Broadband Optical Properties of Bi2Se3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Raman Characterization
2.3. Spectroscopic Ellipsometry Characterization
2.4. Reflectance Measurements
2.5. First-Principle Calculations
2.6. Optical Visualization
2.7. Atomic-Force Microscopy
2.8. X-ray Photoelectron Spectroscopy
3. Results and Discussion
3.1. Sample Characterization
3.2. Spectrocopic Ellipsometry of Bi2Se3
3.3. Applications of Bi2Se3
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
λ (nm) | n | k | ε1 | ε2 |
---|---|---|---|---|
300 | 1.4835 | 4.0190 | −13.9516 | 11.9244 |
350 | 2.1871 | 4.2554 | −13.3252 | 18.6138 |
400 | 2.8587 | 4.3035 | −10.3475 | 24.6049 |
450 | 3.4575 | 4.2646 | −6.2330 | 29.4897 |
500 | 4.0442 | 4.1643 | −0.9861 | 33.6823 |
532 | 4.4169 | 4.0377 | 3.2065 | 35.6679 |
550 | 4.6163 | 3.9393 | 5.7915 | 36.3699 |
600 | 5.0870 | 3.5798 | 13.0626 | 36.4213 |
633 | 5.3118 | 3.3042 | 17.2968 | 35.1024 |
650 | 5.4007 | 3.1606 | 19.1778 | 34.1386 |
700 | 5.5739 | 2.7596 | 23.4533 | 30.7635 |
750 | 5.6530 | 2.4133 | 26.1321 | 27.2847 |
780 | 5.6724 | 2.2346 | 27.1822 | 25.3509 |
800 | 5.6776 | 2.1268 | 27.7121 | 24.1507 |
850 | 5.6735 | 1.8926 | 28.6069 | 21.4748 |
900 | 5.6552 | 1.7003 | 29.0901 | 19.2311 |
1064 | 5.5695 | 1.2630 | 29.4246 | 14.0680 |
1200 | 5.5128 | 1.0702 | 29.2461 | 11.7991 |
1500 | 5.4053 | 0.7272 | 28.6883 | 7.8610 |
1800 | 5.3423 | 0.5421 | 28.2465 | 5.7919 |
2100 | 5.2989 | 0.4154 | 27.9057 | 4.4021 |
2400 | 5.2660 | 0.3213 | 27.6271 | 3.3839 |
2700 | 5.2390 | 0.2477 | 27.3855 | 2.5952 |
3000 | 5.2155 | 0.1880 | 27.1665 | 1.9612 |
3300 | 5.1943 | 0.1385 | 26.9619 | 1.4385 |
References
- Khurgin, J.B. Expanding the Photonic Palette: Exploring High Index Materials. ACS Photonics 2022, 9, 743–751. [Google Scholar] [CrossRef]
- Baranov, D.G.; Zuev, D.A.; Lepeshov, S.I.; Kotov, O.V.; Krasnok, A.E.; Evlyukhin, A.B.; Chichkov, B.N. All-Dielectric Nanophotonics: The Quest for Better Materials and Fabrication Techniques. Optica 2017, 4, 814. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Novikov, S.M.; Zywietz, U.; Eriksen, R.L.; Reinhardt, C.; Bozhevolnyi, S.I.; Chichkov, B.N. Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region. Nano Lett. 2012, 12, 3749–3755. [Google Scholar] [CrossRef]
- Ling, H.; Li, R.; Davoyan, A.R. All van Der Waals Integrated Nanophotonics with Bulk Transition Metal Dichalcogenides. ACS Photonics 2021, 8, 721–730. [Google Scholar] [CrossRef]
- Verre, R.; Baranov, D.G.; Munkhbat, B.; Cuadra, J.; Käll, M.; Shegai, T. Transition Metal Dichalcogenide Nanodisks as High-Index Dielectric Mie Nanoresonators. Nat. Nanotechnol. 2019, 14, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, V.V.; Koval, O.Y.; Ryabov, D.R.; Fedina, S.V.; Eliseev, I.E.; Kirilenko, D.A.; Pidgayko, D.A.; Bogdanov, A.A.; Zadiranov, Y.M.; Goltaev, A.S.; et al. Nanoscale Gallium Phosphide Epilayers on Sapphire for Low-Loss Visible Nanophotonics. ACS Appl. Nano Mater. 2022, 5, 8846–8858. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Matiushechkina, M.; Zenin, V.A.; Heurs, M.; Chichkov, B.N. Lightweight Metasurface Mirror of Silicon Nanospheres [Invited]. Opt. Mater. Express 2020, 10, 2706. [Google Scholar] [CrossRef]
- Sun, L.; Hou, P. Spectroscopic Ellipsometry Study on E-Beam Deposited Titanium Dioxide Films. Thin Solid Film. 2004, 455–456, 525–529. [Google Scholar] [CrossRef]
- Novoselov, K.S. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 2–5. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Grudinin, D.V.; Stebunov, Y.V.; Voronin, K.V.; Kravets, V.G.; Duan, J.; Mazitov, A.B.; Tselikov, G.I.; Bylinkin, A.; Yakubovsky, D.I.; et al. Giant Optical Anisotropy in Transition Metal Dichalcogenides for Next-Generation Photonics. Nat. Commun. 2021, 12, 854. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van Der Waals Heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.E.; Cepellotti, A.; Pizzi, G.; et al. Two-Dimensional Materials from High-Throughput Computational Exfoliation of Experimentally Known Compounds. Nat. Nanotechnol. 2018, 13, 246–252. [Google Scholar] [CrossRef]
- Munkhbat, B.; Baranov, D.G.; Stührenberg, M.; Wersäll, M.; Bisht, A.; Shegai, T. Self-Hybridized Exciton-Polaritons in Multilayers of Transition Metal Dichalcogenides for Efficient Light Absorption. ACS Photonics 2019, 6, 139–147. [Google Scholar] [CrossRef]
- Kravets, V.G.; Wu, F.; Auton, G.H.; Yu, T.; Imaizumi, S.; Grigorenko, A.N. Measurements of Electrically Tunable Refractive Index of MoS2 Monolayer and Its Usage in Optical Modulators. Npj 2D Mater. Appl. 2019, 3, 36. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, Y.; Cai, Y.; Li, W.; Gurarslan, A.; Peelaers, H.; Aspnes, D.E.; Van de Walle, C.G.; Nguyen, N.V.; Zhang, Y.-W.; et al. Exciton-Dominated Dielectric Function of Atomically Thin MoS2 Films. Sci. Rep. 2015, 5, 16996. [Google Scholar] [CrossRef]
- Liu, H.-L.; Shen, C.-C.; Su, S.-H.; Hsu, C.-L.; Li, M.-Y.; Li, L.-J. Optical Properties of Monolayer Transition Metal Dichalcogenides Probed by Spectroscopic Ellipsometry. Appl. Phys. Lett. 2014, 105, 201905. [Google Scholar] [CrossRef]
- Kravets, V.G.; Zhukov, A.A.; Holwill, M.; Novoselov, K.S.; Grigorenko, A.N. “Dead” Exciton Layer and Exciton Anisotropy of Bulk MoS2 Extracted from Optical Measurements. ACS Nano 2022, 16, 18637–18647. [Google Scholar] [CrossRef]
- Li, Y.; Chernikov, A.; Zhang, X.; Rigosi, A.; Hill, H.M.; van der Zande, A.M.; Chenet, D.A.; Shih, E.-M.; Hone, J.; Heinz, T.F. Measurement of the Optical Dielectric Function of Monolayer Transition-Metal Dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2014, 90, 205422. [Google Scholar] [CrossRef]
- Tselikov, G.I.; Ermolaev, G.A.; Popov, A.A.; Tikhonowski, G.V.; Panova, D.A.; Taradin, A.S.; Vyshnevyy, A.A.; Syuy, A.V.; Klimentov, S.M.; Novikov, S.M.; et al. Transition Metal Dichalcogenide Nanospheres for High-Refractive-Index Nanophotonics and Biomedical Theranostics. Proc. Natl. Acad. Sci. USA 2022, 119, e2208830119. [Google Scholar] [CrossRef] [PubMed]
- Ermolaev, G.A.; Stebunov, Y.V.; Vyshnevyy, A.A.; Tatarkin, D.E.; Yakubovsky, D.I.; Novikov, S.M.; Baranov, D.G.; Shegai, T.; Nikitin, A.Y.; Arsenin, A.V.; et al. Broadband Optical Properties of Monolayer and Bulk MoS2. Npj 2D Mater. Appl. 2020, 4, 21. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; El-Sayed, M.A.; Yakubovsky, D.I.; Voronin, K.V.; Romanov, R.I.; Tatmyshevskiy, M.K.; Doroshina, N.V.; Nemtsov, A.B.; Voronov, A.A.; Novikov, S.M.; et al. Optical Constants and Structural Properties of Epitaxial MoS2 Monolayers. Nanomaterials 2021, 11, 1411. [Google Scholar] [CrossRef] [PubMed]
- Raja, A.; Waldecker, L.; Zipfel, J.; Cho, Y.; Brem, S.; Ziegler, J.D.; Kulig, M.; Taniguchi, T.; Watanabe, K.; Malic, E.; et al. Dielectric Disorder in Two-Dimensional Materials. Nat. Nanotechnol. 2019, 14, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Berkelbach, T.C. Environmentally Sensitive Theory of Electronic and Optical Transitions in Atomically Thin Semiconductors. Phys. Rev. B 2018, 97, 041409. [Google Scholar] [CrossRef]
- El-Sayed, M.A.; Tselin, A.P.; Ermolaev, G.A.; Tatmyshevskiy, M.K.; Slavich, A.S.; Yakubovsky, D.I.; Novikov, S.M.; Vyshnevyy, A.A.; Arsenin, A.V.; Volkov, V.S. Non-Additive Optical Response in Transition Metal Dichalcogenides Heterostructures. Nanomaterials 2022, 12, 4436. [Google Scholar] [CrossRef]
- Islam, K.M.; Synowicki, R.; Ismael, T.; Oguntoye, I.; Grinalds, N.; Escarra, M.D. In-Plane and Out-of-Plane Optical Properties of Monolayer, Few-Layer, and Thin-Film MoS2 from 190 to 1700 Nm and Their Application in Photonic Device Design. Adv. Photonics Res. 2021, 2, 2000180. [Google Scholar] [CrossRef]
- Ambrosi, A.; Sofer, Z.; Luxa, J.; Pumera, M. Exfoliation of Layered Topological Insulators Bi2Se3 and Bi2Te3 via Electrochemistry. ACS Nano 2016, 10, 11442–11448. [Google Scholar] [CrossRef]
- Teweldebrhan, D.; Goyal, V.; Balandin, A.A. Exfoliation and Characterization of Bismuth Telluride Atomic Quintuples and Quasi-Two-Dimensional Crystals. Nano Lett. 2010, 10, 1209–1218. [Google Scholar] [CrossRef]
- Efthimiopoulos, I.; Kemichick, J.; Zhou, X.; Khare, S.V.; Ikuta, D.; Wang, Y. High-Pressure Studies of Bi2S3. J. Phys. Chem. A 2014, 118, 1713–1720. [Google Scholar] [CrossRef]
- Ou, J.-Y.; So, J.-K.; Adamo, G.; Sulaev, A.; Wang, L.; Zheludev, N.I. Ultraviolet and Visible Range Plasmonics in the Topological Insulator Bi1.5Sb0.5Te1.8Se1.2. Nat. Commun. 2014, 5, 5139. [Google Scholar] [CrossRef]
- Krishnamoorthy, H.N.S.; Adamo, G.; Yin, J.; Savinov, V.; Zheludev, N.I.; Soci, C. Infrared Dielectric Metamaterials from High Refractive Index Chalcogenides. Nat. Commun. 2020, 11, 1692. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological Insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Pogna, E.A.A.; Viti, L.; Politano, A.; Brambilla, M.; Scamarcio, G.; Vitiello, M.S. Mapping Propagation of Collective Modes in Bi2Se3 and Bi2Te2.2Se0.8 Topological Insulators by near-Field Terahertz Nanoscopy. Nat. Commun. 2021, 12, 6672. [Google Scholar] [CrossRef]
- Ma, J.; Deng, K.; Zheng, L.; Wu, S.; Liu, Z.; Zhou, S.; Sun, D. Experimental Progress on Layered Topological Semimetals. 2D Mater. 2019, 6, 032001. [Google Scholar] [CrossRef]
- Pesin, D.; MacDonald, A.H. Spintronics and Pseudospintronics in Graphene and Topological Insulators. Nat. Mater. 2012, 11, 409–416. [Google Scholar] [CrossRef]
- He, M.; Sun, H.; He, Q.L. Topological Insulator: Spintronics and Quantum Computations. Front. Phys. 2019, 14, 43401. [Google Scholar] [CrossRef]
- Di Pietro, P.; Ortolani, M.; Limaj, O.; Di Gaspare, A.; Giliberti, V.; Giorgianni, F.; Brahlek, M.; Bansal, N.; Koirala, N.; Oh, S.; et al. Observation of Dirac Plasmons in a Topological Insulator. Nat. Nanotechnol. 2013, 8, 556–560. [Google Scholar] [CrossRef]
- Fang, M.; Wang, Z.; Gu, H.; Tong, M.; Song, B.; Xie, X.; Zhou, T.; Chen, X.; Jiang, H.; Jiang, T.; et al. Layer-Dependent Dielectric Permittivity of Topological Insulator Bi2Se3 Thin Films. Appl. Surf. Sci. 2020, 509, 144822. [Google Scholar] [CrossRef]
- Sharma, A.; Srivastava, A.K.; Senguttuvan, T.D.; Husale, S. Robust Broad Spectral Photodetection (UV-NIR) and Ultra High Responsivity Investigated in Nanosheets and Nanowires of Bi2Te3 under Harsh Nano-Milling Conditions. Sci. Rep. 2017, 7, 17911. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.; Hilse, M.; Patil, P.D.; Engel-Herbet, R.; Peiris, F. Probing the Growth Quality of Molecular Beam Epitaxy-Grown Bi2Se3 Films via in-Situ Spectroscopic Ellipsometry. J. Cryst. Growth 2022, 591, 126714. [Google Scholar] [CrossRef]
- Qudavasov, S.K.; Abdullayev, N.A.; Jalilli, J.N.; Badalova, Z.I.; Mamedova, I.A.; Nemov, S.A. Ellipsometric Studies of the Optical Properties of Bi2Se3 and Bi2Se3<Cu> Single Crystals. Semiconductors 2021, 55, 985–988. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhang, S.-C. Topological Insulators for High-Performance Terahertz to Infrared Applications. Phys. Rev. B 2010, 82, 245107. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Theeten, J.B.; Hottier, F. Investigation of Effective-Medium Models of Microscopic Surface Roughness by Spectroscopic Ellipsometry. Phys. Rev. B 1979, 20, 3292–3302. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Nakajima, S. The Crystal Structure of Bi2Te3−xSex. J. Phys. Chem. Solids 1963, 24, 479–485. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Newbrook, D.W.; Richards, S.P.; Greenacre, V.K.; Hector, A.L.; Levason, W.; Reid, G.; de Groot, C.H.; Huang, R. Improved Thermoelectric Performance of Bi2Se3 Alloyed Bi2Te3 Thin Films via Low Pressure Chemical Vapour Deposition. J. Alloys Compd. 2020, 848, 156523. [Google Scholar] [CrossRef]
- Naveed, M.; Cai, Z.; Bu, H.; Fei, F.; Shah, S.A.; Chen, B.; Rahman, A.; Zhang, K.; Xie, F.; Song, F. Temperature-Dependent Growth of Topological Insulator Bi2Se3 for Nanoscale Fabrication. AIP Adv. 2020, 10, 115202. [Google Scholar] [CrossRef]
- Zhang, G.; Qin, H.; Teng, J.; Guo, J.; Guo, Q.; Dai, X.; Fang, Z.; Wu, K. Quintuple-Layer Epitaxy of Thin Films of Topological Insulator Bi2Se3. Appl. Phys. Lett. 2009, 95, 053114. [Google Scholar] [CrossRef]
- Wang, X.; Smyth, C.M.; Khosravi, A.; Cormier, C.R.; Shallenberger, J.R.; Addou, R.; Wallace, R.M. 2D Topological Insulator Bismuth Selenide Analyzed by in Situ XPS. Surf. Sci. Spectra 2019, 26, 024014. [Google Scholar] [CrossRef]
- Wang, C.-C.; Shieu, F.-S.; Shih, H.C. Photosensing and Characterizing of the Pristine and In-, Sn-Doped Bi2Se3 Nanoplatelets Fabricated by Thermal V–S Process. Nanomaterials 2021, 11, 1352. [Google Scholar] [CrossRef]
- Wang, C.-C.; Lin, P.-T.; Shieu, F.-S.; Shih, H.-C. Enhanced Photocurrent of the Ag Interfaced Topological Insulator Bi2Se3 under UV- and Visible-Light Radiations. Nanomaterials 2021, 11, 3353. [Google Scholar] [CrossRef]
- Hagmann, J.A.; Li, X.; Chowdhury, S.; Dong, S.-N.; Rouvimov, S.; Pookpanratana, S.J.; Man Yu, K.; Orlova, T.A.; Bolin, T.B.; Segre, C.U.; et al. Molecular Beam Epitaxy Growth and Structure of Self-Assembled Bi2Se3/Bi2MnSe4 Multilayer Heterostructures. New J. Phys. 2017, 19, 085002. [Google Scholar] [CrossRef]
- Gautam, S.; Aggarwal, V.; Singh, B.; Awana, V.P.S.; Ganesan, R.; Kushvaha, S.S. Signature of Weak-Antilocalization in Sputtered Topological Insulator Bi2Se3 Thin Films with Varying Thickness. Sci. Rep. 2022, 12, 9770. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, Z.; Soni, A.; Zhao, Y.; Xiong, Y.; Peng, B.; Wang, J.; Dresselhaus, M.S.; Xiong, Q. Raman Spectroscopy of Few-Quintuple Layer Topological Insulator Bi2Se3 Nanoplatelets. Nano Lett. 2011, 11, 2407–2414. [Google Scholar] [CrossRef]
- Sultana, R.; Gurjar, G.; Patnaik, S.; Awana, V.P.S. Growth, Characterization and High-Field Magneto-Conductivity of Co0.1Bi2Se3 Topological Insulator. J. Supercond. Nov. Magn. 2019, 32, 769–777. [Google Scholar] [CrossRef]
- Tompkins, H.G.; Irene, E.A. (Eds.) Handbook of Ellipsometry; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-3-540-22293-4. [Google Scholar]
- Franta, D.; Ohlídal, I. Comparison of Effective Medium Approximation and Rayleigh–Rice Theory Concerning Ellipsometric Characterization of Rough Surfaces. Opt. Commun. 2005, 248, 459–467. [Google Scholar] [CrossRef]
- El-Sayed, M.A.; Ermolaev, G.A.; Voronin, K.V.; Romanov, R.I.; Tselikov, G.I.; Yakubovsky, D.I.; Doroshina, N.V.; Nemtsov, A.B.; Solovey, V.R.; Voronov, A.A.; et al. Optical Constants of Chemical Vapor Deposited Graphene for Photonic Applications. Nanomaterials 2021, 11, 1230. [Google Scholar] [CrossRef] [PubMed]
- Ermolaev, G.A.; Yakubovsky, D.I.; Stebunov, Y.V.; Arsenin, A.V.; Volkov, V.S. Spectral Ellipsometry of Monolayer Transition Metal Dichalcogenides: Analysis of Excitonic Peaks in Dispersion. J. Vac. Sci. Technol. B 2020, 38, 014002. [Google Scholar] [CrossRef]
- Passler, N.C.; Paarmann, A. Generalized 4 × 4 Matrix Formalism for Light Propagation in Anisotropic Stratified Media: Study of Surface Phonon Polaritons in Polar Dielectric Heterostructures. J. Opt. Soc. Am. B 2017, 34, 2128. [Google Scholar] [CrossRef]
- Ermolaev, G.; Pushkarev, A.P.; Zhizhchenko, A.; Kuchmizhak, A.A.; Iorsh, I.; Kruglov, I.; Mazitov, A.; Ishteev, A.; Konstantinova, K.; Saranin, D.; et al. Giant and Tunable Excitonic Optical Anisotropy in Single-Crystal Halide Perovskites. Nano Lett. 2023, 23, 2570–2577. [Google Scholar] [CrossRef]
- Frisenda, R.; Niu, Y.; Gant, P.; Muñoz, M.; Castellanos-Gomez, A. Naturally Occurring van Der Waals Materials. Npj 2D Mater. Appl. 2020, 4, 38. [Google Scholar] [CrossRef]
- Kadel, K.; Kumari, L.; Li, W.; Huang, J.Y.; Provencio, P.P. Synthesis and Thermoelectric Properties of Bi2Se3 Nanostructures. Nanoscale Res. Lett. 2011, 6, 57. [Google Scholar] [CrossRef]
- Cui, H.; Liu, H.; Wang, J.; Li, X.; Han, F.; Boughton, R.I. Sonochemical Synthesis of Bismuth Selenide Nanobelts at Room Temperature. J. Cryst. Growth 2004, 271, 456–461. [Google Scholar] [CrossRef]
- Checkelsky, J.G.; Hor, Y.S.; Liu, M.-H.; Qu, D.-X.; Cava, R.J.; Ong, N.P. Quantum Interference in Macroscopic Crystals of Nonmetallic Bi2Se3. Phys. Rev. Lett. 2009, 103, 246601. [Google Scholar] [CrossRef]
- Stebunov, Y.V.; Aftenieva, O.A.; Arsenin, A.V.; Volkov, V.S. Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer. ACS Appl. Mater. Interfaces 2015, 7, 21727–21734. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Naturforsch. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Chen, S.; Bylinkin, A.; Wang, Z.; Schnell, M.; Chandan, G.; Li, P.; Nikitin, A.Y.; Law, S.; Hillenbrand, R. Real-Space Nanoimaging of THz Polaritons in the Topological Insulator Bi2Se3. Nat. Commun. 2022, 13, 1374. [Google Scholar] [CrossRef]
- Li, L.L.; Xu, W.; Peeters, F.M. Optical conductivity of topological insulator thin films. J. Appl. Phys. 2015, 117, 175305. [Google Scholar] [CrossRef]
- Lu, H.; Dai, S.; Yue, Z.; Fan, Y.; Cheng, H.; Di, J.; Mao, D.; Li, E.; Mei, T.; Zhao, J. Sb2Te3 topological insulator: Surface plasmon resonance and application in refractive index monitoring. Nanoscale 2019, 11, 4759. [Google Scholar] [CrossRef]
- Chernikov, A.S.; Tselikov, G.I.; Gubin, M.Y.; Shesterikov, A.V.; Khorkov, K.S.; Syuy, A.V.; Ermolaev, G.A.; Kazantsev, I.S.; Romanov, R.I.; Markeev, A.M.; et al. Tunable Optical Properties of Transition Metal Dichalcogenide Nanoparticles Synthesized by Femtosecond Laser Ablation and Fragmentation. J. Mater. Chem. C 2023, 11, 3493–3503. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Reinhardt, C.; Evlyukhin, E.; Chichkov, B.N. Multipole Analysis of Light Scattering by Arbitrary-Shaped Nanoparticles on a Plane Surface. J. Opt. Soc. Am. B 2013, 30, 2589. [Google Scholar] [CrossRef]
- Hsu, C.; Frisenda, R.; Schmidt, R.; Arora, A.; Vasconcellos, S.M.; Bratschitsch, R.; der Zant, H.S.J.; Castellanos-Gomez, A. Thickness-Dependent Refractive Index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. Adv. Opt. Mater. 2019, 7, 1900239. [Google Scholar] [CrossRef]
- Kabashin, A.V.; Meunier, M. Synthesis of Colloidal Nanoparticles during Femtosecond Laser Ablation of Gold in Water. J. Appl. Phys. 2003, 94, 7941. [Google Scholar] [CrossRef]
- Blandin, P.; Maximova, K.A.; Gongalsky, M.B.; Sanchez-Royo, J.F.; Chirvony, V.S.; Sentis, M.; Timoshenko, V.Y.; Kabashin, A.V. Femtosecond Laser Fragmentation from Water-Dispersed Microcolloids: Toward Fast Controllable Growth of Ultrapure Si-Based Nanomaterials for Biological Applications. J. Mater. Chem. B 2013, 1, 2489. [Google Scholar] [CrossRef]
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef]
- Lin, H.; Xu, Z.-Q.; Cao, G.; Zhang, Y.; Zhou, J.; Wang, Z.; Wan, Z.; Liu, Z.; Loh, K.P.; Qiu, C.-W.; et al. Diffraction-Limited Imaging with Monolayer 2D Material-Based Ultrathin Flat Lenses. Light Sci. Appl. 2020, 9, 137. [Google Scholar] [CrossRef]
- Alfieri, A.D.; Motala, M.J.; Snure, M.; Lynch, J.; Kumar, P.; Zhang, H.; Post, S.; Bowen, T.; Muratore, C.; Robinson, J.A.; et al. Ultrathin Broadband Metasurface Superabsorbers from a van Der Waals Semimetal. Adv. Opt. Mater. 2023, 11, 2202011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermolaev, G.A.; Vyslanko, I.S.; Tselin, A.P.; El-Sayed, M.A.; Tatmyshevskiy, M.K.; Slavich, A.S.; Yakubovsky, D.I.; Mironov, M.S.; Mazitov, A.B.; Eghbali, A.; et al. Broadband Optical Properties of Bi2Se3. Nanomaterials 2023, 13, 1460. https://doi.org/10.3390/nano13091460
Ermolaev GA, Vyslanko IS, Tselin AP, El-Sayed MA, Tatmyshevskiy MK, Slavich AS, Yakubovsky DI, Mironov MS, Mazitov AB, Eghbali A, et al. Broadband Optical Properties of Bi2Se3. Nanomaterials. 2023; 13(9):1460. https://doi.org/10.3390/nano13091460
Chicago/Turabian StyleErmolaev, Georgy A., Ivan S. Vyslanko, Andrey P. Tselin, Marwa A. El-Sayed, Mikhail K. Tatmyshevskiy, Aleksandr S. Slavich, Dmitry I. Yakubovsky, Mikhail S. Mironov, Arslan B. Mazitov, Amir Eghbali, and et al. 2023. "Broadband Optical Properties of Bi2Se3" Nanomaterials 13, no. 9: 1460. https://doi.org/10.3390/nano13091460
APA StyleErmolaev, G. A., Vyslanko, I. S., Tselin, A. P., El-Sayed, M. A., Tatmyshevskiy, M. K., Slavich, A. S., Yakubovsky, D. I., Mironov, M. S., Mazitov, A. B., Eghbali, A., Panova, D. A., Romanov, R. I., Markeev, A. M., Kruglov, I. A., Novikov, S. M., Vyshnevyy, A. A., Arsenin, A. V., & Volkov, V. S. (2023). Broadband Optical Properties of Bi2Se3. Nanomaterials, 13(9), 1460. https://doi.org/10.3390/nano13091460