, W.; Jiang, L.; Zhou, F.; Davies, G.-L.; Williams, G.R. Polydopamine-coated nanocomposite theranostic implants for localized chemotherapy and MRI imaging. Int. J. Pharm. 2022, 615, 121493. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fu, L.; Zhu, Y.; Wang, S.; Shen, G.; Jin, L.; Liang, R. Chemodynamic/photothermal synergistic therapy based on Ce-doped Cu–Al layered double hydroxides. J. Mater. Chem. B 2021, 9, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Tang, J.; Chen, W.; Hao, G.; Kurniawan, N.; Gu, Z.; Xu, Z.P. Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy. Biomaterials 2018, 177, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Zingale, E.; Romeo, A.; Rizzo, S.; Cimino, C.; Bonaccorso, A.; Carbone, C.; Musumeci, T.; Pignatello, R. Fluorescent nanosystems for drug tracking and theranostics: Recent applications in the ocular field. Pharmaceutics 2022, 14, 955. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Pan, H.; Xu, S.; Chen, W.; Zhu, R.; Jiang, W.; Pan, W. Construction and evaluation of hyaluronic acid–coated flurbiprofen-layered double hydroxide ocular drug delivery system. AAPS PharmSciTech 2022, 23, 287. [Google Scholar] [CrossRef]
- Ding, S.; Khan, A.I.; Cai, X.; Song, Y.; Lyu, Z.; Du, D.; Dutta, P.; Lin, Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020, 37, 112–125. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Zhang, R.; Lam, J.; Ng, J.C.; Xu, Z.P.; Li, L.; Ta, H.T. Investigating the use of layered double hydroxide nanoparticles as carriers of metal oxides for theranostics of ROS-related diseases. ACS Appl. Bio Mater. 2019, 2, 5930–5940. [Google Scholar] [CrossRef]
- Nolte, T.; Gross-Weege, N.; Schulz, V. (Hybrid) SPECT and PET technologies. In Molecular Imaging in Oncology; Schober, O., Kiessling, F., Debus, J., Eds.; Recent Results in Cancer Research; Springer: Cham, Switzerland, 2020; Volume 216, pp. 111–133. [Google Scholar]
Synthetic Approaches | Types of Biomedical Applications | Active Molecules (Therapeutic Agents or/and Contrasting Agents) | Additional Agent for Stability | Remarks | Ref. | |
---|---|---|---|---|---|---|
ZnAl-LDH | Coprecipitation, Ion-exchange | Drug delivery | Intercalation of methotrexate (MTX) | Carboxymethyl starch (CMS) as a pH-sensitive polymer | CMS@ZnAl-LDH/MTX (23.7%), with biodegradability, is used for controlled drug delivery to the lower gastrointestinal tract. The carrier shows good biocompatibility with HT 29 cells | [27] |
ZnAl-LDH | Coprecipitation | Drug delivery | Intercalation of nicotinic acid (NA) | Eudragit® S100 for enteric coating | NA (26.1%)-LDH causes lesser side effects than NA, with better pharmacological effects, without undesirable toxicity | [5] |
ZnAlCa-LDH | Coprecipitation | Drug delivery | Surface incorporation of doxorubicin (DOX) | Lactose as a specific-target ligand, hydroxyapatite for surface modification | DOX/lactose@LDH-HAp shows controlled and pH-dependent drug release, and its high cancer-cell suppression (tested with HepG2 cells) confirms the high potential for the targeted and controlled delivery of DOX | [60] |
MgAl-LDH | Coprecipitation | Drug delivery | Intercalation of 5-fluorouracil (5-FU) and surface absorption of doxorubicin (DOX) | Carboxymethyl starch (CMS) as a pH-sensitive polymer | An acceptable formulation for oral co-drug delivery; it shows an acceptable controlled drug-release profile (~22% for DOX and 29% for 5-Fu), according to in-vitro analysis and a cell (Caco-2) viability test | [56] |
MgAl-LDH | Coprecipitation-Hydrothermal | Drug delivery | Intercalation of curcumin (Cur) | Galactose (Gal) as a cancer-specific ligand | Gal-Cur (31.0%)/LDH is an excellent carrier system for the targeted delivery of Cur to HepG2 cells via an asialoglycoprotein (ASGP) receptor-mediated pathway with a high rate of apoptosis | [53] |
MgAl-LDH | Coprecipitation | Drug delivery | Intercalation of indomethacin (INDO) | - | LDH-INDO (50%) enables a faster recovery than intact INDO from LPS-induced inflammatory processes, according to in-vivo assays on male Wistar rats | [55] |
MgAl-LDH | Coprecipitation, Hydrothermal, Ion-exchange | Drug delivery | Intercalation of doxorubicin (DOX) | Polyacrylic acid (PAA) for surface modification | DOX-PAA-LDH shows anticancer activity; it efficiently delivers drugs to the nucleus, according to tests with two cancer cells, MG-63 and A549, analyzed by confocal microscopy and cellular assays | [57] |
MgAl-LDH | Coprecipitation | Drug delivery | Intercalation of insulin | Alginate for preparing hydrogel, chitosan for improving stability | Chitosan-alginate-based insulin (~85%) LDHs are a promising platform for sustained oral insulin delivery under pH 6.8, according to tests on the chicken intestine | [61] |
ZnAl-LDH | Coprecipitation | Drug delivery | Intercalation of captopril (CPL) | - | By intercalating an antihypertensive drug, CPL, into the interlayer spaces of zinc–aluminum-LDH, providing efficient controlled release formulation with less toxicity compared to pure CPL is achieved | [75] |
MgAl-LDH | Coprecipitation, Hydrothermal, Ion-exchange | Drug delivery | Intercalation of pemetrexed (PMX) | Sericin (Seri) protein and glutaraldehyde (GTA) for stabilizing agent | Sustained release manner (99.23% after 30 h and 99.3% after 11 h at pH 7.4 and 4.8, respectively) with high cellular uptake performance for hydrophilic PMX is shown synthesizing 3-triethoxysilylpropan-1-amine (APTES)-ZnO quantum dots (QDs)/Seri@LDH2-PMX (GTA) | [76] |
MgAl-LDH | Coprecipitation, Hydrothermal, Ion-exchange | Drug delivery | Intercalation of methotrexate (MTX) | - | In-vivo hemolysis assay after intravenous injection of MTX-LDH showed neither significant reduction in red blood cell number nor membrane damage without no change of morphology of red blood cells in mice, taking advantage of the cell hitchhiking property. | [66] |
Cu-LDH | Isomorphic substitution | Drug delivery, phototherapy | Intercalation of indocyanine green (ICG), Surface incorporation of doxorubicin (DOX) | Bovine serum albumin (BSA) for stabilizing agent | ICG/Cu-LDH@BSA-DOX release DOX in an acid-triggered manner and eradicated the tumor tissues upon very low doses of therapeutic agents (0.175 mg/kg DOX, 0.5 mg/kg Cu, and 0.25 mg/kg ICG) upon 808 nm laser irradiation | [71] |
MgAl-LDH | Hydrothermal | Drug delivery, phototherapy | Physical adsorption of doxorubicin (DOX) and indocyanine green (ICG), | H2N-PEG-NH2 as a linker of targeting agent, B3int, for improving biocompatibility and hydrophilicity | Synergistic photothermal therapy (PTT)/chemotherapy utilizing ICG and DOX coloaded LDH (LDH -PEG-B3int NPs) through pH-responsive and near-infrared (NIR)-triggered DOX release having anti-tumor activity under in-vitro/in-vivo study | [72] |
Cu-LDH | Hydrothermal, Isomorphic substitution | Drug delivery, phototherapy | Intercalation of indocyanine green (ICG), 5-Fluorouracil (5-FU), and surface absorption of albumin-bound paclitaxel (nAb-PTX) | - | 5-FU/Cu-LDH@nAb-PTX as a pH-sensitive heat-facilitated therapeutic on-demand release nanomedicine showing strong synergy of photothermal therapy and chemotherapy in inducing apoptosis of breast cancer cells (4 T1) under 808 nm irradiated state at very low doses of 5-FU and nAb-PTX (0.25 and 0.50 mg/kg) | [73] |
MnMgFe-LDH | Coprecipitation, Isomorphic substitution | Drug delivery, phototherapy | Physical adsorption of dihydroartemisinin (DHA) | Bovine serum albumin (BSA) for stabilizing agent | MnMgFe-LDH/DHA PTT), remarkable chemodynamic/photothermal therapy (CDT/PTT) synergistic effect on tumor treatment with photothermal conversion efficiency up to 10.7% without damage to normal tissues | [74] |
Synthetic Approaches | Types of Biomedical Applications | Active Molecules (Therapeutic Agents or/and Contrasting Agents) | Additional Agent for Stability | Remarks | Ref. | |
---|---|---|---|---|---|---|
Cu-LDH | Coprecipitation, Isomorphic substitution | Fluorescent, MRI imaging | Intercalation of fluorescein isothiocyanate (FITC) | Bovine serum albumin (BSA) using a stabilizing agent for in-vivo analysis | Charge conversions in the polymer cause a pH-responsive MRI contrast capacity (T1-weighed magnetic resonance images) in a suitable microenvironment. According to in-vivo testing, ~4.8% of the injected dose accumulates 24-h post-injection | [78] |
MgMnAl-LDH | Coprecipitation, Isomorphic substitution | MRI imaging | Substitution of Mn2+ on lattice and iron oxide (IO) attached to the surface | Bovine serum albumin (BSA) using a stabilizing agent for in-vivo analysis | MgMnAl-LDH@IO NP, with biocompatibility, enables accurate in-vitro and in-vivo tumor diagnosis utilizing a dual mode of MRI imaging (T1- and T2-weighted magnetic resonance signals) and contrasting agents with tumor tissues | [79] |
Mn-LDH | Coprecipitation, Isomorphic substitution | MRI imaging | Substitution of Mn2+ on lattice and conjugation of perfluoropolyether | Bovine serum albumin (BSA) using a stabilizing agent for in-vivo analysis | Enables a potential turn on/off system with 19F MRI agents for the precise and specific detection of cancer diseases. The system is pH dependent, and 19F magnetic resonance signals are detected only in the breast tumor tissue after injecting Mn-LDH@PFPE nanoparticles | [90] |
64CuMgAl-LDH | Coprecipitation, Hydrothermal, Isomorphic substitution | PET imaging | Substitution of 64Cu on lattice | Bovine serum albumin (BSA) using a stabilizing agent for in-vivo analysis | 64Cu is immobilized in the octahedral sites of the quintinite lattice. 64Cu-QT-NPs/BSA, with passive targeting behavior based on EPR, visualized using a PET scanner in-vivo, shows high potential as an advanced nano-device for radio-imaging and diagnosis | [28] |
Synthetic Approaches | Types of Biomedical Applications | Active Molecules (Therapeutic Agents or/and Contrasting Agents) | Additional Agent for Stability | Remarks | Ref. | |
---|---|---|---|---|---|---|
MgAl-LDH | Coprecipitation, Hydrothermal | Drug delivery & MRI imaging | Attachment of cerium oxide and iron oxide to the surface of LDHs | - | It enables the co-delivery of cerium oxide and iron oxide in combination with targeted molecules and therapeutic drugs, enabling ROS scavenging and diagnosing ROS-related diseases. It shows an excellent magnetic resonance signal without any toxicity | [127] |
MnAl-LDH | Coprecipitation, Ion-exchange | Drug delivery & MRI imaging | Contains Mn2+ on the lattice, with intercalated fluorouracil (FU) | - | The theranostics nanoplatform FU-MnAl-LDH contains Mn as Mn2+ and Mn3+ and shows a pH-dependent FU release and MRI imaging capacity with high r1 and r2 relaxivities, particularly at pH = 7.4 | [115] |
MgAl-LDH | Coprecipitation, Hydrothermal | Drug delivery & Fluorescence imaging | Intercalation of flurbiprofen (FB) and fluoresce isothiocyanate (FITC) substitution | Hyaluronic acid (HA) modification for stabilizing, targeting agents | The ocular delivery system of HA-FB-LDH (74.82 ± 0.29%) has a sustained release pattern, analyzing cumulative release amounts compared to FB-LDH (92.99 ± 0.37%) within 12 h in-vitro, and improvement of the precorneal residence time in-vivo (1.48 times higher than that of the FB-LDH group) | [125] |
MgAlGd-LDH | Coprecipitation | Drug delivery & MRI imaging | Intercalation of atorvastatin and partial substitution of Gd3+ in M3+ sites | Ferritin heavy subunit (FTH) as a blood-brain barrier transport agent | AFGd-LDH enables MRI imaging and ischemia-reperfusion therapy, according to its ROS scavenging efficiency in-vitro and the decrease of apoptosis induced by reperfusion in-vivo | [81] |
MgAl-LDH | Coprecipitation, Hydrothermal | Drug delivery & MRI & Hyperthermia | Intercalation of methotrexate (MTX) or 5-fluorouracil (5FU) and the incorporation of iron oxide | Poly(acrylamide-co-acrylonitrile) for thermo-responsive property | Spray-dried microparticles are used for smart stimuli-responsive theranostics for hyperthermia-aided chemotherapy and MRI diagnosis. Their activity has been analyzed with tests under different temperatures, as well as in-vitro release and other cell experiments | [114] |
CoAl-LDH | Exfoliation | Drug delivery & Fluorescence imaging | Intercalation of doxorubicin (DOX) and paclitaxel (PTX), RhB modification | Folic acid (FA) for better targeting of cancerous cells | It is a biodegradable and versatile drug-delivery nanocarrier based on the self-assembly of delaminated CoAl-LDHs and MnO2 that shows a synergistically enhanced therapeutic effect due to the co-loading of DOX and PTX. It shows better in-vitro and in-vivo activity than cocktail solutions of the two drugs | [116] |
MgAl-LDH | Coprecipitation | Drug delivery & MRI | LDH is stabilized on Fe3O4, followed by the physical mixing of LDH-Fe3O4-HA with doxorubicin (DOX) | Hyaluronic acid (HA) modification for stabilizing, targeting agents | It is a novel targeted theranostics nanoplatform. LDH-Fe3O4-HA/DOX nanohybrids show efficient T1-weighted MRI-guided chemotherapy of CD44 receptor-overexpressing tumors | [117] |
MgAl-LDH | Coprecipitation, Hydrothermal | Drug delivery & SPECT imaging | Intercalation of methotrexate (MTX) and substitution a radioisotope, Co-57, into the lattice of LDH | - | It is highly stable in human serum, and the labeled Co-57 in MTX-LDH shows a high cellular uptake with CT-26 cells in-vitro, as well as high cancer-cell suppression. It enables the visualization of in-vivo SPECT signals in tumor tissues within 1 h; the signal increases after 3 h | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Choi, G.; Choy, J.-H. Multifunctional Layered Double Hydroxides for Drug Delivery and Imaging. Nanomaterials 2023, 13, 1102. https://doi.org/10.3390/nano13061102
Yu S, Choi G, Choy J-H. Multifunctional Layered Double Hydroxides for Drug Delivery and Imaging. Nanomaterials. 2023; 13(6):1102. https://doi.org/10.3390/nano13061102
Chicago/Turabian StyleYu, Seungjin, Goeun Choi, and Jin-Ho Choy. 2023. "Multifunctional Layered Double Hydroxides for Drug Delivery and Imaging" Nanomaterials 13, no. 6: 1102. https://doi.org/10.3390/nano13061102
APA StyleYu, S., Choi, G., & Choy, J. -H. (2023). Multifunctional Layered Double Hydroxides for Drug Delivery and Imaging. Nanomaterials, 13(6), 1102. https://doi.org/10.3390/nano13061102