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Abstract: In this study, multi-walled carbon nanotubes (MWCNTs) were modified by thermal fluorina-
tion to improve dispersibility between MWCNTs and Li4Ti5O12 (LTO) and were used as additives to
compensate for the disadvantages of LTO anode materials with low electronic conductivity. The degree
of fluorination of the MWCNTs was controlled by modifying the reaction time at constant fluorination
temperature; the clear structure and surface functional group changes in the MWCNTs due to the degree
of fluorination were determined. In addition, the homogeneous dispersion in the LTO was improved
due to the strong electronegativity of fluorine. The F-MWCNT conductive additive was shown to exhibit
an excellent electrochemical performance as an anode for lithium ion batteries (LIBs). In particular,
the optimized LTO with added fluorinated MWCNTs not only exhibited a high specific capacity of
104.8 mAh g−1 at 15.0 C but also maintained a capacity of ~116.8 mAh g−1 at a high rate of 10.0 C,
showing a capacity almost 1.4 times higher than that of LTO with the addition of pristine MWCNTs and
an improvement in the electrical conductivity. These results can be ascribed to the fact that the semi-ionic
C–F bond of the fluorinated MWCNTs reacts with the Li metal during the charge/discharge process to
form LiF, and the fluorinated MWCNTs are converted into MWCNTs to increase the conductivity due to
the bridge effect of the conductive additive, carbon black, with LTO.

Keywords: multi-walled carbon nanotubes (MWCNTs); fluorinated carbon (CFx); thermal fluorination;
Li4Ti5O12 (LTO); lithium ion batteries (LIBs)

1. Introduction

As the demand for lithium ion batteries for energy storage devices and large devices
increases, the demand for improved battery performance, including the energy density,
stability, and rate capacity, is increasing [1]. For anode materials, graphite is currently
widely used among the carbon-based anode active materials. The graphite anode has
excellent cycle characteristics and stability, because it has a reaction mechanism in which
lithium ions are reversibly intercalated and deintercalated between the carbon layers.
However, graphite forms a solid electrolyte interface (SEI) layer due to a low lithium
intercalation potential that is close to the lithium deposition potential. The formation of
such an SEI layer causes the irreversible consumption of Li+ and deposition of lithium metal.
In addition, due to the volume expansion of graphite (9–13%) during the charge/discharge
process, the electrical contact between the particles gradually weakens, resulting in a
decrease in the cycling performance [2–6]. Accordingly, many studies have been conducted
using an alternative anode materials with high safety and excellent cycling stability, and
Li4Ti5O12 (LTO) is attracting attention as an alternative anode material. LTO has a spinel
structure, which has better structural stability compared to graphite, and it shows a plateau
operating voltage at approximately 1.5 V compared to lithium. This voltage is lower than
the reduction potential of most electrolytes and does not form an SEI layer [7,8]. However,
despite these advantages, LTO has a problem regarding its discharge rate characteristics
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due to its low electrical conductivity. To compensate for these shortcomings, recently, many
studies have been conducted to improve the electrical conductivity of LTO. Methods for
improving the electrical conductivity of LTO by manufacturing or coating a composite
with a conductive material, such as a carbon-based nanomaterial, and the synthesis of
nanosized LTO have been studied [9–15]. In addition, the conductivity and cycle stability
were improved by doping ions, such as Na+, K+, Mg2+, Ni2+, Cu2+, Al3+, V5+, F−, and Br−,
into the LTO anode [16–22].

The application of MWCNTs in the form of bundles of small particles, mainly for use
as conductive nanocarbons, is difficult due to its dispersion problem. Since MWCNTs that
are not smoothly dispersed and aggregated are the main cause of the decrease in electrical
conductivity, the electrochemical characteristics may be degraded. To resolve the dispersion
problem, we determined that the doping of a fluorine functional group on the surface of a
carbon material was effective [23–26].

In this study, to investigate the electrochemical performance of MWCNTs depending
on the roles of fluorine functional groups and their degrees of fluorination to expand
the application of MWCNTs, the MWCNTs were mixed with carbon black and used as a
conductive material for LIBs based on LTO anode materials. In addition, the mechanism
of the structure of fluorinated MWCNTs in relation to the electrochemical performance of
lithium-ion batteries was studied.

2. Experimental
2.1. Preparation of Fluorinated Multi-Walled Carbon Nanotubes

The surfaces of multi-walled carbon nanotubes (MWCNTs, inner diameter and length
of 6–13 nm and 2.5–20 µm, respectively, Sigma-Aldrich, Seoul, Korea) were treated using a
fluorination apparatus consisting of a nickel reactor, a vacuum pump, a nickel boat and
a buffer tank connected to gas cylinders. The sample was loaded into the nickel reactor
using the nickel boat and vacuum pumped at 100 ◦C for 2 h to remove impurities, such
as water. The thermal fluorination treatment was carried out at 300 ◦C for 6 and 12 h at
1 bar using fluorine gas (99.8% purity, Messer Grieheim GmbH, Bad Soden, Germany).
After fluorination, the samples were degassed to remove the unreacted gas. The pristine
samples were named as MWCNTs, and fluorinated samples were named as F-MWCNT_6
and F-MWCNT_12, according to the fluorination reaction time.

2.2. Characterization

The crystal structure was characterized by powder X-ray diffraction (XRD, Brucker
D8 Advance diffractometer with Cu Kα radiation). Chemical components were character-
ized by X-ray photoelectron spectroscopy (XPS, K-Alpha XPS instrument, ThermoFisher
Scientific, East Grinter, UK). The microstructures of the samples were examined by scan-
ning electron microscopy (SEM, Hitachi S-4800, Tokyo, Japan) and transmission electron
microscopy (TEM, Tecnai G2 F30, Hillsboro, OR, USA).

2.3. Preparation of Electrode and Coin Cell

Fluorinated MWCNTs were used, instead of a small amount of carbon black, when
fabricating the electrodes. The electrode was produced by mixing Li4Ti5O12 (LTO, D50:
0.8-1.9 µm, Toshiba, Tokyo, Japan), the MWCNTs (or F-MWCNTs), carbon black (Super
P) and polyvinylidene fluoride (PVDF) and dissolving them in N-methyl-2-pyrrolidone
(NMP) with a weight ratio of 8:(0.25:0.75):1, respectively. Then, the slurry was spread onto
an Al foil and dried at 80 ◦C for 12 h to remove the solvent in a vacuum environment.
The electrolyte used was 1 M LiPF6 dissolved in an ethylene carbonate (EC) and diethyl
carbonate (DEC) mixture (1:1 vol.%). A 2032-type lithium coin half-cell consisting of the
fabricated anode, lithium metal, electrolyte and separator (Celgard 2400, Celgard Co. ltd.,
Charlotte, NC, USA) was assembled in an argon-filled glove box with water and oxygen
contents of less than 0.5 ppm. After sitting for 24 h, the C-rate performance and cycling
performance of the cell was evaluated in a voltage range of 1.0 to 2.5 V using a multichannel
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battery cycler (PESC05-0.1, Won-A Tech, Seoul, Korea). The C-rate characteristic was
measured from 0.2 C to 15.0 C, and the cycle performance was assessed at current densities
of 5.0 and 10.0 C. In addition, electrochemical impedance spectroscopy (EIS) was performed
after the 150th cycle to determine the resistance of the charge transfer reaction occurring at
the electrode/electrolyte interface and the diffusion of lithium ions in the electrode.

3. Results and Discussion
3.1. Effect of Thermal Fluorination on the Structure of MWCNTs

The chemical compositions of the MWCNT and F-MWCNT samples are shown in
Figure 1, and the surface element contents are shown in Table 1. As shown in Figure 1a, C,
O and F appeared at approximately 284.5, 533 and 687 eV [27]. As fluorination proceeded,
the peak intensity of F 1s became stronger, and the peak intensity of C 1s became weaker.
As shown in Figure 1 b–d and Table 2, the C 1s spectra of the MWCNTs were divided into
four peaks: the C=C bond (284.4 eV), C–C bond (285.2 eV), C–O bond (286.5 eV) and C=O
bond (286.6 eV) [28]. The oxygen functional groups (C-O, C=O bond) decreased during
fluorination due to the initial presence of the oxygen functional groups [29]. Additionally,
the F-MWCNT samples showed semi-ionic C–F (288.8 eV), C–F2 (290.0 eV) and C–F3 bonds
(294.5 eV) [30]. The semi-ionic C–F bond in F-MWCNTs_6 was much larger than that in
F-MWCNT_12. The C–F2 and C–F3 bonds were mainly present in F-MWCNTs_12. During
the discharge process, the F-MWCNTs_6 sample had more activated C–F electrons than
the F-MWCNTs_12 sample; this affected the charge/discharge capacity. The F 1s spectra
of the F-MWCNT samples were confirmed by the semi-ionic bond at 688.34 eV and the
covalent C–F bond at 691.6 eV [31]. A semi-ionic bond maintains a good conductivity of
carbon, while a covalent C–F bond greatly reduces the conductivity, leading to insulating
properties [32]. As shown in Equation (1), the amount of carbon converted in the electro-
chemical reaction between the F-MWCNTs and lithium was determined to be greater in the
case of F-MWCNTs_6, which had more semi-ionic C–F bonds than F-MWCNTs_12.

Table 1. Surface elemental compositions of MWCNTs, F-MWCNTs_6 and F-MWCNTs_12 based on
the XPS spectra.

Element Content (at.%)

C F O

MWCNTs 97.42 - 2.58

F-MWCNTs_6 59.32 38.13 2.55

F-MWCNTs_12 53.64 43.83 2.54

Table 2. Peak parameters for the C 1s components of MWCNTs, F-MWCNTs_6 and F-MWCNTs_12.

Assignment
Binding

Energy(eV)
Concentration (%) of Each Sample

MWCNTs F-MWCNTs_6 F-MWCNTs_12

C=C 284.4 65.03 44.75 0.75

C-C 285.2 26.88 20.04 1.19

C-O 285.5 4.40 4.19 2.3

C=O 286.6 3.69 3.30 3.5

Semi-ionic
C–F 288.8 - 25.20 11.84

C–F2 290 - 2.52 37.84

C–F3 294.5 - - 42.58
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MWCNTs_12. (b–d) C 1s spectra of the MWCNTs, F-MWCNTs_6 and F-MWCNTs_12. (e,f) F 1s 
spectra of the MWCNTs, F-MWCNTs_6 and F-MWCNTs_12. 

The XRD patterns of the MWCNT and fluorinated samples are shown in Figure S1. 
The peak at 2θ = 24.66° can be allocated to the reflection of (002) of the graphite structure, 
and a new phase is present after fluorination due to the peaks at the center of approxi-
mately 13° and 42°, which are known to be influenced by the diffraction of the lattice 
planes (001) of fluorinated carbon materials. The (002) peak for F-MWCNT gradually de-
creases as the fluorination reaction time (i.e., degree of fluorination) increases and finally 
disappears after 12 h of the reaction time, while the (001) and (100) peaks assigned to the 
fluorination phase monotonically increase. These trends show that fluorination occurs 
from the outside to the inside, and an increasing number of carbon layers are fluorinated 
as the fluorination time increases. Figure 2 shows the TEM images of the MWCNT and F-
MWCNT samples. No significant change occurred in F-MWCNTs_6, even after thermal 
fluorination. Its structure was similar to that of the MWCNTs. In contrast, F-MWCNTs_12 
showed an amorphous and disordered layer structure, in addition to the graphite layer 
caused by the per-fluorination of the MWCNTs, and this was also indicated by the partial 
bursting (Figure S2) [33,34]. As mentioned above, since F-MWCNTs_12 was in the form 
of agglomerated carbon due to bursting, it remained as agglomerated carbon rather than 
an MWCNT structure during the electrochemical reaction; therefore, the F-MWCNTs_6 
sample that maintained its MWCNTs structure had a better performance. In Figure S3, the 
dispersion between LTO and the MWCNTs (and F-MWCNT samples) was confirmed 
through SEM analysis. The MWCNTs were partially found on the LTO surface, and the 
F-MWCNT samples were found to be completely distributed on the LTO surface. This 

Figure 1. (a) X-ray photoemission spectroscopy (XPS) profiles of MWCNT, F-MWCNT 6 and F-
MWCNTs_12. (b–d) C 1s spectra of the MWCNTs, F-MWCNTs_6 and F-MWCNTs_12. (e,f) F 1s
spectra of the MWCNTs, F-MWCNTs_6 and F-MWCNTs_12.

The XRD patterns of the MWCNT and fluorinated samples are shown in Figure S1.
The peak at 2θ = 24.66◦ can be allocated to the reflection of (002) of the graphite structure,
and a new phase is present after fluorination due to the peaks at the center of approximately
13◦ and 42◦, which are known to be influenced by the diffraction of the lattice planes (001)
of fluorinated carbon materials. The (002) peak for F-MWCNT gradually decreases as the
fluorination reaction time (i.e., degree of fluorination) increases and finally disappears after
12 h of the reaction time, while the (001) and (100) peaks assigned to the fluorination phase
monotonically increase. These trends show that fluorination occurs from the outside to the
inside, and an increasing number of carbon layers are fluorinated as the fluorination time
increases. Figure 2 shows the TEM images of the MWCNT and F-MWCNT samples. No
significant change occurred in F-MWCNTs_6, even after thermal fluorination. Its structure
was similar to that of the MWCNTs. In contrast, F-MWCNTs_12 showed an amorphous and
disordered layer structure, in addition to the graphite layer caused by the per-fluorination
of the MWCNTs, and this was also indicated by the partial bursting (Figure S2) [33,34]. As
mentioned above, since F-MWCNTs_12 was in the form of agglomerated carbon due to
bursting, it remained as agglomerated carbon rather than an MWCNT structure during the
electrochemical reaction; therefore, the F-MWCNTs_6 sample that maintained its MWCNTs
structure had a better performance. In Figure S3, the dispersion between LTO and the
MWCNTs (and F-MWCNT samples) was confirmed through SEM analysis. The MWCNTs
were partially found on the LTO surface, and the F-MWCNT samples were found to be
completely distributed on the LTO surface. This result showed that the dispersibility was
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improved due to the interaction of LTO with Li+, caused by the strong electronegativity of
the fluorine-doped MWCNTs. Thus, a more uniform dispersion was achieved.
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Figure 2. TEM images of (a) MWCNTs, (b) F-MWCNTs_6 and (c) F-MWCNTs_12 and (d) microstruc-
ture of F-MWCNTs_12.

3.2. Electrochemical Performance of LTO with Added F-MWCNTs

Figure 3a shows the activation curves of LTO with the added MWCNTs, F-MWCNTs_6
and F-MWCNTs_12. During the first discharge process, double potential plateaus were
observed due to different reactions of the LTO with the added MWCNTs and fluorinated
MWCNTs. The plateau levels at approximately 2.30 V or higher could be explained based on
the irreversible reaction mechanism [35,36] between fluorinated carbon (CFx) and lithium
that occurs during the lithium primary battery reaction, as shown in Equation (1) below.

xLi+ + CFx + xe− → x LiF + C (1)
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Therefore, the fluorinated MWCNTs were converted into MWCNTs through the
abovementioned reaction and bridged between the LTO and conductive carbon (carbon
black) particles. Figure 3b,c and Figure S4a–c show the rate performance and galvanostatic
charge/discharge curves of the LTO with the added MWCNTs and F-MWCNT samples at
various current rates of 0.2 to 15.0 C. The capacities at various rates of LTO with the added
MWCNTs were 150.0, 145.5, 144.3, 121.2, 62.3 and 1.1 mAh g−1; those of F-MWCNTs_6
were 161.2, 158.4, 158.3, 149.8, 125.1 and 104.8 mAh g−1; and those of LTO with the added
F-MWCNTs_12 were 161.3, 155.2, 148.9, 138.5, 103.2 and 46.8 mAh g−1.

Compared to the LTO with the added MWCNTs, the F-MWCNT samples showed
a high performance at all the operating rates, and in particular, significant performance
differences were confirmed at the rates of 10.0 and 15.0 C. In addition, a capacity difference
of approximately 2.2 times was determined for LTO with added F-MWCNTs_6 and F-
MWCNTs_12 at 15.0 C. These results indicated that the bursting due to the per-fluorination
of the MWCNTs and the carbon formed during the first discharge could not act as a
bridge between the LTO and conductive carbon due to aggregation. Figure 4a,b shows
the long-term cycling performances of LTO with the added MWCNTs, F-MWCNTs_6
and F-MWCNTs_12 at 5.0 C and 10.0 C. After 150 cycles at 5.0 C, the LTO with added
F-MWCNTs_6 retained a high capacity of 129.9 mAh g−1. Even after 250 cycles at 10.0 C,
the LTO with added F-MWCNTs_6 showed a capacity of 116.8 mAh g−1, which was higher
than those of the LTO with added MWCNTs and F-MWCNTs_12. Furthermore, the LTO
with added F-MWCNT samples showed smaller polarizations than the LTO with added
MWCNTs, as shown in Figure 4c,d.
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of LTO with added MWCNTs, F-MWCNTs_6 and F-MWCNTs_12.

As a result, the LTO with added F-MWCNTs played a role in improving the conduc-
tivity and greatly reducing the resistance of the electrode. In addition, Figure 5 shows
the EIS analysis results for the LTO with the added MWCNT and F-MWCNT samples.
In the Nyquist plot, the two compressed semicircles in the high- and middle-frequency
regions correspond to the impedance of the solid interphase layer and the charge transfer,
respectively, and the slant in the low-frequency region is related to the Warburg impedance
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of lithium ion diffusion. The equivalent circuit consists of the ohmic resistance RS, charge
transfer resistance RCT, SEI layer resistance RSEI, two constant phase elements CPE1 and
CPE2 that model the defect capacitor behaviors of the SEI layer and double layer, respec-
tively, and a Warburg diffusion element ZW, as shown in Figure 5. The resistance of the LTO
with the added F-MWCNT samples was lower than that of the LTO with added MWCNTs,
and the conductivities were improved due to the small semicircle. The decrease in RCT was
due to self-stabilization during repeated charge/discharge processing [37,38]. The small
RCT values of these LTO with added F-MWCNT samples showed an excellent rate and
cycling performance. As described above, the LTO with added F-MWCNTs_12 had more
covalent C–F bonds than the LTO with added F-MWCNTs_6; therefore, the LTO with added
F-MWCNTs_12 did not serve as a bridge, because less carbon was converted during the CFx
discharge process. In addition, this difference potentially occurred because there were many
carbons that burst or aggregated due to the per-fluorination of F-MWCNTs_12. However,
the F-MWCNT samples showed a better electrochemical performance than the MWCNTs.
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