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Abstract: Bioactive calcium phosphate ceramics (CaPs) are one of the building components of the
inorganic part of bones. Synthetic CaPs are frequently used as materials for filling bone defects in
the form of pastes or composites; however, their porous structure allows modification with active
substances and, thus, subsequent use as a drug carrier for the controlled release of active substances.
In this study, four different ceramic powders were compared: commercial hydroxyapatite (HA), TCP,
brushite, as well as HA obtained by wet precipitation methods. The ceramic powders were subjected
to physicochemical analysis, including FTIR, XRD, and determination of Ca/P molar ratio or porosity.
These techniques confirmed that the materials were phase-pure, and the molar ratios of calcium
and phosphorus elements were in accordance with the literature. This confirmed the validity of the
selected synthesis methods. CaPs were then modified with the antibiotic clindamycin. Drug release
was determined on HPLC, and antimicrobial properties were tested against Staphylococcus aureus.
The specific surface area of the ceramic has been demonstrated to be a factor in drug release efficiency.

Keywords: calcium phosphates; ceramics; hydroxyapatite; brushite; drug delivery system; antibiotic;
clindamycin

1. Introduction

The ability to achieve targeted therapy as well as sustained and controlled release of
the drug is possible through the use of drug delivery systems (DDSs). It is a hot spot in the
medical field understood as a combination of drug and carrier, where the drug is loaded
inside or on the surface of the carrier by chemical or physical methods [1]. In general, drug
carriers are understood as safe tools for transporting molecules for nutraceutical, pharma-
ceutical, and cosmetic applications [2]. In recent years, many inorganic nanomaterials such
as gold nanoparticles [3–5], carbon nanotubes [6–8], and quantum dots [9–11] have been
extensively studied for drug delivery. In the context of bone tissue regeneration, ceramic
carriers based on bioactive calcium phosphates (CaPs) are of great interest. One of the
advantages of ceramic carriers is their low toxicity. Most CaPs have good biocompatibility,
biodegradability, as well as biological stability [12]. Furthermore, the variety of ceramic
materials as well as the methods of their synthesis make it possible to adjust the size and
structure of the grains. It is therefore possible to adjust these parameters for drug loading,
for example, in the nanometer size [13]. Figure 1 presents the principle of ceramic drug
carrier operation. The diffusion of drugs and other active substances through the pores of
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ceramics depends on their concentration gradient and solubility. The porosity of the ceramic
carrier itself, as well as the specific surface area and size, affect drug diffusion [14,15].
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The existence of CaPs in bones was discovered in 1769, and since 1900 active research
has been carried out to synthesize them for medical applications such as bone defect
fillers, apatite pastes, and composite materials for implants [16–19]. In the structure of
CaPs are present PO4

3− and HPO4
2− ions found in bone and tooth-building minerals, and

H2PO4
− ions, which are formed only in acidic reaction environments. They are mostly

poorly water-soluble salts of the tri-basic orthophosphoric acid H3PO4 and dissolve well
in acids [20]. There are several types of CaP, which differ in the molar ratio of calcium
and phosphorus (Ca/P). This also influences the properties of these ceramic materials.
A lower Ca/P ratio corresponds to more acidic and relatively water-soluble phases [21].
Calcium phosphates occur in the CaO–P2O5 arrangement or, if they contain OH− ions, in
the arrangement CaO–P2O5–H2O. Table 1 summarizes synthetic CaPs relevant to medical
applications, along with their names, Ca/P molar ratio, and chemical formulae [22,23].

Table 1. Synthetic calcium phosphates relevant to medical applications.

Calcium Phosphates in the CaO-P2O5 Arrangement

Abbreviation Systematic Name Mineralogical Name Chemical
Formula

Molar Ratio
Ca/P

CP Calcium metaphosphate – Ca(PO3)2 0.5
C2P Calcium pyrophosphate – Ca2P2O7 1.0

C3P, TCP Tricalcium phospahte Whitlockite Ca3(PO4)2 1.5
C4P, TTCP Tetracalcium phosphate – Ca4(PO4)2O 2.0

Calcium Phosphates in the CaO-P2O5-H2O Arrangement

Abbreviation Systematic Name Mineralogical Name Chemical
Formula

Molar Ratio
Ca/P

MCPA Calcium dihydrogenphosphate – Ca(H2PO4)2 0.5

MCPM Calcium dihydrogenphosphate
monohydrate – Ca(H2PO4)2 · H2O 0.5

DCPD Dicalcium phosphate dihydrate Brushite CaHPO4 · 2 H2O 1.0
DCPA Dicalcium phosphate anhydrous Monethite CaHPO4 1.0
OCP Octacalcium phosphate – Ca8H2(PO4)6 · 5 H2O 1.333

HA, HAp, OHAp Pentacalcium hydroxide
triphosphate Hydroxyapatite Ca10(PO4)6 · 2 H2O 1.667
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Currently, hydroxyapatite (HA) and tricalcium phosphate (TCP) are widely used as
implant materials [24,25]. HA is the most well-known and widespread phase and has
a Ca/P ratio of 1.67. It represents the mineral part of natural bone, which consists of 70% of
just this inorganic material [26]. TCP has a Ca/P ratio of 1.5 and occurs in two polymorphic
varieties (high-temperature α-TCP and low-temperature β-TCP). α-TCP is produced at
temperatures above 1125 ◦C, while β-TCP is formed at temperatures below 1125 ◦C [27].
In contrast to α-TCP, β-TCP is thermodynamically stable in biological environments and
within the normal temperature range. α-TCP exhibits better and faster solubility than
β-TCP, and for this reason, the low-temperature variety has found wider application in
medicine and dentistry [28,29]. Furthermore, also of interest in the context of applications
where the implant is to be replaced by newly formed bone over time is brushite (DCPD).
The main difference between DCPD and HA is its solubility in body fluids, in which
DCPD is 100 times more soluble than HA. For this reason, brushite biomaterials are
resorbable in vivo and will start faster, and this aspect also affects the increase in porosity
of such a biomaterial over time, which allows surrounding tissues to grow into it [30,31].
An undeniable advantage of CaPs in the context of their use as biomaterials, including drug
carriers, is their biocompatibility, as they do not induce inflammation or other negative
reactions. Moreover, some of them exhibit bioactivity (e.g., HA), affecting the proliferation
and adhesion of bone-forming cells—osteoblasts [32–34]. The bioactivity of ceramics is
related to the processes of degradation and release of ions from the material. As a result
of this phenomenon, the local concentration of Ca and P ions increases, which stimulates
the formation of new apatite layers and bone minerals on the surface of the material. They
also affect the expression of osteoblast differentiation markers, such as BMPs, COL1, ALP,
BSP, and OCN [29–32]. The interaction between ceramics and osteoblasts depends on the
geometry of the material and is improved if the surface of the phosphate–calcium is charged
or polarized. Therefore, for the successful application of the materials, attention should also
be paid to their resistance to both ultraviolet and X-rays. The application of the materials
depends on their resistance to aging, including but not limited to radiation [35–39]. X-rays
promote the decarboxylation of the collagen side chain, which in turn negatively affects the
electrostatic bonding between the phosphate groups in CaP and the carboxylate groups of
the protein side chains [40].

In the following work, four calcium phosphate ceramic powders were modified with
clindamycin using the physical sorption method. Clindamycin is an antibiotic of the
lincosamide group [41]. It has a broad spectrum of activity that includes both Gram-
positive bacteria (including many strains of MRSA) and anaerobic bacteria. The function
of this drug antibiotic is to block the synthesis of bacterial proteins [42]. Clindamycin is
most often used in complaints of bacterial infection of the oral cavity or teeth or bacterial
infection of bones [43,44]. Hence, the authors decided to select this specific drug for ceramic
phase modification in this study. Considering the properties of this drug, it is significant
that the authors have also previously used it to modify hydroxyapatite-reinforced hydrogel
materials [45]. In this study, using high-performance liquid chromatography (HPLC), the
drug release rate was determined, and the antimicrobial properties of the carriers against
Staphylococcus aureus ATCC 29213 were determined. The clean powders were subjected to
physicochemical analysis, including X-Ray diffraction analysis (XRD), Fourier-transform
infrared spectroscopy (FTIR), or Ca/P molar ratio determination. No other literature
describing identical ceramic-drug combinations was found.

2. Materials and Methods
2.1. Materials

All reagents used for ceramics s-1.67 and 1.5 syntheses, i.e., the sodium phosphate
dibasic (Na2HPO4), calcium acetate monohydrate (Ca(CH3CO2)2 · H2O), and ammo-
nia water (NH4OH, 25%) were purchased from Sigma-Aldrich (Darmstadt, Germany).
The commercial hydroxyapatite identified in the publication as c-1.67 was also from
Sigma-Aldrich (Darmstadt, Germany). The reagents for the brushite ceramics, i.e., dis-
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odium hydrogen phosphate dihydrate (Na2HPO4 · 2H2O) and calcium nitrate tetrahydrate
(Ca(NO3)2 · 4H2O), were purchased from Sigma-Aldrich (Darmstadt, Germany). The mo-
bile phase in the HPLC was a combination of acetonitrile from Honeywell (Seelze, Germany)
and KH2PO4 from DOR-CHEM (Krakow, Poland). The reagents necessary for the deter-
mination of the Ca/P molar ratio were HNO3 and HCl from Stanlab (Lublin, Poland),
Bi(NO3)3, triethanolamine, as well as KOH from Sigma-Aldrich (Darmstadt, Germany),
and disodium edetate from Warchem (Warsaw, Poland). The drug selected for powder
modification was clindamycin hydrochloride from Sigma-Aldrich (Darmstadt, Germany).
Demineralized water purified with Hydrolab model HLP 5sp was used for all solutions.

For biological research, the bacteria Staphylococcus aureus ATCC 29213 (American Type
Culture Collection, Manassas, VA, USA) was purchased. Bacteria were cultured in Mueller–
Hinton Broth from Merck (Darmstadt, Germany). Resazurin was from Merck (Darmstadt,
Germany), and phosphate-buffered saline (PBS) was from Oxoid (Basingstoke, UK).

2.2. Ceramic Synthesis

Four nanopowders were selected for this study. Three of them were obtained by
wet precipitation methods with different Ca/P molar ratios in the range of 1.0–1.67, and
a commercial hydroxyapatite designated as c-167 was selected as a reference powder. The
material synthesis methods are described below.

The hydroxyapatite-structured powder, designated as s-1.67, was synthesized by
wet precipitation at boiling temperature. Firstly, solutions of Na2HPO4 (0.32 mol/L) and
(CH3COO)2Ca (0.128 mol/L) were prepared. Distilled water and a specified volume of
Na2HPO4 were poured into a three-necked flask. Then, using 25% ammonia water, the pH
of the system was brought to 11. After the entire system was brought to the boiling point of
the ingredients, (CH3COO)2Ca was dropped in at a rate of 1 drop/sec. After the synthesis
was completed, the ceramic suspension was cooled and allowed to stand for 24 h. After
this time, the precipitate was washed thoroughly with distilled water, brought to neutral
pH, and freeze-dried. This method was also described in a previous paper [46,47].

The ceramic powder, marked as 1.5, was obtained in an analogous manner to s-1.67 by
reducing the volume of the added acetate salt accordingly. The ratios of salt solutions were
calculated to obtain a Ca/P ratio of 1.5.

The brushite powder, designated as 1.0, was synthesized using the wet precipita-
tion method. In the first step, 500 mL each of aqueous solutions of Na2HPO4 · 2H2O
and Ca(NO3)2 · 4H2O were prepared, where the concentration of both solutions was
0.5 mol/L. The Na2HPO4 · 2H2O solution was placed on a magnetic stirrer, and the pre-
pared Ca(NO3)2 · 4H2O solution was dropped in at a rate of 1 drop per second. The pH of
the solution was maintained between 6 and 6.5 with 25% ammonia water. The resulting
ceramic suspension was aged for 24 h, washed thoroughly with distilled water to a neutral
pH, and freeze-dried.

2.3. Determination of Calcium and Phosphorus Content

The molar ratio of Ca and P (Ca/P) plays a crucial role in the formation of the calcium
phosphate phase. Furthermore, the value of the ratio is one of the indicators suggesting
which ceramic material the powder under examination belongs to [48]. The determinations
were conducted in accordance with the Polish standard for phosphorus based on PN-80/C-
87015 for calcium based on PN-97/R-64803 [49,50].

Phosphorus content (wt. %) was determined according to Formula (1):

%P =

(
M1·V1·100%
m·V2·1000

)
2.29

(1)

where M1 is a P2O5 content in the analyzed sample determined from the standard curve
[mg/mL]; V1—volume of volumetric flask used for phosphorus extraction [mL]; m—sample
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mass used for extraction [g]; V2—volume of solution collected for analysis [mL]; and 2.29—
conversion factor from P2O5 to P.

Calcium content (wt. %) was determined according to Formula (2):

%Ca =

(
0.04008·V1·c·V2

m·V3

)
·100 (2)

where V1 is a volume of EDTA solution consumed during calcium titration [mL].; c—titer
of EDTA solution set to calcium standard solution [mol/L]; V2—volume of sample solution
[mL]; m—sample mass used for extraction [g]; and V3—volume of solution collected for
calcium titration [mL].

Calcium and phosphorus determinations were repeated for all powders. Each mea-
surement was performed in triplicate.

2.4. X-ray Diffraction Analysis

In order to perform structural characterization of the ceramic powders obtained, X-ray
diffraction analysis was performed using a Malvern Panalytical Aeris X-ray diffractometer
with PIXcel1D-Medipix3 detector (Malvern, UK) with Cu Kα radiation. All measurements
were carried out at a step size of 0.0027166◦ 2θ over a range of 2θ from 10 to 100◦ with
a time per step of 340.425 s.

2.5. Fourier-Transform Infrared Spectroscopy Analysis

Individual functional groups in ceramic powders were identified using Fourier-
transform infrared spectroscopy (FT-IR). The analysis was carried out under room conditions
using a Nicolet iS5 91 FT-IR spectrometer equipped with an iD7 ATR attachment (Thermo
Scientific, Loughborough, UK) in the range 4000–400 cm−1 (32 scans at 4.0 cm−1 resolution).

2.6. Specific Surface Area and Porosity Studies

Specific surface area (SSA) and porosity studies were performed using Auto-sorb-
1 Quantachrome flow apparatus, with nitrogen as an adsorbate, at −196 ◦C. Prior to
the measurements, all samples were preheated and degassed under vacuum at 200 ◦C
for 18 h. The specific surface area of the samples was determined with the multipoint
Brunauer–Emmett–Teller (BET) analysis method. The Brunauer–Emmett–Teller (BET)
theory explains the physical adsorption–desorption of gas molecules on a solid surface
and represents the basis for the analysis of measured data. Micropore pore volume and
micropore surface were determined with the t-plot method, while the mesopore pore
volume and mesopore surface were determined with the Barret–Joyner–Halenda (BJH) and
density-functional theory (DFT) methods. DFT methods allow one to obtain reliable pore
size distributions over the complete range of micro- and mesopores (for a recent review on
the application of DFT methods for pore size analysis). Methods for pore size analysis based
on DFT and molecular simulation are now widely used and are commercially available
for many important adsorptive or adsorbent systems and are featured in a standard by
the International Organization for Standardization (ISO). The calculation of the pore size
distribution function f(W) is based on a solution of the general adsorption isotherm (GAI)
equation, which correlates the experimental adsorption isotherm N(p/p 0) with the kernel
of the theoretical adsorption or desorption isotherms N(p/p 0,W).

2.7. Preparation of Ceramic Powders with Drug

The antibiotic selected for powder modification by physical sorption was clindamycin
hydrochloride. Ceramic weights of 0.5 g each were inserted into 40 mL of the drug
solution at a concentration of 2 mg/mL for 5 days. The samples were stored in tightly
closed containers at 4 ◦C. After this time, the samples were centrifuged with a laboratory
centrifuge (MPW Med. Instruments MPW—260R) for 15 min, at 4 ◦C with a speed of
5500 rpm, and then the solution was decanted from the precipitate. The remaining powders
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were dried and submitted for release kinetics studies. Samples of ceramic powders after
drug modification were similarly marked as C/1.0, C/1.5, C/c-1.67, and C/s-1.67.

2.8. Kinetic Release Studies of Antibiotic

The prepared drug-modified ceramic powders were submitted for release kinetics
studies. Powder samples of 0.5 g each were incubated in 15 mL PBS over a period of
14 days. To examine the amount of clindamycin released from the samples, the collected
incubation fluids were analyzed by high-performance liquid chromatography (HPLC). The
principle of HPLC for the determination of released clindamycin is schematically presented
in Figure 2.
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Determination of drug released from the powders was carried out on a Shimadzu
HPLC system (Kyoto, Japan) consisting of an SPD-M20A UV-Vis photodiode array detector,
a CTO-20AC column oven, and an LC-20AD pump. The antibiotic was separated on
a C18 reversed-phase Kinetex® column (250 mm × 4.6 mm) with a pore size of 100 Å and
a particle size of 5 µm. The system was operated isocratically with a mobile phase consisting
of a mixture of acetonitrile and KH2PO4 (45:55 v/v) at pH = 7.5 at a flow rate of 1.0 mL/min
(30 ◦C). The sample was injected through a 20 µL sampling loop. The experiment was
conducted with the detector set at 210 nm. Each time, prior to measurement, 1 mL of
the collected incubation fluid was centrifuged at 18,000 rpm at 4 ◦C using an MPW-260R
(Warsaw, Poland).

2.9. Morphology Analysis

Scanning electron microscopy (SEM) imaging was performed using a Jeol 5510LV
with an EDS IXRF system detector (Freising, Germany) to determine the structure of the
powders and their shape. The powders were attached to a carbon tape and then coated
with nano-gold. EDS microanalysis was also performed for clindamycin-modified C/s-1.67,
determining elements such as Au, Ca, P, and Cl.

2.10. Antimicrobial Activity of Clindamycin-Modified Ceramic Powders

The antimicrobial activity of clindamycin-modified ceramic powders against
Staphylococcus aureus ATCC 29213 was assessed by the determination of the minimum
inhibitory concentration (MIC) by classic broth microdilution and resazurin reduction
assay [51]. The bacteria were cultured in Mueller–Hinton Broth to mid-log phase, and
the inoculum was standardized to 0.5 McFarland (5 × 105 CFU/mL) as recommended by
EUCAST guidelines [52]. The clindamycin-modified ceramic powders were distributed
into wells of a 96-well plate (Nunc, Rochester, NY, USA) containing 100 µL Mueller–Hinton
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Broth (MHB) to form a series of 2-fold dilution. Then the bacterial suspension (100 µL) was
added to each well, and plates were incubated for 24 h at 37 ◦C. Control wells contained
bacterial culture alone (positive control of bacterial growth), and wells with MHB alone
(negative control) were included. In addition, a reference antibiotic, clindamycin, in the
range of 256–0.001 µg/mL was included. Four independent experiments were performed in
triplicate. Then in the classic method, the MIC was read manually as the lowest concentra-
tion of antimicrobial agent that completely inhibits the growth of the organism as detected
by the unaided eye. Whereas to assess the MIC99 on the basis of microbial metabolic activity
prior to reading, the 20 µL of 0.02% resazurin in sterile PBS was added to each well and left
for 3 h. Fluorescence was measured at an excitation wavelength of 560 nm and emission
wavelength of 590 nm using a SpectraMax® i3x Multi-Mode Microplate Reader (Molecular
Devices, San Jose, CA, USA).

3. Results
3.1. Determination of Calcium and Phosphorus Content

The Ca/P molar ratios for the powders and the determined elemental contents of
calcium and phosphorus (wt. %) are presented in Table 2. The determined Ca/P molar
ratios differ slightly from the assumed values. In the case of s-1.67 and c-1.67, the values
obtained are very close to the stoichiometric HA, which is assigned a value of 1.67. The
slight discrepancies that can be observed for all synthesized samples may be due to the
incorporation of foreign cations or anions into the atomic structure of the ceramics. The
reactions were carried out in an air atmosphere; hence, substitutions of, for example,
phosphate groups by CO3

2− ions are possible.

Table 2. Calcium and phosphorus content and Ca/P molar ratio in powders (mean ± SD).

Sample Ca Content (wt. %) P Content (wt. %) Ca/P Molar Ratio

s-1.67 37.51 ± 0.65 17.26 ± 0.19 1.67
c-1.67 37.46 ± 0.38 17.27 ± 0.12 1.67

1.5 36.93 ± 0.32 18.87 ± 0.23 1.51
1.0 37.81 ± 0.41 27.91 ± 0.34 1.04

3.2. X-ray Diffraction Analysis

Figure 3 exhibits the XRD patterns of the ceramic nanopowders tested. The diffrac-
tograms of s-1.67 and c-1.67, according to International Center for Diffraction Data File Card
No. 01-080-7085, were assigned to the hexagonal structure of hydroxyapatite (P63/m space
group). Both samples s-1.67 and c-1.67 show the peak with the highest intensity at 31.74◦ of
two theta (211), assigned which corresponds to the main peak of the HA hexagonal struc-
ture. The XRD results obtained demonstrate that the developed hydroxyapatite synthesis
method enables the preparation of crystalline and phase-pure hydroxyapatite [50,53].
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Based on the analysis of the diffractogram of the sample labeled 1.5, the highest
intensity is shown by the peak at 31.02◦ of two theta (0210), which is characteristic of the
rhombohedral structure of β-TCP (R3c space group) [54]. The XRD result was found to be
consistent with the phases listed in the ICDD database File Card No. 04-008-8714 assigned
to β-TCP.

The reflections obtained for the sample designated 1.0 in the XRD study show charac-
teristic peaks assigned to the monoclinic structure of brushite (Ia space group). Analysis
of the obtained diffractogram shows characteristic peaks at two theta equal to 11.60◦

(020) and 23.39◦ (040), which are in accordance with the File Card No. 00-011-0293 in the
ICDD database.

The degree of crystallinity (Xc) of samples was calculated using OriginPro 2023 soft-
ware. The crystalline fraction was determined by integrating the areas under the crys-
talline (Pc) and amorphous (Pa) diffractions pattern and calculated in accordance with the
following formula:

Xc =
Pc

Pa + Pc
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The obtained results have shown significant differences in crystallinity among samples.
The degree of crystallinity of s-1.67 and c-1.67 were 41.5% and 48.6%, respectively. On
the other hand, the highest crystallinity was observed for sample 1.5 (82.8%), whereas the
crystallinity degree of sample 1.0 was 75.1%. On this basis, it can be concluded that the
method produces phase-pure and crystalline [55,56].

3.3. Fourier Transform Infrared Spectroscopy Analysis

The comparative analysis of the FT-IR spectra of the ceramic nanopowders is shown
in Figure 4. Both the spectrum of sample s-1.67 and c-1.67 show characteristic peaks for
hydroxyapatite. The spectrum at 1018 cm−1 can be identified as asymmetric P–O stretching
vibrations. The peaks at 559 cm−1 and 599 cm−1 have been attributed to triple degenerate
O–P–O stretching modes in PO4

3−. The peaks of the characteristic functional groups
present in the synthesized hydroxyapatite overlap with the FT-IR spectrum of commercial
hydroxyapatite [47,57].
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On the FT-IR spectrum for the sample marked 1.5, peaks at a wavenumber of
541 cm−1 and 603 cm−1, attributed to triply degenerated asymmetric bending vibrations
for PO4

3−, are visible. Spectral analysis revealed the presence of triply degenerated asym-
metric stretching of the orthophosphate groups of PO4

3−, as evidenced by distinct bands in
the range 1015–1116 cm−1. Furthermore, at 944 cm−1 and 979 cm−1, symmetric stretching
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is also attributed to the PO4
3− group. The FT-IR spectral analysis performed indicates that

the phase obtained was β-TCP [54,58–60].
FT-IR spectral analysis of sample 1.0 indicates that the vibrations at 1118 and

1203 cm−1, which are characteristic of the brushite phase, can be attributed to the mono-
hydrogen phosphate ion HPO4

2−. The peaks at 572 cm−1, 983 cm−1 and 1052 cm−1 cor-
respond to the PO4

3− group. Furthermore, the spectral band occurring between 3153
and 3532 cm−1 is attributed to the OH- group. Moreover, the characteristic peak at
1645 cm−1 is assigned to HOH [56,61–63].

Based on the FT-IR spectral analysis of the ceramic nanopowders, the presence of
characteristic functional groups was identified, and consequently, it was confirmed that
monophasic compounds are obtained as a result of the developed methods for the synthesis
of calcium phosphate ceramics.

3.4. Specific Surface Area and Porosity Studies

Importantly, the morphological properties such as high surface area, large pore vol-
ume, and narrow particle size distribution are well suited for the application of nano-
encapsulation in drug delivery systems. The results obtained are presented in Table 3.

Table 3. N2 physisorption-derived parameters characterizing the obtained samples (SSA—specific
surface area).

Sample SSA
[m2/g]

Porosity

Pore Size Distribution
DFT [nm]

Pore Volume
Macropores [cm3/g]

Pore Area Micropores
Vt [m2/g]

s-1.67 53 4, 10, 11, 13 0.345 3.52
c-1.67 64 11, 13, 17, 20, 22, 24, 28 0.27 0

1.5 61 8, 10, 11, 13 0.304 0
1.0 32 4, 7, 8, 10 0.21 4.94

Experimental adsorption and desorption isotherms of nitrogen (77 K) are presented
in Figure 5b,d,f,h. The investigated powders 1.0 and s-1.67 reveal mesoporosity and
microporosity structure, while samples 1.5 and c-1.67 reveal mesopore structure, while
microporosity is 0 for both samples. This is supported by the shape of the isotherms, which
are of type IV (according to IUPAC classification). The specific surface area is related to
mesoporosity changes from 64 to 61 m3/g for c-1.67 and powder 1.5 to 53–32 m3/g for
powder s-1.67 and sample 1.0. The higher the specific surface area, the better drug delivery
systems can be developed on the basis of this powder.
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Analysis of Figure 5a,c,e,g with pore volume distribution profiles exhibit single narrow
peaks for sample 1.0 and powder s-1.67 with a maximum at 8–12 nm, while powder 1.5
shows more broad peaks at a similar range of 8–13 nm, and the most blurred peaks at
widest range represents commercial sample c-1.67 at 15–30 m.

3.5. Kinetic Release Studies of Antibiotic

The amount of clindamycin in mg/mL released from the powder samples is presented
in Figure 6.
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The release results for C/1.0, C/1.5, and C/s-1.67 are presented. For commercial
hydroxyapatite C/c-1.67, the amount of drug released was too small to be determined. As
can be observed, after a 14-day immersion, the largest amount of drug is released from
brushite (C/1.0), and the amount is practically double that for synthetic hydroxyapatite
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(C/s-1.67). In the case of TCP (C/1.5), clindamycin was only able to be determined on day
three after immersion in PBS.

Chromatograms for C/s-1.67 powder (after 24 h and 14 days) are presented in Figure 7.
The peak for clindamycin was determined at retention times of 5727 (day 1) and 5604
(day 14). The results indicate that the release of clindamycin is dependent on time and
type of powder. It was indicated that during incubation, clindamycin content in the liquid
increased continuously for 14 days. It was also observed that the smaller the specific surface
area of the powder, the faster the drug is released (see Section 3.4 Specific Surface Area and
Porosity Studies).
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(b) after 14 days of incubation.

Finally, it is important to clarify the amount of drug selected for powder modifica-
tion, a solution with a concentration of 2 mg/mL. The recommended therapeutic dose of
clindamycin for an adult (about 70 kg) starts at 150 mg. However, this is the conventional
amount that should be taken orally. This means that a sizable portion of the active ingredi-
ent will already be degraded in the gastrointestinal tract, and in addition, much of it will
undergo general distribution throughout the body. As a result, only a small part of the
drug will reach the affected area. Drug carriers being developed for targeted therapy allow
the active ingredient to act directly at the site where the therapeutic effect is expected. This
involves a significant reduction in the amount of antibiotic the patient should receive. The
dose can be increased or decreased depending on individual needs.

3.6. Morphology Analysis

Scanning electron microscopy imaging was carried out to determine the grain shape
of each powder (Figure 8). A high similarity was observed between s-1.67 and 1.0. In
both cases, the powder took on a flocculent shape in small agglomerates. The flocculent
structure can also be seen in the case of commercial hydroxyapatite c-1.67. The most regular,
granular shape was observed for TCP 1.5.

Using EDS microanalysis, the presence of individual elements in C-s-1.67 was deter-
mined (Figure 9). Au was measured considering the necessity of sputtering the surface of
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the samples with gold. Ca and P because these are the main components of the calcium
phosphates prepared within this publication. Cl, on the other hand, was determined, in
a manner of speaking, to validate the presence of the antibiotic in the modified powder.
The molecular formula of clindamycin hydrochloride, as was used during this study, is
C18H34Cl2N2O5S. Hence, if chlorine ions are present on the EDS mapping, it means that
they come directly from the bound drug.
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In the case of Ca and P (blue and red colors), overlapping elemental maps were
observed. This is due to the connections between these elements in the structure of calcium
phosphates. Small green signals from chlorine were observed, distributed fairly parallel
across the entire volume of the test powder. This suggests an effective drug modification
and confirms the presence of the antibiotic in the ceramics.

3.7. Antimicrobial Activity of Clindamycin-Modified Ceramic Powders

It was demonstrated that all tested ceramic powders containing clindamycin exhibited
strong antibacterial activity towards Staphylococcus aureus, which gives evidence that the
antibiotic stayed active and in the range of biologically effective concentrations. Whereas
materials lacking this antibiotic did not exhibit antimicrobial activity. The MIC values
(Table 4) for the C/s-1.67 and C/1.0 ceramic powders were 12.5 µg/mL, which is 100-
fold higher than the MIC value of clindamycin, while the C/1.5 ceramic powder showed
a higher MIC value equal to 25 µg/mL, and the highest MIC (weakest antimicrobial
potential) was observed for the C/c-1.67 ceramic powder. The MIC value for the reference
antibiotic, clindamycin, was 0.125 ug/mL, which confirms the susceptibility of the selected
strain to clindamycin [52].

Table 4. Minimum inhibitory concentration (MIC) of ceramic powders against Staphylococcus aureus.

Ceramic Powder MIC [µg/mL]

s-1.67 >25,600

C/s-1.67 12.5

c-1.67 >25,600

C/c-1.67 50

1.5 >25,600

C/1.5 25

1.0 >25,600

C/1.0 12.5

Clindamycin 0.125

To address the question of whether the obtained clindamycin-modified powders exhibit
antibacterial activity, we have also evaluated MIC99 values, defined as a concentration that
causes a 99% reduction in the metabolic activity of bacterial cells. Resazurin reduction assay
is reported as a non-cytotoxic assay to monitor the metabolic activity and proliferation of
live bacterial cells. Resazurin, a non-fluorescent water-soluble dye, is reduced to highly
fluorescent resorufin in proportion to the metabolic activity of a bacterial cell population [51].
As illustrated in Figure 10, the lowest MIC99 value for all tested clindamycin-loaded ce-
ramics was shown for C/1.0 powder (18.83 ± 1.23 µg/mL), which indicates the strongest
antimicrobial activity. We have shown that C/s-1.67 (40.42 ± 5.80 µg/mL) had significantly
higher antimicrobial properties compared to the C/c-1.67 (97.74 ± 15.50 µg/mL).

Statistical analyses and graphs for biological studies were performed using GraphPad
Prism version 9.1.0 for Windows (GraphPad Software, San Diego, CA, USA). Data were
compared using one-way ANOVA with Dunnett’s post hoc test.
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4. Discussion

In conclusion, ceramic materials with different morphologies have been successfully
synthesized by wet precipitation methods. A number of analyses carried out allow us
to conclude that the selected methods of synthesis by the wet precipitation technique
make it possible to obtain ceramic powders of TCP, brushite, and hydroxyapatite. This
fact was confirmed by FTIR analysis, where the main functional groups present in the
materials were assigned, as well as by XRD analysis, in which the obtained diffractograms
were related to the corresponding data sheets. All powders were phase-pure; however,
the observed background spectrum suggests that they are only partially crystalline and
partially amorphous. In addition, hydroxyapatite s-1.67 was compared with its commercial
counterpart, c-1.67. Presumably, high-temperature calcination would enable materials
with a higher degree of crystallinity to be obtained. This study also confirmed that based
on the same substrates, changing only their starting ratios and not changing the process
conditions, it is possible to obtain both synthetic hydroxyapatite s-1.67 and TCP 1.5. This
is an important fact considering the different properties of the two materials and their
potential applications.

The chosen physical sorption method was successful in modifying ceramic powders.
This is evidenced by the presence of chlorine ions derived from the drug as detected by
SEM-EDS. However, it can be concluded that the materials, especially the commercial
c-1.67, do not show high clindamycin loading efficiency. A relationship was observed
between the specific surface area of the ceramic and drug release. The smaller the specific
surface area, the faster the drug is released. This is in accordance with literature reports,
as a larger pore surface area would result in a more efficient migration of the drug into
the interior of the ceramic and, thus, a later, longer drug release [64]. Drug adsorption
on ceramic powders is mainly accomplished by forming bonds between Ca2+ ions on the
ceramic surface and oxygen atoms in the drug molecule [65]. This study exhibits that the
degree of crystallinity of the tested nanopowders influences the loading capacity of the
active substance, as well as the amount of drug released. For sample 1.0, with a degree of
crystallinity of 75.1%, the highest concentration of clindamycin was obtained. However,
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a different correlation was observed for sample 1.5, where the degree of crystallinity is the
highest, while less drug was released.

Determining the pore size distribution, the smallest pores observed were for brushite,
a ceramic with a Ca/P ratio of 1.0, and synthetic hydroxyapatite s-1.67. A biological
correlation was observed for these powders, as these two powders demonstrated the highest
antimicrobial ability. Naturally, pure clindamycin exhibited the greatest antimicrobial
ability against Staphylococcus aureus, while the ceramic powders themselves not modified
with the drug did not demonstrate it at all. A close correlation was observed between the
results obtained for the biological tests on antimicrobial capacity and the results for drug
release from HPLC.

The studies presented in this manuscript confirm the effect of specific surface area
on the nature of modification of porous powders by physical sorption, as well as the
subsequent rate of drug release. Considering that the s-1.67 and 1.5 powders were based
on the same method, the same conditions were maintained during synthesis, and only the
concentration of initial substrates differed, it suggests that this aspect also affects the size
of the specific surface area since a slight difference was observed between the values for
these powders. However, it can be concluded that ceramic porous materials have been
successfully synthesized as a drug carrier for targeted therapy.
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