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Abstract: Herein, we carefully investigated the Fe3+ doping effects on the structure and electron
distribution of Cr2O3 nanoparticles using X-ray diffraction analysis (XRD), maximum entropy method
(MEM), and density functional theory (DFT) calculations. We showed that increasing the Fe doping
induces an enlargement in the axial ratio of c/a, which is associated with an anisotropic expansion of
the unit cell. We found that as Fe3+ replaces Cr in the Cr2O3 lattice, it caused a higher interaction
between the metal 3d states and the oxygen 2p states, which led to a slight increase in the Cr/Fe–O1
bond length followed by an opposite effect for the Cr/Fe–O2 bonds. Our results also suggest that
the excitations characterize a well-localized bandgap region from occupied Cr d to unoccupied Fe
d states. The Cr2O3 and Fe-doped Cr2O3 nanoparticles behave as Mott–Hubbard insulators due
to their band gap being in the d−d gap, and Cr 3d orbitals dominate the conduction band. These
findings suggest that the magnitude and the character of the electronic density near the O atom bonds
in Cr2O3 nanoparticles are modulated by the Cr–Cr distances until its stabilization at the induced
quasi-equilibrium of the Cr2O3 lattice when the Fe3+ doping values reaches the saturation level range.

Keywords: chromium oxide; Cr2O3; tapioca; nanoparticles; electron distribution

1. Introduction

Fascinating characteristics presented as physical and chemical properties that are
mostly dependent on the size and shape oxide nanoparticles have motivated several re-
searchers to focus their research in this direction over the past three decades. Recently,
several studies have pointed out that a wide assortment of technological applications
require transition metal oxide nanoparticles with a controllable mean size, narrow distri-
bution, and specific morphology [1]. For instance, oxide nanoparticles whose properties
depend closely on their size, morphology, and surface area activity have been widely
reported. Some of these include oxides classified in the corundum-type structure (i.e.,
R2O3: R = Fe, Ti, V, Cr, Al), which show a variety of interesting magnetic and electronic
phenomena [2–4], e.g., weak ferromagnetism in α-Fe2O3 [5–7], magnetoelectric coupling in
Cr2O3 [8,9], and the metal–insulator transition in V2O3 and Ti2O3 [10–13]. Among these
corundum-type structure oxides, Cr2O3 is one of the most important p-type semiconductor
transition metal oxides to have both Mott–Hubbard insulator results and charge trans-
fer semiconducting properties, with a band gap > 3 eV and high intrinsic resistivity of
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ρ∼1012 Ω.cm at 300 K [14], as the valence band maximum and conduction band minimum
are a mixture between Cr 3d states and O 2p states [15,16]. Furthermore, Cr2O3 is an antifer-
romagnetic ordering material [17] that has historically been sported as one of the first oxides
to present a linear magnetoelectric effect, giving rise to ferroelectric polarization induced
by an external magnetic field [18–20]. Despite the active research in the field of magnetism,
Cr2O3 is also useful for a wide variety of applications, including methanol synthesis [21],
oxygenation catalyst [22], hydrogen storage [23], gas sensor [24], adhesion promotor, pro-
tective coating, and solid oxide fuel cell anode material applications [25]. However, most of
these highlighted applications require non-trivial physical and chemical properties that are
unexpected in the Cr2O3 bulk, making the synthesis of Cr2O3 nanostructures an important
challenge. More recently, Cr2O3 has received considerable attention as a p-type transparent
conductor because it is less sensitive to interference and it easier to control the grain size
during preparation than with other traditional oxides, e.g., SnO2 [26], CuAlO2 [27], and
CuO2 [28]. However, substitutional doping by replacing Cr on the Cr2O3 lattice with
different metals is crucial to improve its electrical conductivity and retain its transparency,
allowing the material to efficiently act as a transparent conducting component [29–33].

Much effort has been recently made to find out which dopant cation and valence
states are most efficient in elevating the conductivity of Cr2O3 by doping the Cr3+ sites.
Some of the most popular metal dopants that have been considered in the literature are
Ni2+ [34], Ti4+ [35,36], and Mg2+ [37–39]. Nonetheless, experiments and calculations have
shown that lower valence doping of 2+ cations in Cr2O3 may induce the formation of
charge-compensating vacancy, resulting in electrons being released into the Cr2O3 lattice
and filling the oxygen holes [31,32,40–42]. Nevertheless, isovalent doping has positive
effects on the electronic properties of other corundum-type structures, such as Fe2O3 [43],
V2O3 [44], and Al2O3 [45]. For instance, the substitutional doping of the isovalent Al3+

cation at the Fe2O3 sites removes a second lattice electron, enhancing the formation of
oxygen vacancies and the migration of oxygen throughout the host material, resulting in
local geometry changes as well as a change in the electronic properties [46].

Notwithstanding, the changes in the electronic structure of Cr2O3 via aliovalent dop-
ing at Cr3+ sites have been a matter of recent debate, both experimentally and theoretically;
a comprehensive understanding of the mechanism behind the cation doping distribution,
the formation of oxygen vacancies, and their interactions to improve the key properties
of this oxide is needed. Some authors [47,48] have reported that the replacement of Cr3+

by aliovalent cations in the Cr2O3 lattices results in an increasing concentration of oxygen
vacancies due to changes in the electronic structure and lattice distortion. However, most
of the scientific interest so far has been directed at the electronic structure change-assisted
formation of oxygen vacancies. On the other hand, few previous experimental investi-
gations have reported on metal–metal distance changes induced by lattice distortion in
corundum-type structures [2,49]. This makes us question whether a physical factor is
favorable for the O vacancy formation other than the anisotropic lattice strain induced by
trivalent ion doping. Therefore, a comprehensive understanding of the influence of chang-
ing Cr–Cr distances in the lattice distortion character of Cr2O3 is also of great importance
to clarify the effects of dopants on the electronic modification of this material. To this end,
we synthesized Fe-doped Cr2O3 nanoparticles using a cost-effective and environmentally
friendly cassava-starch-assisted sol–gel approach [50].

Even though Fe3+ is an isovalent ion that may disturb the conduction band by creating
a localized positive charge or oxygen vacancies around Cr, many investigations have
not focused on the Fe3+ doping in the Cr2O3 lattice. Theoretically, Fe3+ doping in the
Cr2O3 lattice has been addressed so far through a few studies of density functional theory
(DFT) that have reported on the structure, relaxation, and electronic properties of Fe-
doped Cr2O3 [51,52]. Nonetheless, experimental studies reporting on the structural and
electrical properties of Fe-doped Cr2O3 are scant. Recently, Goel et al. [53] synthesized Fe-
doped Cr2O3 nanoparticles and reported that the incorporation of Fe3+ in the Cr2O3 lattice
resulted in unit cell volume expansion and tensile stress on the surrounding crystal lattice.
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Their results also showed that the optical band gap values were around 3.44–3.09 eV for Fe
contents ranging from 0 to 4 wt%, while the resistivity value was decreased due to the carrier
concentration increases caused by Fe-doping-induced defects. Despite these exciting results,
no one, to the best of our knowledge, has hitherto reported experimental or both theoretical
and experimental studies focused on the crystal structure and conductivity performance
of Fe3+-doped Cr2O3 nanoparticles. Actually, when Fe is substitute for Cr, the Fe site is
expected to be different from the Cr site in Cr2O3 due to the slightly smaller ionic radius of
chromium (r3+

Cr = 0.605 Å) [54] compared to that of Fe (r3+
Fe = 0.645 Å) [55] in octahedral

sites. Consequently, an understanding the local environment around the chromium atom
is needed to explain the evolution of the physical properties concerning the chromium
content x in Cr2−xFexO3. For instance, understanding how lattice distortions induced by
Fe3+ doping in Cr2O3 influence the character of the Cr–Cr distance, and most importantly
whether the electron density can stabilize at the critical Cr–Cr separation point, remains an
open issue. Thus, investigations of Cr–Cr repulsion across the shared face of the distorted
trigonal antiprisms in the 3-fold axis of the Cr2−xFexO3 crystal lattice are fundamental to
clarify the Fe3+ doping content’s effect on the short and long Cr/Fe–O covalent bonds, and
how it affects the degree of a crossover between antiferromagnetic states.

To date, we have used Rietveld refinements and differences in Fourier synthesis
from X-ray data to characterize the crystal structure and electron density distributions
in Cr2O3 crystals, respectively. Furthermore, it is worth mentioning that possible errors
from spurious spikes of positive electronic density values that do not correspond to atoms
in the structure or due to the presence of “non-physical” local minima with negative
density values are recognizable factors of electron density maps. This information loss
(experimental noise) issue has been overcome by applying extinction corrections based
on the maximum entropy method (MEM) for electron density values [56]. The MEM is a
well-established high-resolution tool based on the probability statistical approach theory,
which has been used for the precise reconstruction of the electron density maps from X-ray
diffraction data [56,57]. The MEM requires a minimum of information, such as lattice
parameters and structure factors retrieved from the Rietveld refinements, to construct
the electron density distribution in the unit cell. Therefore, it is a suitable technique for
analyzing the nature of the bonding behavior and the distribution of electrons in the
bonding region of interest. Furthermore, more detailed insights into this fundamental
issue can be achieved using density functional theory (DFT) calculations, which are also
suitable for providing accurate results for the electron density maps, density of states, band
structure, electrical polarization, and atomic structure.

Herein, we discuss the effect of the iron content on the spatial distribution of electronic
charges and its consequences for the structural properties of greenly synthesized Fe-doped
Cr2O3 nanoparticles through an experimental study using an XRD analysis and the MEM.
The main goal of this study was to investigate how Cr2O3 lattice distortions induced by
Fe3+ doping influences the character of the Cr–Cr distance, and most importantly whether
the electron density can be stabilized at the critical Cr–Cr distance point. To shed more
light on the Fe3+ doping effects on the charge distribution and covalent nature of Cr–O
bonds, the chemical bonds and electronic structure of the Cr2O3 lattice were investigated
via the electron density, density of states, and band structure based on DFT total energy
values and compared to those obtained from the experimental analysis.

2. Materials and Methods
2.1. Synthesis

The Cr2−xFexO3 (0.0 ≤ x ≤ 0.18) nanoparticles were synthesized using a cassava-
starch-assisted sol–gel method [50]. In the typical synthesis process, 5.00 g of cassava
starch (tapioca) was first mixed in 150 mL of distilled water under constant stirring. Then,
appropriate proportions of analytical-grade Cr(NO3)3·9H2O (Sigma-Aldrich, >99.9%) and
Fe(NO3)3·9H2O (Sigma-Aldrich, >99.9%) were thoroughly mixed in the tapioca solution
while stirring it to gain a homogeneous precursor solution. After 1 h of stirring, the solutions
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were kept at 70 ◦C for 1 h, and then the obtained gel was dried at 100 ◦C overnight. The
swelled xerogels were ground and calcined at 500 ◦C for 1 h in a furnace to obtain the pure
and doped Cr2O3 nanoparticles.

2.2. Characterization

The X-ray diffraction (XRD) patterns were collected with an X’Pert Pro 3 MPD (PW
3040/60) PANalytical X-ray diffractometer, with a PW3050/60 (θ-θ) goniometer and model
PW3373/00 Cu anode ceramic X-ray tube (Kα1 = 1.540598 Å) with a long thin focus, Ni-Kβ

filter, and PIXCEL1D detector (for real-time multiple scanning) in scanning mode. The
following instrumental conditions were used: scan 5◦ at 100◦ 2θ, 40 kV, 40 mA, step of 0.01◦

in 2θ and time/step of 20 s, fixed slit of 1/4◦ and 1/2◦ anti-scattering, mask of 10 mm.
The powders for the crystalline phase were identified by comparing the experimental

XRD patterns to standards from the International Center for Diffraction Data (ICDD)
database using X’Pert Highscore software (PANalytical). The instrumental resolution
function for the broadening effects was obtained using a silicon standard (Si SMR640d
NIST) by fitting the peak profile with WinPlotr software [58]. The angular dependence of
the peak full width at half maximum (FWHM) was described by Cagliotti’s formula [59].

The Rietveld refinement [60] of the whole XRD patterns was carried out using the
FullProf program [61], with the space group and unit cell parameters found in the indexing
process. The pseudo-Voigt function modified by the Thompson–Cox–Hastings [59] function
was used to fit the various parameters to the data points, such as a single scale factor, a
single zero shift, the fourth-order polynomial background, three cell parameters, five
shapes and widths of the peaks, a single overall thermal factor and two asymmetric
factors, the occupancies of individual atomic sites, and the pseudo-Voigt profile function.
All parameters were refined using an interactive least-squares method [60] to minimize
the difference between the experimental and calculated profiles. The electron density
distributions were calculated using the MEM using the structure factors obtained from
the Rietveld analysis. These calculations were performed using Dysnomia software [62]
using a high-resolution grid (by partitioning the unit cell into 128 × 128 × 128 pixels)
and using the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimization
algorithm [63]. The uniform prior density was used in all cases by dividing the total number
of electrons by the volume of the unit cell. The two-dimensional images of the electron
density distributions were drawn using the VESTA software [64].

2.3. First-Principles Calculations

To better understand the evolution of the electronic structure of Cr2O3 with different
Fe doping contents, we performed spin-polarized DFT calculations with a full-potential
linearized augmented plane wave (FP-LAPW) method [65] implemented in the WIEN2K
computational code [66]. This method partitions the unit cells into non-overlapping spheres
positioned at each atomic site (with RMT radii), where the electron wave functions, charge
density, and crystalline potential are expanded as a combination of atomic-like orbitals,
and into the interstitial region, for which the expansion takes place through plane waves.
The radius of the atomic spheres chosen for both Cr and Fe was 1.9, while for O, we used
a radius of 1.64 (in a.u.). The partial waves inside the atomic spheres were developed
up to lmax = 10, and a cut-off limited the number of plane waves in the interstitial region
at kmax = 7.0/RMT(O). The charge density was Fourier-expanded with Gmax = 14 Ry, and
the cut-off energy for separating the core and valence electronic states was −6.0 Ryd.
Electronic calculations were performed with a mash of 63 k-points in the k-space integration
of the irreducible part of the Brillouin zone. Exchange–correlation (XC) effects were taken
into account by applying PBEsol-generalized gradient approximation [67] to optimize
the lattice parameters and relax all atomic positions, using the Becke–Johnson potential
modified by Tran and Blaha (TB–mBJ) [68] for the investigation of the electronic structure
associated with the density of states, electron density map, and Bader’s topological analysis
of the systems. Finally, the self-consistent calculations were successfully converged as
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energy values with the convergence criterion of 10−5 Ryd. For the simulation, we used the
experimental lattice parameters a = b = 4.956 Å and c = 13.593 Å for Cr2O3 as determined in
this work. The Fe-containing system was prepared upon the fully relaxed Cr2O3 structure,
in which two Fe ions replaced two Cr ions. Because the simulated Cr2O3 is characterized
by a rhombohedral structure (space group number 167) containing 30 atoms per unit cell,
the substitution Fe → Cr represents a defect concentration of 2/30, which is large when
compared to the real systems but reasonable for computational treatments. Regarding the
magnetic properties, the most stable magnetic order of the Cr2O3 compound is G-type
antiferromagnetic, where each magnetic spin of the Cr ions alternates in an up and down
projection along with the c-axis [15,69]. The magnetic cell containing Fe as a dopant was
built using the same design. In other words, we inserted the Fe dopant into the Cr2O3
lattice so that the replacement maintained the same magnetic order as the initial structure.
This was supported by recent theoretical studies [51,70] that showed that the magnetic
order of the Fe-doped system depends both on the Fe content in the host matrix and on the
position where the Fe enters. These studies also concluded that the system maintains the G-
type antiferromagnetic order for low Fe ion concentrations. The electronic bulk properties
of pure and Fe-doped Cr2O3 materials were simulated based on carefully determined
crystalline structures. We started the calculations by relaxing the lattice parameters and
all atomic positions in view to mitigate the stresses in the unit cells and reach values that
corresponded to the minimum energy level. The changes in the character of the chemical
bonds and the local structures promoted by the presence of Fe defects were investigated
in terms of the atoms in the molecules used in Bader’s quantum topological analysis
(QTAIM) of the electronic density ρ(

→
r ) [71]. This analysis approach divides space into

uniquely defined regions of volumes Ω (called atomic basins) that contain exactly one

nucleus by applying the zero-flux condition
→
∇ · ρ(→r c) = 0. In this context, the values of

ρ(
→
r ) calculated at the bond’s critical point (bcp) ρb (a type of special point

→
r c to which

their occurrence between two atoms indicates that they are chemically bonded) provides
information about the degree of ionicity or the covalent nature of the bonds. It is also
possible to draw inferences about the oxidation state of the atoms by calculating the
electronic charge contained in each atomic basin (referenced as Bader’s charges q(Ω) in this
work). Furthermore, the bond valence sum was computationally evaluated.

3. Results and Discussion

Figure 1a–d shows the observed, calculated, and differential patterns of XRD Rietveld
refinements for the Cr2−xFexO3 (0.0 ≤ x ≤ 0.18) nanoparticles. All samples present only
diffraction peaks corresponding to the crystallographic planes (012), (104), (110), (006),
(113), (202), (024), (116), (122), (214), and (300) allowed for Cr2O3, with a rhombohedral
structure and the space group of R-3c (ICSD#202619). No additional diffraction peaks from
any impurities or a second phase were observed, which indicates an important contribution
because the tapioca-assisted sol–gel method is simpler, cost-effective, and has a lower envi-
ronmental impact compared with the hydrothermal [72], chemical precipitation [73], and
combustion synthesis [74] methods. The Rietveld refinement analysis was performed by
assuming the R-3c (167) space group for a rhombohedral-like structure. The refined parame-
ters, such as the occupancy, atomic functional positions, lattice parameters, unit cell volume,
selected interatomic distances, atomic coordinates, occupancy, and thermal parameters of
Cr2−xFexO3 (0.0 ≤ x ≤ 0.18) nanoparticles are summarized in Table S1. The fitting param-
eters Rp = 5.40–6.20%, Rwp = 6.82–7.90%, Rexp = 6.19–6.98%, and χ2 = 1.16–1.34 indicate a
good agreement between the refined and observed XRD patterns for the rhombohedral
Cr2O3 phase.
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Figure 1. Observed (red), calculated (black), and differential patterns of Rietveld refinements of X-ray
diffraction for Cr2−xFexO3 nanoparticles: (a) x = 0, (b) x = 0.06, (c) x = 0.12, and (d) x = 0.18. The red
square symbols and the black line denote the observed and calculated intensities, respectively. Short
vertical lines (green) indicate the positions of the possible Bragg reflections of the rhombohedral
structure. The difference between the observed and calculated profiles (blue) is plotted at the bottom.

The next step was to understand the effect of substituting Fe3+ for Cr3+ in the Cr2O3 lattice
from the Rietveld refinement analysis. The calculated axial ratio 2.74105(5)≤ c/a≤ 2.74240(7)
of the Fe-doped Cr2O3 nanoparticles was somewhat higher than the c/a = 2.7333 ratio
of an ideal hexagonal close-packed bulk Cr2O3 [75]. The refinement was reached after
the Fe was initially placed on a general xyz site, at x = 0, y = 0, and z = 0.34702–0.34783,
near the Cr site (12c) positions. Furthermore, the O at the 18e site showed a significant
decrease in the x-position from 0.31465 to 0.30669 with an overall variation of ∆x/x = 0.6%
as the Fe doping increased from 0 to 0.18 (see Table S1). We can also see that the unit
cell volume increased continuously from V = 289.32(2) Å3 to 289.82(5) Å3, with an overall
variation of ∆V/V = +0.2% as the Fe doping increased from x = 0 to x = 0.18. Furthermore,
the refinement of the structure revealed the XRD broadening lines of the Cr2−xFexO3
(0.0 ≤ x ≤ 0.18) nanoparticles, showing anisotropic line broadening with a clear tendency
for the (0k0) reflections being less broadened than the others, indicating that diffracting
domains are substantially anisotropic and with a small microstrain contribution. The
Gaussian size and Lorentzian strain broadenings were found to be negligible. Therefore,
the microstructural parameters were evaluated, describing the broadening of the Lorentzian
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part of the diffraction profile due to the size effect and that of the Gaussian part due to
the strain effect. Thus, the anisotropy of the size broadening profile was described by a
spherical harmonics model according to the following formula [76]:

βhkl =
λ

Dhkl cos θ
=

λ

cos θ ∑
lmp

almpylmp(ΘhklΦhkl) (1)

In this model, βhkl is the integral breadth of the reflection (hkl). Furthermore, the
ylmp(ΘhklΦhkl) term represents the real spherical harmonics (where Θhkl and Φhkl are the
polar and azimuthal angles of the vector [hkl], respectively, concerning a Cartesian crys-
tallographic frame) and almp represents the refinable coefficients, depending on the Laue
class (in our case, the obtained structure belongs to the Laue group R-3c) [77]. The average
crystallite size (D) along each reciprocal lattice vector and the microstrain are calculated
after refinement of the almp coefficients, when the parameters (U,V,W)instr. are fetched by
the program from an external instrumental resolution function file. The anisotropy of the
strain broadening was modeled from the variance of a quartic form Mhkl in the reciprocal
space according to the following equation [78]:

σ2(Mhkl) = ∑
HKL{H+K+L}

SHKLhHkK lL (2)

where the number of refined SHKL coefficients depends on the crystalline symmetry. Herein,
it is worth mentioning that the anisotropy is the deviation from the average distribution of
the grain size along with different directions of the reciprocal lattice. Thus, the standard
deviation for the global average apparent size is a measure of the degree of anisotropy, not
an estimated error.

The average crystallite size determined using the spherical harmonics method and
the microstrain given from Equation (1) for the Cr2−xFexO3 (0.0 ≤ x ≤ 0.18) nanoparticles
are summarized in Table S1. The average crystallite size increases from 22.9 ± 2.8 nm
(x = 0.0) to 75.5 ± 7.7 nm (x = 0.18) as the Fe doping content increases (Figure 2b). Thus,
the anisotropy rapidly increased from 2.8 nm at x = 0.0 to 7.7 nm at x = 0.18, corresponding
to approximately 36% of the average size. Herein, it is worth highlighting that the axial
ratio of c/a became larger with a crystallite size reduction, which was associated with an
anisotropic expansion of the unit cell, followed by a significant elongation of the c-axis
length (∆c/c = +0.03%) relative to the a-axis (∆a/a = +0.07%). The symmetry of the struc-
tural units with decreasing sizes was opposite to what was suggested by Ayyub et al. [79].
However, it interestingly corroborated the inversely proportional trend of the apparent
crystallite size and microstrain values. Factually, the maximum strain was lower for the
Cr1.82Fe0.18O3 nanoparticle of <ε> = 1.4 × 10−4 (%) and higher for the Cr2O3 nanoparticle
of <ε> = 11.2 × 10−4 (%). This higher value for the anisotropy corresponds to less spherical
grains or to a short distribution of crystallite sizes in the sample volume. This suggests
that the higher content of Fe3+ substituted for Cr3+ in the Cr2O3 lattice may change the
crystallization rate of the solid phases. As a result, crystallographic domain aggregation is
favored by an effect of surface energy minimization, promoting the occurrence of viscous
flow in the early sintering stage. Thus, the Cr2O3 powder with a higher Fe content is a
rather larger crystallite within a dense and compact structure, in which the anisotropy is
much less accentuated, resulting in a lower average microstrain.
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Hence, we can notice in the first approximation that the octahedral site distortion
seems directly linked to the microstrain, which is directly governed by the Fe-doping-
induced crystal growth. The higher distortion of the octahedral sites for the Cr1.88Fe0.12O3
nanoparticle is because of a decrease in the microstrain. According to the Cr–Cr distance
values reported in Table 1, the corresponding Cr–Cr distance in the (110) plane versus
the Fe doping content of the Cr2−xFexO3 (0.0 ≤ x ≤ 0.18) nanoparticles is illustrated in
Figure 2c. The solid red curve indicates the fit of the data to the theoretical curve for a
logistic function, as described in Equation (3):

d(Cr−Cr) = d1 +

[
(d1 − d2)/(1 +

(
xFe

xmFe

)n]
(3)

where the constant initial growth d1 = 4.9573 and saturation level d2 = 4.9603 represent
the Cr–Cr distances for x = 0 and x = 0.18, respectively. The growth rate n = 5 and the Fe
doping midpoint xmFe = 0.089(4) are fitted parameters. It can be supposed that at the
Fe doping midpoint, the higher microstrain value related to the smallest long Cr/Fe–O
bond length does not allow a stable configuration to be reached with the higher Madelung
energy for the Cr2O3 lattice. This point will be further considered in the next discussion
related to MEM investigations.
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Table 1. The calculated bond lengths and mid-bond electron density for short and long Cr/Fe–O
bonds along the (001) and (110) planes and the Cr–Cr distance in the (110) plane for the Cr2−xFexO3

(0.0 ≤ x ≤ 0.18) nanoparticles.

Fe Doping (x)

(Cr,Fe)–O Short (Cr,Fe)–O Long Angle
(Deg.)

Cr–Cr Distance
(Å)

Bond Length
(Å)

Mid-Bond
Electron Density

(e/Å3)

Bond Length
(Å)

Mid-Bond
Electron Density

(e/Å3)

0 1.943(2) 0.43445 2.047(9) 0.22747 80.3(4) 4.95730(1)
0.06 1.952(2) 0.36455 2.033(7) 0.54572 80.8(3) 4.95760(1)
0.12 1.958(3) 0.52716 2.024(6) 0.74691 82.5(4) 4.95990(1)
0.18 1.945(8) 0.51283 2.036(7) 0.34307 82.9(1) 4.96031(1)

The modeled crystallite shapes related to the symmetry properties of the distribution
of columns of scattering centers in crystalline domains of the Cr2−xFexO3 (0.0 ≤ x ≤ 0.18)
nanoparticles are shown in Figure 3. The two-dimensional projections of the average crystal-
lite size are visualized on the directions [010], [001], and [100], corresponding to the XZ, YX,
and ZY planes, respectively, using the GFourier Program [80]. We can see that the projected
crystals present different growth features on the x and y planes. The maximal apparent
crystallite sizes of 229, 310, 435, and 773 Å in the [010] direction is almost equivalent to 251,
435, 474, and 875 Å along [001] and 181, 292, 414, and 682 Å in directions perpendicular to
direction [100], respectively. Additionally, different anionotropic growths can be observed
for the projected crystals in the x, y, and z directions shown in the three-dimensional images.
These crystallites tend to present a pitanga-like shape, which is a common growth feature.
Similar behavior has been observed previously for ZnO nanocrystals [81]. However, it is
worth mentioning that the relation between the crystallite size and the concentration of
the defects was remarkable for the sample with x = 0.12, suggesting that the Fe content
increasing up to this value induces an increase in the symmetry of the surface atoms or
decreases the number of unsaturated surface states of Cr3+/Fe3+. This also resulted in an
anisotropic contraction of the unit cell, followed by a significant decrease in the c-axis length
relative to the a-axis, resulting in increased symmetry of the structural units (see Figure 2a).
Based on the above results, we can confirm that the lattice expansion and contraction are
exclusively due to the Fe doping of the size-dependent crystallite of the Cr2O3 structure
associated with movements of Fe/Cr ion along the z-axis with the Wyckoff position (0,0,z),
showing a transition moment parallel to the hexagonal c-axis and affecting the long Fe–O
bonds [82] directly.

This observed Fe-doping-dependent size increase in the structural properties of Cr2O3
discussed above is reflected in the electronic properties. In this context, the nominal
valences of the cations in the Cr2−xFexO3 (0.0 ≤ x ≤ 0.18) nanoparticles were calculated
considering the valence and fraction of each ion for each cation site. We employed the
bond valence sum (BVS) analysis method [83,84]. This model, which is based on Pauling’s
concept of electrostatic valence, describes that the sum of bond valence Sij around any
ion, i, which is equivalent to the valence, Vi, of this ion, and can be computed by the
following equation:

Vi = ∑
j

Sij = ∑
j

exp

[(
R0 − Rij

)
B

]
(4)

where the sum is over all neighboring atoms j of the atom i. Here, B is an empirically
determined “universal” constant equal to 0.37 Å [83]. R0 represents the tabulated length of
a bond of unit valence, taken to be 1.724 and 1.734 Å for Cr3+–O2− and Fe3+–O2− ion pairs,
respectively [83], and Rij is the experimentally determined distance between atoms i and j
in the coordination environment around the metal. The BVS analysis of the structure of
the Cr2−xFexO3 (0.0 ≤ x ≤ 0.18) nanoparticles was performed using the Bondstr package
incorporated in FullProf [85], and the results are given in Table S1. As can be seen, the
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calculated BVS values for O ions are slightly closer to the formal valence of 2−, being
between 1.935 < O2− < 2.084. Moreover, the BVS values for Fe and Cr are reasonably
consistent with the formal valence of 3+. However, increasing the Fe doping from 0 to
0.18 results in the Cr BVS value increment from 2.903 to 3.345, while the BVS value for
Fe decrease from 3.609 to 3.126 of x = 0.06 to x = 0.18. As can be seen in Figure 2a, Fe3+

replaced Cr3+ sites in the same 6-fold coordination of the Cr2O3 host lattice, resulting in a
<Cr–O> bond longer than the <Fe–O> bond. On this basis, we considered the anisotropic
contractions of the unit cell, as followed by a significant decrease in the c-axis length relative
to the a-axis, which results in movements of the Fe/Cr ion along the z-axis with the Wyckoff
position (0,0,z), likely inducing a transition moment parallel to the hexagonal c-axis [82].
Accordingly, the Fe–O bond is strengthened, whereas the higher electron density of Fe
and O results in enhanced covalency in the Fe–O bond. Thus, the valence state of the Fe
is correlated with a lesser degree of hybridization between the Cr 3d and O 2p orbitals
because of the longer Cr–O bond length.
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We also used MEM and DFT to further characterize the effect of Fe doping on the
modification of the Cr–Cr electrostatic repulsions and Cr–O bonding covalency character
in Cr2O3. Figure 4a shows the two-dimensional (2D) electron density distribution on the
(110) and (001) planes for the Cr2−xFexO3 (0.0 ≤ x ≤ 0.18) nanoparticles. The (110) and
(001) planes are situated at 4.30 and 3.35 Å from the origin of the primitive cell, respectively.
The 2D maps reveal that although the cation coordination polyhedral contains nearly
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regular octahedrons, the effect of Fe doping on the electron distribution is anisotropic. For
Cr2O3, the characteristic Cr–O bonds in the (110) and (001) planes are both positive and
of comparable magnitudes (0.01 and 29.0 e/Å3), indicating a significant σ-type covalent
character for this bond due to both spin-up and spin-down electrons. However, the
perfectly polar or ionic nature of the Fe/Cr–O bond is observed for the Fe-doped Cr2O3.
The Cr–O bonds get more ionic in the (001) planes (‖c) while progressively developing a
polar-covalent character in the (001) planes (⊥c) as the Fe doping content increases. This
behavior can be explained by considering the non-centrosymmetric configuration with the
C3v point symmetry of the metal octahedral environment exhibited in Cr2O3.

Nanomaterials 2022, 12, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 4. (a) Two-dimensional (2D) electron density maps drawn parallel to he (001) and (110) 
crystallographic planes obtained from MEM analyses for the Cr2-xFexO3 (0.0 ≤ x ≤ 0.18) nanoparticles. 
(b) Structural representations of chains of [CrO6] dimers along the c-axis in the Cr2O3 structure, 
highlighting the small and large equilateral triangles and Cr3+ displacement from the octahedral site 
center (upper right-side sketch). The sketch below represents the two face-sharing FeO6 octahedra, 
as shown in the upper right-side sketch, whereas there are three short and three long nearest-
neighbor Fe/Cr–O distances inside each [Fe/Cr]O6 octahedron. 

Indeed, the Cr2O3 crystal lattice is described as chains of octahedral sites constituted 
by [Fe2O9] dimers directed along the c-axis and separated from each other by an empty 
octahedral site (Figure 4b), whereas two face-sharing Cr3+ octahedral sites are present. 
Then, the common face area of two octahedra forming a dimer is smaller than that of the 
faces sharing an empty cationic site because only the two octahedral triangular faces 
perpendicular to the c-axis remain equilateral. There is a natural C3v-type distortion of 
the [CrO6] cages, resulting in the rhombohedral unit cell flattened along the c-axis and the 
face-sharing octahedral site. Additionally, the Cr is displaced from the geometric 
octahedral site center along the c-axis towards the large equilateral face of the [CrO6] 
octahedra, forming two sets of Cr–O bond distances. Thus, the study of the formation of 
three short bonds between the ligands of the sizeable equilateral face and the metallic 
center and three long bonds between the small equilateral face and the metallic center 
(Figure 4b) is valuable when inspecting the Cr–Cr repulsion across the shared-face 
octahedra. The electron density values at critical bond points for all samples are presented 
in Table 1, which confirms and quantifies the decrease in the bonds’ covalent strength 
with the Fe doping. Although the mid-bond electron density values for the short (Cr,Fe)–
O bond did not fall in a consistent trend, the long (Cr,Fe)-O bond strengthened with the 
Fe doping, as evident from the increase in the mid-bond electron density from 0.2273 e/Å3 
to 0.7469 e/Å3 as x = 0.12. Nevertheless, this value was decreased to 0.3431 e/Å3 for x = 0.18, 
further indicating the dynamic equilibrium state of the Cr3+ electronic structure in the 
axially compressed CrO6 octahedra. These results suggest that the electron density 
enhancement for the samples with x = 0.06 and 0.12 may come from an existing electron 
transfer among the Cr sites in the Cr2O3 lattice, as induced by the higher reducing ability 

Figure 4. (a) Two-dimensional (2D) electron density maps drawn parallel to he (001) and (110) crys-
tallographic planes obtained from MEM analyses for the Cr2−xFexO3 (0.0 ≤ x ≤ 0.18) nanoparticles.
(b) Structural representations of chains of [CrO6] dimers along the c-axis in the Cr2O3 structure,
highlighting the small and large equilateral triangles and Cr3+ displacement from the octahedral site
center (upper right-side sketch). The sketch below represents the two face-sharing FeO6 octahedra, as
shown in the upper right-side sketch, whereas there are three short and three long nearest-neighbor
Fe/Cr–O distances inside each [Fe/Cr]O6 octahedron.

Indeed, the Cr2O3 crystal lattice is described as chains of octahedral sites constituted
by [Fe2O9] dimers directed along the c-axis and separated from each other by an empty
octahedral site (Figure 4b), whereas two face-sharing Cr3+ octahedral sites are present.
Then, the common face area of two octahedra forming a dimer is smaller than that of
the faces sharing an empty cationic site because only the two octahedral triangular faces
perpendicular to the c-axis remain equilateral. There is a natural C3v-type distortion of the
[CrO6] cages, resulting in the rhombohedral unit cell flattened along the c-axis and the face-
sharing octahedral site. Additionally, the Cr is displaced from the geometric octahedral site
center along the c-axis towards the large equilateral face of the [CrO6] octahedra, forming
two sets of Cr–O bond distances. Thus, the study of the formation of three short bonds
between the ligands of the sizeable equilateral face and the metallic center and three long
bonds between the small equilateral face and the metallic center (Figure 4b) is valuable
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when inspecting the Cr–Cr repulsion across the shared-face octahedra. The electron density
values at critical bond points for all samples are presented in Table 1, which confirms and
quantifies the decrease in the bonds’ covalent strength with the Fe doping. Although the
mid-bond electron density values for the short (Cr,Fe)–O bond did not fall in a consistent
trend, the long (Cr,Fe)–O bond strengthened with the Fe doping, as evident from the
increase in the mid-bond electron density from 0.2273 e/Å3 to 0.7469 e/Å3 as x = 0.12.
Nevertheless, this value was decreased to 0.3431 e/Å3 for x = 0.18, further indicating the
dynamic equilibrium state of the Cr3+ electronic structure in the axially compressed CrO6
octahedra. These results suggest that the electron density enhancement for the samples
with x = 0.06 and 0.12 may come from an existing electron transfer among the Cr sites
in the Cr2O3 lattice, as induced by the higher reducing ability and electronegativity of
Fe (Fe = 1.83 > Cr = 1.66) [86]. Then, by substituting Cr3+ with Fe3+, the higher reducing
ability and electronegativity favor Fe-containing sites that attract O atoms more strongly,
shortening the Fe–O distances and affecting that equilibrium state with the increase in Fe
content. In contrast, a lower electron density in the O-planes is expected to increase the
polar strength along the c-axis, resulting in the orbital polarization of d3 electrons on Cr by
the Fe effect in the crystalline environment, as indicated by the strongly directional lobes
consistent with the spatial orientation of t2s orbitals present in Figure 4a. This suggests that
majority-spin electrons are expected to show antibonding to balance the bonding effect of
those with a minority-spin nature, decreasing the covalent contribution and introducing
Cr3+ sites surrounded by electron-rich structures. Furthermore, the higher usual effects of
shrinking the electron density on the Fe3+/Cr3+ and O2− sites (see Figure 2a) was evident
for x = 0.18, suggesting that the lattice constraints were relaxed, allowing the Madelung
energy to be optimized by increasing the strongest Cr–Cr interaction. This indicates that
the critical distance of the Cr–Cr interaction is achieved for doping contents around the
Fe doping mid-point (herein, x = 0.12). In this place, it is also worth mentioning that
although negative characters corresponding to exchange repulsion are observed for O–O
pairs due to longer Fe–O bonds, the associated Cr–Cr interaction because of the Madelung
electrostatic field, and exchange repulsion, the possible bond overlap populations for Cr–Cr
pairs are negligible up to x = 0.18, indicating that no metal bonding is present, which is
fully consistent with the DOS of Cr2O3 showed in (Figure 6).

We further studied the nature of the Fe/Cr–O bonding covalency in Cr2O3 via DFT.
The optimized lattice parameters a = b and c, the critical bond points, the Bader charges
q(Ω), and the results of the BVS simulated data are summarized in Table 2. As can be
observed, the computationally optimized a = b = 5.005 Å and c = 13.626 Å parameters
describe a Cr2O3 system with a unit cell volume that is 2.2% greater than the experimental
result shown in Table S1. For Fe-doped cells, the optimized volume also changes, but the
result corresponds to a unit cell with a 1.9% smaller volume. This behavior is interesting
because the relaxed cell shows an increase along the c-axis with a decrease along the a-
and b-axes, which leads to an axial ratio of c/a = 2.808 that is greater than in the pure case
(c/a = 2.722). When compared to the experimental systems, Table S1 shows that the unit
cell volume practically does not change as the percentage of Fe dopants within the Cr2O3
lattice increases. Despite this, it is possible to note a slight tendency to increase the cell
along the c-axis, which corroborates the theoretical findings. Further, our simulated cell
parameters are consistent with other studies carried out with B3LYP [70] and GGA+U [51]
exchange–correlation functionals. Changes and interpretations of chemical bonds as well
as the charge state estimations of the removed (Cr) and inserted (Fe) ions were calculated
in connection with Bader’s topological procedure implemented in the Critic2 computer
program [87,88]. For clarity’s sake, the results displayed in Table 2 for Cr–O and Fe–O
refer to bonds with non-equivalent oxygen atoms that form their respective local structures
(Figure 5). Each of these oxygen atoms, which are named O1 and O2, has a cell multiplicity
equal to 3, leading to the conclusion that the octahedral environment around the Cr sites
in the Cr2O3 crystalline matrix is preserved after the insertion of the Fe impurity. This is
coherent with the experimental discussion presented before. The electronic density values
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at the bcps (ρb) demonstrate an interesting phenomenon; while the presence of the Fe
defect causes a slight increase in the bond length going from Cr–O1 to Fe–O1, an opposite
effect can be perceived going from Cr–O2 to Fe–O2. This reveals that Fe ions induce a
decrease in the degree of the covalent nature along with the Fe–O1 bonds and an increase
along with Fe–O2 bonds.

Table 2. Calculated properties based on structural (lattice constants and BVS data) and electronic
(Bader’s charges and critical bond points) analyses for the Cr2O3 and Fe-doped Cr2O3 compounds.
The O1 and O2 oxygens indicate the non-equivalent ligands, which compose the local structure
around the Cr site and of the Fe-defect.

Cr2O3 Fe-doped Cr2O3

Optimized Lattice Parameters

a = b (Å) 5.005 4.885
c (Å) 13.626 13.721
c/a 2.722 2.808

Volume (Å3) 295.682 283.591

Bond Critical Points

Bond length (Å) ρb(e/Å3) Bond length (Å) ρb(e/Å3)

Cr–O1 2.038 0.072 Fe–O1 2.098 0.070
Cr–O2 1.980 0.082 Fe–O2 1.958 0.092

Bader charges q(Ω)

Cr +2.0 +2.0
Fe - +2.0
O1 −1.35 −1.35
O2 −1.38 −1.37

Bond Valence Sum (BVS)

Cr 2.86 2.86
Fe - 2.94
O1 1.89 2.06
O2 1.94 2.14
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The electron density map illustrated in Figure 5 helps us to visualize these changes
in the chemical behavior. We consider the density in the crystal plane due to the replaced
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chromium (Cr2O3) and inserted iron (Cr2O3: Fe) and its O1 and O2 ligands, which rep-
resent their 6-fold coordination. Evidently, the charge density around the Fe site is more
symmetrical than around chromium. The reason for this comes from the fact that the Fe’s
d-orbitals are occupied with a greater number of electrons than in the Cr ions’ case. More-
over, we note that the charge density overlaps more along with Fe–O2 than with Cr–O2
bonds. From the magnetic perspective, this means that the exchange interaction acts in
such a way that it favors the antiferromagnetic order along Fe–O2 at the same time, tending
to disfavor it along with the Fe–O1 bonds. The calculated atomic Bader’s charges q(Ω) for
Cr, Fe, and their O1 and O2 ligands are shown in Table 2. According to the results, when
the Fe defect is incorporated into the compound, an equal oxidation state to the substituted
Cr ion is assumed, while the charge states of the O1 and O2 oxygen atoms practically do
not change. These conclusions agree with the fact that the Fe dopant has a local geometry
like that of the Cr atom in a perfect crystal. The difference between the calculated and
formal oxidation states corresponding to Cr3+, Fe3+, and O2− is not surprising because
the atomic charges obtained from the Bader procedure are normally smaller than those
determined experimentally.

The BVS depicted at the end of Table 2 was obtained based on fully PBEsol-relaxed
parameters of the pure and Fe-doped structures. The BVS model is often used to assess
information about the plausibility of the crystal structure and to understand the chemical
bonding by comparing its values with the formal valence state. As can be seen, our
simulated BVS is close to the expected formal valences for Cr, Fe, and O ions. The highest
BVS values for Fe and its O1 and O2 ligands are consistent with their shortest bond lengths.
Comparing these with the experimental BVS results reported in Table S1, we can see that
they are in good agreement; the values for the perfect Cr2O3 crystal are almost the same,
and the Fe-containing structure shows the same upward trend. These results reinforce our
conclusions about the chemical and structural modifications caused by the insertion of the
Fe dopant in the host matrix.

To understand the electronic properties of the Cr2O3 and its Fe-doped counterparts,
their total and partial spin-polarized density of electronic states (TDOS and PDOS, respec-
tively) were calculated as illustrated in Figure 6. The valence band (VB) maximum and
conduction band (CB) minimum are composed essentially by the Cr d-orbitals (Figure 6a,b).
Notably, the O p-states occupy mostly lower energy regions, but a small hybridization area
with Cr d-orbitals at the top of the VB and the bottom of CB can be noticed. Our calculated
electronic band gap of 3.38 eV is very close to the experimental value (~3.4 eV) [90,91]. This
is a notable improvement of the bandgap description compared to the other published
studies with hybrid (B3LYP) [70] or combined GGA+U functional schemes [51]. Firstly,
because our outcome describes electronic bands that correctly corroborate with the Mott–
Hubbard insulator results and charge transfer behavior founding for this oxide material,
and secondly because the TB-mBJ XC semi-local potential, which we use efficiently, de-
scribes the electronic properties of the compound with a lower computational cost, since
B3LYP makes use of calculations involving dual-center integrals and GGA+U, the on-site
Hubbard parameter. Additionally, the TDOS and PDOS plots (Figure 6c,d) for the Fe-doped
Cr2O3 system show that the Fe ion introduces its d-states at well-localized regions into the
bandgap. The basic shape and orbital character of VB and CB do not change significantly.
The most apparent difference is the highlighted band positioned approximately between
−2 and −1 eV, arising from the superposition of the Fe’s d-orbitals with the p-states of
its nearest-bound oxygen atoms. This indicates that for low Fe doping concentrations, Fe
atoms are expected to become isolated, and the Fe 3d bands most likely transform into
a set of isolated states. Furthermore, the unoccupied Cr 3d band tends to move towards
higher energy levels as the Fe doping increases. Accordingly, the oxygen-intermediated
Fe-Cr interactions become larger because the spin polarization on the Cr3+ ions will adopt
a configuration like that of α-Fe2O3.
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Figure 6. Total (TDOS) and projected spin-polarized density of electronic states (PDOS), as calculated
using TB-mBJ exchange–correlation potential: (a,b) the TDOS and PDOS of Cr2O3, respectively;
(c,d), the TDOS and PDOS for Fe-doped Cr2O3, respectively. The dashed black line is the Fermi
energy level, and the positive and negative values represent the states with the spin polarization
moving up and down, respectively.

The MEM and DFT results showed some similarities between them, such as the
fact that the Cr–Cr distance might play a role in the covalence of the Cr–O bond by
broadening the 3d band. The Cr–O distances in Cr2O3 and Fe-doped Cr2O3 nanoparticles
are likely to close, since the studied concentration of iron was very low. However, a
greater Fe–O bonding covalency in Fe-doped Cr2O3 than for Cr–O in Cr2O3 was observed.
Although the electron transfer concerns the eg states and is negligible for the t2g ones,
the higher electron density connecting the Fe–O bonding signals that Fe-incorporation-
dependent variations on the Cr–Cr distance induce a modification of the electrostatic
repulsions, favoring changes in the bond mechanism of the three outermost electrons of the
t2g symmetry, which are responsible for metal–metal covalent (1e−) and Cr–O (2e−) bonds.
Thus, higher Fe doping results in negative increases in the potential energy level toward
the band-edge conduction due to the Fe affinity for oxygen. Furthermore, it is expected
that by increasing the Fe doping content in Cr2O3, an asymmetric PDOS distribution of
the electronic spin polarization will reveal split energy bands, and the atomic planes of the
mixed Cr–Fe interface will adopt the ferromagnetic coupling structure in Fe systems doped
with Cr2O3. This is expected due to the strong antiferromagnetic coupling between Cr3+ and
Fe3+ in corner-sharing octahedra from neighboring layers [51]. Thus, the three unpaired
electrons in Cr fully filled t2g orbitals result in a near cubic shape of the spin density
distribution. In contrast, a near-spherical spin density distribution is expected because the
five unpaired electrons in Fe that are fully filled are both t2g and eg orbitals. This supports
the assumption that a strong electron correlation (the Mott–Hubbard correlation) effect
mediated by a weak cation–cation interaction is responsible for the Fe-doping-induced
changes in magnetic properties of the Cr2O3 nanoparticles, as is well-known for corundum-
like structure metal oxides [92,93]. Moreover, it is worth highlighting that the spin density
distributions at the Cr/Fe sites induce a complex character for the spin polarization at
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the oxygen sites, contributing to O 2p band broadening and the formation of a complex
pattern of Cr/Fe−Cr/Fe spin interactions for both MEM and DFT results. Therefore, the
Cr2O3 and Fe3+-doped Cr2O3 nanoparticles can be thought of as Mott–Hubbard insulators,
whereas the band gap is in the d−d gap, and the conduction band is dominated by Cr 3d
orbitals. Finally, our results also point to the fact that the magnitude and the character of
the electronic density near the O atom bonds in Cr2O3 nanoparticles can vary throughout
the Fe3+ doping, being modulated by the value of the Cr–Cr distances until reaching
stabilization in the quasi-equilibrium structure for Fe doping values higher than x = 0.12.
This might have consequences for the use of Fe-doped Cr2O3 as a possible candidate in
the photochemistry industry, and reaction catalysis is an excellent option for magneto-
optoelectronic device applications.

4. Conclusions

In summary, using the maximum entropy method (MEM) applied to X-ray diffraction
data and density functional theory (DFT) calculations, we carefully investigated the Fe3+

doping effects on the structure and electron distribution of Cr2O3 nanoparticles. We
showed that increasing the Fe3+ doping content induces an enlargement in the axial ratio
of c/a, which is associated with an anisotropic expansion of the unit cell. Moreover,
we demonstrated that as Fe3+ replaced Cr3+ in the Cr2O3 lattice, this caused a greater
interaction between the metal 3d states and the oxygen 2p states, leading to a slight increase
in the Cr/Fe–O1 bond length followed by an opposite effect for the Cr/Fe–O2 bonds. Our
results also suggested that the Fe dopant introduces d-states at a well-localized bandgap
region, resulting in the strong covalent nature of the Fe–O2 bonds compared to Fe–O1
bonds. Moreover, we found that the band gaps in the mixed systems are characterized
by excitations from occupied Cr d to unoccupied Fe d states. The Cr2O3 and Fe-doped
Cr2O3 nanoparticles behave as Mott–Hubbard insulators, whereas their band gap is in
the d−d gap and the conduction band are dominated by Cr 3d orbitals. Furthermore, the
magnitude and the character of the electronic density near the O atom bonds in Cr2O3
nanoparticles are modulated by the value of the Cr–Cr distances until reaching stabilization
in the quasi-equilibrium of the Cr2O3 lattice for Fe doping values in the saturation level
range. These findings suggested that Fe-doped Cr2O3 can be considered a promising
candidate for spintronics and magneto-optical devices.
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