Insights into the Fe3+ Doping Effects on the Structure and Electron Distribution of Cr2O3 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
2.3. First-Principles Calculations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bezerra, J.B.; Matos, R.S.; Zucolotto, B.; Pedra, P.P.; Ferreira, N.S. Effects of Different Complexing Agents on the Physical Properties of ZnO Nanoparticles. Mater. Sci. Technol. 2019, 35, 231–239. [Google Scholar] [CrossRef]
- Prewitt, C.T.; Shannon, R.D.; Rogers, D.B.; Sleight, A.W. The c Rare Earth Oxide-Corundum Transition and Crystal Chemistry of Oxides Having the Corundum Structure. Inorg. Chem. 1969, 8, 1985–1993. [Google Scholar] [CrossRef]
- Catti, M.; Valerio, G.; Dovesi, R. Theoretical Study of Electronic, Magnetic, and Structural Properties of -Fe2O3 (Hematite). Phys. Rev. B 1995, 51, 7441. [Google Scholar] [CrossRef]
- Catti, M.; Sandrone, G.; Valerio, G.; Dovesi, R. Electronic, Magnetic and Crystal Structure of Cr2O3 by Theoretical Methods. J. Phys. Chem. Solids 1996, 57, 1735–1741. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 1960, 120, 91. [Google Scholar] [CrossRef] [Green Version]
- Mazurenko, V.V.; Anisimov, V.I. Weak Ferromagnetism in Antiferromagnets: α- Fe2O3 and La2CuO4. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 71, 184434. [Google Scholar] [CrossRef] [Green Version]
- Sandratskii, L.M.; Kübler, J. First-Principles LSDF Study of Weak Ferromagnetism in Fe2O3. Europhys. Lett. 1996, 33, 447. [Google Scholar] [CrossRef]
- Borisov, P.; Hochstrat, A.; Shvartsman, V.V.; Kleemann, W.; Hauck, P.M. Magnetoelectric Cr2O3 for Spintronic Applications. Proc. Integr. Ferroelectr. 2008, 99, 69–76. [Google Scholar] [CrossRef]
- Krichevtsov, B.B.; Pavlov, V.V.; Pisarev, R.V.; Gridnev, V.N. Magnetoelectric Spectroscopy of Electronic Transitions in Antiferromagnetic Cr2O3. Phys. Rev. Lett. 1996, 76, 4628. [Google Scholar] [CrossRef]
- McWhan, D.B.; Menth, A.; Remeika, J.P.; Brinkman, W.F.; Rice, T.M. Metal-Insulator Transitions in Pure and Doped V2O3. Phys. Rev. B 1973, 32, C1-1079. [Google Scholar] [CrossRef]
- McWhan, D.B.; Remeika, J.P. Metal-Insulator Transition in (V1-XCrx)2O3. Phys. Rev. B 1970, 2, 3734. [Google Scholar] [CrossRef]
- Mott, N.F. METAL-INSULATOR TRANSITION IN Ti2O3. J. Phys. Paris 1981, 42, 277–281. [Google Scholar] [CrossRef]
- Mott, N.F.; Friedman, L. Metal-Insulator Transitions in Vo2, Ti2O3 and Ti2–XVxO3. Philos. Mag. 1974, 30, 389–402. [Google Scholar] [CrossRef]
- Mahmood, A.; Street, M.; Echtenkamp, W.; Kwan, C.P.; Bird, J.P.; Binek, C. Dielectric Properties of Thin Cr2O3 Films Grown on Elemental and Oxide Metallic Substrates. Phys. Rev. Mater. 2018, 2, 044401. [Google Scholar] [CrossRef]
- Corliss, L.M.; Hastings, J.M.; Nathans, R.; Shirane, G. Magnetic Structure of Cr2O3. J. Appl. Phys. 1965, 36, 1099–1100. [Google Scholar] [CrossRef]
- Brown, P.J.; Forsyth, J.B.; Lelièvre-Berna, E.; Tasset, F. Determination of the Magnetization Distribution in Cr2O3 Using Spherical Neutron Polarimetry. J. Phys. Condens. Matter 2002, 14, 1957. [Google Scholar] [CrossRef]
- Guo, Y.; Clark, S.J.; Robertson, J. Electronic and Magnetic Properties of Ti2O3, Cr2O3, and Fe2O3 Calculated by the Screened Exchange Hybrid Density Functional. J. Phys. Condens. Matter 2012, 24, 325504. [Google Scholar] [CrossRef]
- Kota, Y.; Yoshimori, Y.; Imamura, H.; Kimura, T. Enhancement of Magnetoelectric Operating Temperature in Compressed Cr2O3 under Hydrostatic Pressure. Appl. Phys. Lett. 2017, 110, 042902. [Google Scholar] [CrossRef]
- Ye, S.; Nozaki, T.; Kotani, Y.; Toyoki, K.; Nakamura, T.; Yonemura, S.; Shibata, T.; Pati, S.P.; Al-Mahdawi, M.; Shiokawa, Y.; et al. Inserted Metals for Low-Energy Magnetoelectric Switching in a Cr2O3/Ferromagnet Interfacial Exchange-Biased Thin Film System. J. Mater. Chem. C 2018, 6, 2962–2969. [Google Scholar] [CrossRef]
- Shiratsuchi, Y.; Toyoki, K.; Yiran, T.; Aono, H.; Nakatani, R. Realization of Magnetoelectric Effect in 50-Nm-Thick Cr2O3 Thin Film. Appl. Phys. Express 2020, 13, 043003. [Google Scholar] [CrossRef]
- Ohyama, S.; Kishida, H. Physical Mixture of CuO and Cr2O3 as an Active Catalyst Component for Low-Temperature Methanol Synthesis via Methyl Formate. Appl. Catal. A Gen. 1998, 172, 241–247. [Google Scholar] [CrossRef]
- Burcham, M.M.; Herman, R.G.; Klier, K. Higher Alcohol Synthesis over Double Bed Cs-Cu/ZnO/Cr2O3 Catalysts: Optimizing the Yields of 2-Methyl-l-Propanol (Isobutanol). Ind. Eng. Chem. Res. 1998, 37, 4657–4668. [Google Scholar] [CrossRef]
- Polanski, M.; Bystrzycki, J.; Varin, R.A.; Plocinski, T.; Pisarek, M. The Effect of Chromium (III) Oxide (Cr2O3) Nanopowder on the Microstructure and Cyclic Hydrogen Storage Behavior of Magnesium Hydride (MgH2). J. Alloys Compd. 2011, 509, 2386–2391. [Google Scholar] [CrossRef]
- Mahmoud, H.R. Novel Mesoporous Gd3+ Doped Cr2O3 Nanomaterials: Synthesis, Characterization, Catalytic and Antitumor Applications. Adv. Powder Technol. 2016, 27, 1446–1452. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.Y. Protective Coatings for Cr2O3-Forming Interconnects of Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2009, 34, 9220–9226. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Watson, G.W. On the Possibility of P-Type SnO2. J. Mater. Chem. 2012, 22, 25236–25245. [Google Scholar] [CrossRef]
- Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H. P-Type Electrical Conduction in Transparent Thin Films of CuAlO2. Nature 1997, 389, 939–942. [Google Scholar] [CrossRef]
- Lunca-Popa, P.; Afonso, J.; Grysan, P.; Crêpellière, J.; Leturcq, R.; Lenoble, D. Tuning the Electrical Properties of the P-Type Transparent Conducting Oxide Cu1-XCr1+xO2 by Controlled Annealing. Sci. Rep. 2018, 8, 7216. [Google Scholar] [CrossRef] [Green Version]
- Sekizawa, K.; Oh-Ishi, K.; Morikawa, T. Photoelectrochemical Water-Splitting over a Surface Modified p-Type Cr2O3 Photocathode. Dalt. Trans. 2020, 49, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Babcock, J.R.; Edleman, N.L.; Metz, A.W.; Lane, M.A.; Asahi, R.; Dravid, V.P.; Kannewurf, C.R.; Freeman, A.J.; Marks, T.J. Indium-Cadmium-Oxide Films Having Exceptional Electrical Conductivity and Optical Transparency: Clues for Optimizing Transparent Conductors. Proc. Natl. Acad. Sci. USA 2001, 98, 7113–7116. [Google Scholar] [CrossRef] [Green Version]
- Carey, J.J.; Nolan, M. Enhancing the Oxygen Vacancy Formation and Migration in Bulk Chromium(III) Oxide by Alkali Metal Doping: A Change from Isotropic to Anisotropic Oxygen Diffusion. J. Mater. Chem. A 2017, 5, 15613–15630. [Google Scholar] [CrossRef]
- Carey, J.J.; Legesse, M.; Nolan, M. Low Valence Cation Doping of Bulk Cr2O3: Charge Compensation and Oxygen Vacancy Formation. J. Phys. Chem. C 2016, 120, 19160–19174. [Google Scholar] [CrossRef]
- Pan, J.; Waghmare, U.V.; Kumar, N.; Ehi-Eromosele, C.O.; Rao, C.N.R. Effect of Nitrogen and Fluorine Co-Substitution on the Structure and Magnetic Properties of Cr2O3. ChemPhysChem 2015, 16, 1502–1508. [Google Scholar] [CrossRef]
- Arca, E.; Kehoe, A.B.; Veal, T.D.; Shmeliov, A.; Scanlon, D.O.; Downing, C.; Daly, D.; Mullarkey, D.; Shvets, I.V.; Nicolosi, V.; et al. Valence Band Modification of Cr2O3 by Ni-Doping: Creating a High Figure of Merit p-Type TCO. J. Mater. Chem. C 2017, 5, 12610–12618. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, F.; Novillo, C.; Stashans, A. Ab Initio Calculation of Chromium Oxide Containing Ti Dopant. Chem. Phys. 2012, 393, 148–152. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Sushko, P.V.; Bowden, M.E.; Heald, S.M.; Papadogianni, A.; Tschammer, C.; Bierwagen, O.; Chambers, S.A. Defect Compensation by Cr Vacancies and Oxygen Interstitials in Ti4+-Doped Cr2O3 Epitaxial Thin Films. Phys. Rev. B 2016, 94, 155409. [Google Scholar] [CrossRef] [Green Version]
- Arca, E.; Fleischer, K.; Shvets, I.V. Magnesium, Nitrogen Codoped Cr2O3: A p-Type Transparent Conducting Oxide. Appl. Phys. Lett. 2011, 99, 111910. [Google Scholar] [CrossRef] [Green Version]
- Arca, E.; Fleischer, K.; Krasnikov, S.A.; Shvets, I. Effect of Chemical Precursors on the Optical and Electrical Properties of P-Type Transparent Conducting Cr2O3:(Mg,N). J. Phys. Chem. C 2013, 117, 21901–21907. [Google Scholar] [CrossRef] [Green Version]
- Kehoe, A.B.; Arca, E.; Scanlon, D.O.; Shvets, I.V.; Watson, G.W. Assessing the Potential of Mg-Doped Cr2O3 as a Novel p-Type Transparent Conducting Oxide. J. Phys. Condens. Matter 2016, 28, 125501. [Google Scholar] [CrossRef]
- Carey, J.J.; Nolan, M. Non-Classical Behaviour of Higher Valence Dopants in Chromium (III) Oxide by a Cr Vacancy Compensation Mechanism. J. Phys. Condens. Matter 2017, 29, 415501. [Google Scholar] [CrossRef]
- Sarkar, A.; Khan, G.G. The Formation and Detection Techniques of Oxygen Vacancies in Titanium Oxide-Based Nanostructures. Nanoscale 2019, 11, 3414–3444. [Google Scholar] [CrossRef]
- Iwaszuk, A.; Nolan, M. Charge Compensation in Trivalent Cation Doped Bulk Rutile TiO2. J. Phys. Condens. Matter 2011, 23, 334207. [Google Scholar] [CrossRef] [PubMed]
- Droubay, T.; Rosso, K.M.; Heald, S.M.; McCready, D.E.; Wang, C.M.; Chambers, S.A. Structure, Magnetism, and Conductivity in Epitaxial Ti -Doped α-Fe2O3 Hematite: Experiment and Density Functional Theory Calculations. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 75, 104412. [Google Scholar] [CrossRef]
- Metcalf, P.A.; Guha, S.; Gonzalez, L.P.; Barnes, J.O.; Slamovich, E.B.; Honig, J.M. Electrical, Structural, and Optical Properties of Cr-Doped and Non-Stoichiometric V2O3 Thin Films. Thin Solid Films 2007, 515, 3421–3425. [Google Scholar] [CrossRef]
- Lima, A.F.; Dantas, J.M.; Lalic, M.V. An Ab-Initio Study of Electronic and Optical Properties of Corundum Al2O3 Doped with Sc, Y, Zr, and Nb. J. Appl. Phys. 2012, 112, 093709. [Google Scholar] [CrossRef] [Green Version]
- Kleiman-Shwarsctein, A.; Huda, M.N.; Walsh, A.; Yan, Y.; Stuckyst, G.D.; Hu, Y.S.; Al-Jassim, M.M.; McMland, E.W. Electrodeposited Aluminum-Doped α-Fe2O3 Photoelectrodes: Experiment and Theory. Chem. Mater. 2010, 22, 510–517. [Google Scholar] [CrossRef]
- Trovarelli, A. Structural and Oxygen Storage/Release Properties of CeO2-Based Solid Solutions. Comments Inorg. Chem. 1999, 20, 263–284. [Google Scholar] [CrossRef]
- Carey, J.J.; Nolan, M. Influence of Trivalent Doping on Point and Frenkel Defect Formation in Bulk Chromium (III) Oxide. Solid State Ion. 2017, 307, 51–64. [Google Scholar] [CrossRef]
- Fabrykiewicz, P.; Przeniosło, R.; Sosnowska, I.; Fauth, F. Positive and Negative Monoclinic Deformation of Corundum-Type Trigonal Crystal Structures of M2O3 Metal Oxides. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2018, 74, 660–672. [Google Scholar] [CrossRef]
- Ferreira, N.S.; Angélica, R.S.; Marques, V.B.; De Lima, C.C.O.; Silva, M.S. Cassava-Starch-Assisted Sol-Gel Synthesis of CeO2 Nanoparticles. Mater. Lett. 2016, 165, 139–142. [Google Scholar] [CrossRef]
- Sadat Nabi, H.; Pentcheva, R. Energetic Stability and Magnetic Coupling in (Cr1-XFex)2O3: Evidence for a Ferrimagnetic Ilmenite-Type Superlattice from First Principles. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 24, 095001. [Google Scholar] [CrossRef]
- Mu, S.; Belashchenko, K.D. Influence of Strain and Chemical Substitution on the Magnetic Anisotropy of Antiferromagnetic Cr2O3: An Ab-Initio Study. Phys. Rev. Mater. 2019, 3, 034405. [Google Scholar] [CrossRef]
- Goel, S.; Kumar, A.; Quamara, J.K.; Kumar, J. Structural, Optical and Magnetic Properties of Fe Doped Cr2O3 Nanoparticles. Adv. Sci. Lett. 2014, 20, 1562–1566. [Google Scholar] [CrossRef]
- Ferreira, N.S.; Abraçado, L.G.; Macêdo, M.A. The Effects of Cr-Doping on the Room Temperature Ferromagnetism of Chemically Synthesized CeO2-δ Nanoparticles. Proc. Phys. B Condens. Matter 2012, 407, 3218–3221. [Google Scholar] [CrossRef]
- Paidi, V.K.; Ferreira, N.S.; Goltz, D.; Van Lierop, J. Magnetism Mediated by a Majority of [Fe3++ Vo2−] Complexes in Fe-Doped CeO2 Nanoparticles. J. Phys. Condens. Matter 2015, 27, 336001. [Google Scholar] [CrossRef]
- Collins, D.M. Electron Density Images from Imperfect Data by Iterative Entropy Maximization. Nature 1982, 298, 49–51. [Google Scholar] [CrossRef]
- Itoh, T.; Shirasaki, S.; Fujie, Y.; Kitamura, N.; Idemoto, Y.; Osaka, K.; Ofuchi, H.; Hirayama, S.; Honma, T.; Hirosawa, I. Study of Charge Density and Crystal Structure of (La0.75Sr0.25)MnO3.00 and (Ba0.5Sr0.5)(Co0.8Fe0.2)O2.33-δ at 500-900 K by in Situ Synchrotron X-Ray Diffraction. J. Alloys Compd. 2010, 491, 527–535. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodríguez-Carvajal, J. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis. Proc. Mater. Sci. Forum 2001, 378, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Carvajal, J. Fullprof Suite; LLB Sacley & LCSIM: Rennes, France, 2003. [Google Scholar]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent Developments of the Program FULLPROF. Comm. Powder Diffr. 2001, 26, 12–19. [Google Scholar]
- Izumi, F.; Momma, K. Three-Dimensional Visualization of Electron- and Nuclear-Density Distributions in Inorganic Materials by MEM-Based Technology. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2011, 18, 022001. [Google Scholar] [CrossRef]
- Nocedal, J. Updating Quasi-Newton Matrices with Limited Storage. Math. Comput. 1980, 35, 773–782. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Andersen, O.K. Linear Methods in Band Theory. Phys. Rev. B 1975, 12, 1635. [Google Scholar] [CrossRef] [Green Version]
- Blaha, P.; Schwarz, K.; Madsen, G.; Kvasnicka, D.; Luitz, J. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties; Karlheinz Schwarz, Techn. Universitat: Wien, Austria, 2001; ISBN 3-9501031-1-2. [Google Scholar]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Generalized Gradient Approximation for Solids and Their Surfaces. Phys. Rev. Lett. 2008, 136406, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Tran, F.; Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 2009, 102, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Rohrbach, A.; Hafner, J.; Kresse, G. Ab Initio Study of the (0001) Surfaces of Hematite and Chromia: Influence of Strong Electronic Correlations. Phys. Rev. B Condens. Matter Mater. Phys. 2004, 70, 1–17. [Google Scholar] [CrossRef]
- Moore, E.A. First-Principles Study of the Mixed Oxide α-FeCrO3. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bader, R.F.W. Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Pei, Z.; Pei, J.; Chen, H.; Gao, L.; Zhou, S. Hydrothermal Synthesis of Large Sized Cr2O3 Polyhedrons under Free Surfactant. Mater. Lett. 2015, 159, 357–361. [Google Scholar] [CrossRef]
- Makhlouf, S.A. Magnetic Properties of Cr2O3 Nanoparticles. J. Magn. Magn. Mater. 2004, 272–276, 1530–1532. [Google Scholar] [CrossRef]
- Lima, M.D.; Bonadimann, R.; de Andrade, M.J.; Toniolo, J.C.; Bergmann, C.P. Nanocrystalline Cr2O3 and Amorphous CrO3 Produced by Solution Combustion Synthesis. J. Eur. Ceram. Soc. 2006, 26, 1213–1220. [Google Scholar] [CrossRef]
- Golosova, N.O.; Kozlenko, D.P.; Kichanov, S.E.; Lukin, E.V.; Liermann, H.P.; Glazyrin, K.V.; Savenko, B.N. Structural and Magnetic Properties of Cr2O3 at High Pressure. J. Alloys Compd. 2017, 722, 593–598. [Google Scholar] [CrossRef]
- Ramos Guivar, J.A.; Sanches, E.A.; Bruns, F.; Sadrollahi, E.; Morales, M.A.; López, E.O.; Litterst, F.J. Vacancy Ordered γ-Fe2O3 Nanoparticles Functionalized with Nanohydroxyapatite: XRD, FTIR, TEM, XPS and Mössbauer Studies. Appl. Surf. Sci. 2016, 389, 721–734. [Google Scholar] [CrossRef]
- Casas-Cabanas, M.; Palacín, M.R.; Rodríguez-Carvajal, J. Microstructural Analysis of Nickel Hydroxide: Anisotropic Size versus Stacking Faults. Powder Diffr. 2005, 20, 334–344. [Google Scholar] [CrossRef]
- Stephens, P.W. Phenomenological Model of Anisotropic Peak Broadening in Powder Diffraction. J. Appl. Crystallogr. 1999, 32, 281. [Google Scholar] [CrossRef]
- Ayyub, P.; Palkar, V.R.; Chattopadhyay, S.; Multani, M. Effect of Crystal Size Reduction on Lattice Symmetry and Cooperative Properties. Phys. Rev. B 1995, 51, 6135. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carvajal, J. Introduction to the Program FULLPROF: Refinement of Crystal and Magnetic Structures from Powder and Single Crystal Data; Laboratoire Léon Brillouin (CEA-CNRS): Saclay, France, 2015. [Google Scholar]
- Matos, R.S.; Attah-Baah, J.M.; Monteiro, M.D.S.; Costa, B.F.O.; Mâcedo, M.A.; Da Paz, S.P.A.; Angélica, R.S.; de Souza, T.M.; Ţălu, Ş.; Oliveira, R.M.P.B.; et al. Evaluation of the Photocatalytic Activity of Distinctive-Shaped ZnO Nanocrystals Synthesized Using Latex of Different Plants Native to the Amazon Rainforest. Nanomaterials 2022, 12, 2889. [Google Scholar] [CrossRef]
- Serna, C.J.; Rendon, J.L.; Iglesias, J.E. Infrared Surface Modes in Corundum-Type Microcrystalline Oxides. Spectrochim. Acta Part A Mol. Spectrosc. 1982, 38, 797–802. [Google Scholar] [CrossRef]
- Brown, I.D.; Altermatt, D. Bond-valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. Sect. B 1985, 41, 244. [Google Scholar] [CrossRef] [Green Version]
- Murugesan, S.; Thirumurugesan, R.; Mohandas, E.; Parameswaran, P. X-ray Diffraction Rietveld Analysis and Bond Valence Analysis of Nano Titania Containing Oxygen Vacancies Synthesized via Sol-Gel Route. Mater. Chem. Phys. 2019, 225, 320–330. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B Phys. Condens. Matter 1993, 15, 1896–1904. [Google Scholar] [CrossRef]
- Li, K.; Li, M.; Xue, D. Solution-Phase Electronegativity Scale: Insight into the Chemical Behaviors of Metal Ions in Solution. J. Phys. Chem. A 2012, 116, 4192–4198. [Google Scholar] [CrossRef]
- Otero-de-la-Roza, A.; Blanco, M.A.; Pendás, A.M.; Luaña, V. Critic: A New Program for the Topological Analysis of Solid-State Electron Densities. Comput. Phys. Commun. 2009, 180, 157–166. [Google Scholar] [CrossRef]
- Otero-De-La-Roza, A.; Johnson, E.R.; Luaña, V. Critic2: A Program for Real-Space Analysis of Quantum Chemical Interactions in Solids. Comput. Phys. Commun. 2014, 185, 1007–1018. [Google Scholar] [CrossRef]
- Kokalj, A. XCrySDen-a New Program for Displaying Crystalline Structures and Electron Densities. J. Mol. Graph. Model. 1999, 17, 176–179. [Google Scholar] [CrossRef]
- Crawford, J.A.; Vest, R.W. Electrical Conductivity of Single-Crystal Cr2O3. J. Appl. Phys. 1964, 35, 2413–2418. [Google Scholar] [CrossRef]
- Zimmermann, R.; Steiner, P.; Hüfner, S. Electron Spectroscopies and Partial Excitation Spectra in Cr2O3. J. Electron Spectros. Relat. Phenom. 1996, 78, 49–52. [Google Scholar] [CrossRef]
- Bai, L.; Li, Q.; Corr, S.A.; Pravica, M.; Chen, C.; Zhao, Y.; Sinogeikin, S.V.; Meng, Y.; Park, C.; Shen, G. Pressure-Induced Cation-Cation Bonding in V2O3. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 92, 134106. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Choi, S.G.; Park, H.H.; Rozenberg, M.J. A New Route to the Mott-Hubbard Metal-Insulator Transition: Strong Correlations Effects in Pr0.7Ca0.3MnO3. Sci. Rep. 2013, 3, 1292. [Google Scholar] [CrossRef] [Green Version]
Fe Doping (x) | (Cr,Fe)–O Short | (Cr,Fe)–O Long | Angle (Deg.) | Cr–Cr Distance (Å) | ||
---|---|---|---|---|---|---|
Bond Length (Å) | Mid-Bond Electron Density (e/Å3) | Bond Length (Å) | Mid-Bond Electron Density (e/Å3) | |||
0 | 1.943(2) | 0.43445 | 2.047(9) | 0.22747 | 80.3(4) | 4.95730(1) |
0.06 | 1.952(2) | 0.36455 | 2.033(7) | 0.54572 | 80.8(3) | 4.95760(1) |
0.12 | 1.958(3) | 0.52716 | 2.024(6) | 0.74691 | 82.5(4) | 4.95990(1) |
0.18 | 1.945(8) | 0.51283 | 2.036(7) | 0.34307 | 82.9(1) | 4.96031(1) |
Cr2O3 | Fe-doped Cr2O3 | ||||
---|---|---|---|---|---|
Optimized Lattice Parameters | |||||
a = b (Å) | 5.005 | 4.885 | |||
c (Å) | 13.626 | 13.721 | |||
c/a | 2.722 | 2.808 | |||
Volume (Å3) | 295.682 | 283.591 | |||
Bond Critical Points | |||||
Bond length (Å) | ρb(e/Å3) | Bond length (Å) | ρb(e/Å3) | ||
Cr–O1 | 2.038 | 0.072 | Fe–O1 | 2.098 | 0.070 |
Cr–O2 | 1.980 | 0.082 | Fe–O2 | 1.958 | 0.092 |
Bader charges q(Ω) | |||||
Cr | +2.0 | +2.0 | |||
Fe | - | +2.0 | |||
O1 | −1.35 | −1.35 | |||
O2 | −1.38 | −1.37 | |||
Bond Valence Sum (BVS) | |||||
Cr | 2.86 | 2.86 | |||
Fe | - | 2.94 | |||
O1 | 1.89 | 2.06 | |||
O2 | 1.94 | 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.; Attah-Baah, J.M.; Junior, R.S.S.; Mâcedo, M.A.; Rezende, M.V.S.; Matos, R.S.; Ţălu, Ş.; Trong, D.N.; da Paz, S.P.A.; Angélica, R.S.; et al. Insights into the Fe3+ Doping Effects on the Structure and Electron Distribution of Cr2O3 Nanoparticles. Nanomaterials 2023, 13, 980. https://doi.org/10.3390/nano13060980
Santos C, Attah-Baah JM, Junior RSS, Mâcedo MA, Rezende MVS, Matos RS, Ţălu Ş, Trong DN, da Paz SPA, Angélica RS, et al. Insights into the Fe3+ Doping Effects on the Structure and Electron Distribution of Cr2O3 Nanoparticles. Nanomaterials. 2023; 13(6):980. https://doi.org/10.3390/nano13060980
Chicago/Turabian StyleSantos, Cledson, John M. Attah-Baah, Romualdo S. Silva Junior, Marcelo A. Mâcedo, Marcos V. S. Rezende, Robert S. Matos, Ştefan Ţălu, Dung Nguyen Trong, Simone P. A. da Paz, Rômulo S. Angélica, and et al. 2023. "Insights into the Fe3+ Doping Effects on the Structure and Electron Distribution of Cr2O3 Nanoparticles" Nanomaterials 13, no. 6: 980. https://doi.org/10.3390/nano13060980
APA StyleSantos, C., Attah-Baah, J. M., Junior, R. S. S., Mâcedo, M. A., Rezende, M. V. S., Matos, R. S., Ţălu, Ş., Trong, D. N., da Paz, S. P. A., Angélica, R. S., & Ferreira, N. S. (2023). Insights into the Fe3+ Doping Effects on the Structure and Electron Distribution of Cr2O3 Nanoparticles. Nanomaterials, 13(6), 980. https://doi.org/10.3390/nano13060980