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Abstract: Although the fabrication of controllable three-dimensional (3D) microstructures on sub-
strates has been proposed as an effective solution for SERS, there remains a gap in the detection
and manufacturability of 3D substrates with high performance. In this study, photolithography is
adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al2O3 as the
dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain
mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the cou-
pling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is
consistent with the simulation results obtained using the finite element method. The performance
of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe
molecules with detection limits of 10−11 M and 10−9 M, respectively. The substrate exhibits high
hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and
long-term stability in practical applications. Allowing for the consistency of the composite substrate
in the preparation process and the high reproducibility of the test results, it is considered to be
promising for mass production.

Keywords: SERS; 3D; photolithography; coupling; light-capturing; hydrophobicity; reproducibility;
reproducibility

1. Introduction

Surface-enhanced Raman scattering (SERS) has developed rapidly in the past few
decades due to its high sensitivity, which makes it widely applicable to structural anal-
ysis [1,2], adsorption interface surface state research [3,4], biomolecular interface orien-
tation [5,6], etc. At present, there are two perspectives from which the mechanism of
SERS enhancement is explored: the chemical enhancement mechanism and the physical
enhancement mechanism. The former relies mainly on the chemical interactions between
those atoms on the surface of the substrate and adsorbed molecules to manipulate the
distribution of electron density, which can provide 10–100 enhancement factors [7]. The
latter is attributable mainly to the enhancement of the local electric field on the metallic
surface as a result of surface plasmon resonance (SPR), which is effective in significantly
enhancing the Raman signal by up to 108 times [8,9]. One of the most common ways to
implement EM is the collective oscillation of free electrons of noble metals (Au, Ag, and
Cu), which is usually performed in nanoparticle and tip gaps. This phenomenon is referred
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to as LSP [10,11]. Another solution to achieving this purpose is that free electrons are made
to oscillate in the form of longitudinal waves along a metallic or dielectric layer, which is
called SPP [12].

According to the above theory, the structure of nanoparticles and nano-films is essential
for SERS. Since these structures are supported by the substrate, the microstructure of the
substrate is equally important. 3D substrates have now attracted extensive attention
for research because of their unique advantages in the number of hot spots, molecular
trapping and optical properties [13]. To date, such 3D structures as nanoflowers [14],
nanobowls [15], nanoantennas [16], nanopillars [17], and multilayered nanoparticles [18]
have been widely explored. For periodic SERS substrates, however, low reproducibility
and uncontrollable morphology make it difficult to mass produce these substrates. The
three-dimensional substrates obtained by using chemical reduction methods are usually
disadvantaged by aggregation effects. Moreover, due to the harsh conditions of the reaction,
even slight environmental changes can have a significant impact on the quality of the
substrate [19,20]. Zhang et al. applied a cost-effective yet efficient chemical method to
construct a high-sensitivity polygonal silicon pyramid [21,22]. However, the uniformity
of its metallic film was insufficient due to the annealing process. In addition, despite a
significant improvement of uniformity for such pricey substrates as Klarite substrate with
inverted pyramid array produced by Renishaw Diagnostics [23,24], their low sensitivity
does not meet the demanding requirements in experiments due to their single mode of
electromagnetic enhancement. Therefore, it is still necessary to produce a 3D substrate
that can be mass-produced at low cost to achieve high sensitivity, excellent homogeneity
and long-term stability. Active functional plasmonic technology has gained significant
attention in recent years due to its potential for advanced sensing applications. For instance,
Zhao et al. have demonstrated an innovative approach by designing a pyramidal nano-
cavity structure that contains gold nanoparticles [25]. This unique structure is rich in
electromagnetic hot spots, providing an excellent optical capture capability. In various
studies, it has been suggested that photon scattering is increased when using patterned
sapphire substrate (PSS), resulting in enhanced light extraction [26]. Kim et al. utilized
wafer-level LSPR substrates by depositing Au films on patterned sapphire substrates and
employed the prepared substrates for detecting biomolecules by observing LSPR shifts [27].
However, for 3D substrates such as PSS, a single metal film or particle cannot provide
higher Raman enhancement. Nonetheless, the light-trapping ability of PSS is critical for
SERS substrates and holds greater significance.

In some recent studies, it has been shown that the coupling effect of LSP and SPP
can make difference in the dispersion relation and resonance spectrum [28]. Wind et al.
calculated the coupling relationship between LSP and SPP by adopting the dipole model
and mirror field theory [29]. Subsequently, the nanoparticle-metal film structure was
widely applied due to its greater capability to excite stronger electric fields and generate
wavelength shifts compared to single nanoparticle application [30,31]. However, in practice,
there are high requirements for the horizontal spacing of nanoparticles and the spacing
between nanoparticles and metallic films for SERS substrate. Due to the limitations of
current technology, it is difficult to apply control on spacing in the plane, which restricts
the improvement of sensitivity. However, it is feasible to achieve the vertical electric field
enhancement of LSP and longitudinal wave coupling of SPP for those 3D substrates with
controllable morphology [32]. In the meantime, the electromagnetic enhancement mode
generated by this coupling places even more demanding requirements on the uniformity
and stability of 3D substrates. We noted that in the process of LED preparation, some
enterprises had produced PSS with a neat 3D shape such as the GaN substrate by combining
photolithography and chemical etching. The patterned substrate as obtained by using the
photolithography method shows a definite morphology and a consistent periodic array,
which ensures the consistent quality of the substrate at the time of mass production. A new
method to carry this out is to produce a nanoparticle–metal film and construct dielectric
layer composite structures on PSS, which is conducive to improving the performance
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of higher quality 3D substrates through stronger electromagnetic enhancement. This
ensures the reproducibility and long-term stability of industrial production. In addition, 3D
structure is usually accompanied by the improvement of hydrophobicity, which improves
the detection of solution molecules.

In the present study, a facile method to mass produce 3D Ag NPs/Au/Al2O3 com-
posite substrates is proposed. The periodic pyramid-like arrays on the PSS as obtained by
the lithographic method enable the three-dimensional distribution of Ag NPs in multiple
directions and across a larger surface area. In addition, a richer “hot spot” is provided by
the cavity gaps caused by the 3D structure. Al2O3 is treated as the dielectric layer due to
its capability to remove the charge disorder of the medium while reducing the spectral
diffusion of excitons. Using the finite element method, the excitation and coupling of LSP
and SPP are demonstrated by simulating the electric field distribution of the substrate. The
composite structure substrate exhibits high hydrophobicity and light-harvesting ability,
with the limits of detection reaching 10−11 M and 10−9 M for R6G and TB, respectively.
Apart from that, it is capable of self-cleaning and recycling. The high uniformity and high
reproducibility evidenced by the experimental results illustrate the applicability of this
composite substrate in industrial mass production.

2. Materials and Methods
2.1. Materials

Ethanol (C2H6O, 99.7%) and acetone (CH3COCH3, 99.5%) were purchased from
Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin, China). Rhodamine 6G (R6G, MW = 479.02)
was sourced from Shanghai Zhanyun Chemical Co., Ltd. (Shanghai, China) Moreover,
toluidine blue (TB, MW = 373.97) was obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China).

2.2. Preparation of SPP Composite Structures Composed of Au/Al2O3/Ag NPs

The surface of the PSS was initially cleaned using ultrasonic waves. Then, acetone
and ethanol were used in turn to clean the substrate in a cleaning machine for 20 min, and
rinsed with deionized water (DI water) to protect the surface from contamination. At a
low pressure of 7 × 105 Pa and a current of 55 A, a uniform and continuous layer of 50 nm
thick Au was deposited on PSS at a rate of 0.1 Å/s. Next, 3 nm of Al was deposited on the
surface of the Au film given a current of 75 A, the same gas pressure and a rate of 0.8 Å/s.
Oxygen was continuously infused into the closed vacuum reactor, and the air pressure was
adjusted to 1 × 103 Pa. The Au/Al PSS structure was placed in the reactor for 10 min to
fully oxidize the surface Al film and form the first layer of Al2O3 film through a reaction
with oxygen. Subsequently, 3 nm of Al was deposited again under the same conditions,
and the oxidation process was repeated to form a second layer of Al2O3 film. Finally, 3 nm
of Ag was deposited on the surface of Al2O3 at the pressure of 7 × 105 Pa and a current
of 60 A. Under these conditions, dense silver hemispherical nanoparticles formed on the
surface of the multilayer film. The experimental process is shown in Figure 1.

2.3. Characterization of Substrate Morphology and SERS Detection

The three-dimensional structure, multilayer film structure and nanoparticles on the
substrate surface were observed under SEM (Zeiss GeminiUltra-55, Baden-Württemberg,
Germany). The chemical composition of the samples was determined using EDS. Taken
as the probe molecule, R6G was dissolved in ethanol to obtain the solutions of different
concentrations (10−6–10−11 M). Then, with the substrate split into several samples for
testing, 2 µL of R6G solution was taken for titration and analyzed by Raman spectrometer
(Horiba HR Evolution, Kyoto, Japan) after drying. As for TB aqueous solution, the same
method (532 nm wavelength laser, single sampling time 2 s, 0.048 mW power) was adopted
for SERS signal detection.
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like microstructure.

3. Results and Discussion
3.1. Structure Characterization

In order to verify whether the PSS composite substrate was of satisfactory quality, its
morphology was characterized by SEM. Figure 2a,b show the surface and cross-section
of the substrate, respectively. The substrate consists of pyramid-like units arranged in
an orderly manner, each having the same parameters. Figure 2c shows the profile of
the smallest element on the composite substrate. It can be seen from the figure that
Au and Al2O3 form a dense and continuous film on the surface. The interface between
Au film, Al2O3 film and the Al2O3 prepared twice can be observed by magnifying the
fault. Figure 2d,e show the distribution of silver hemispherical nanoparticles on the
substrate surface and the histogram of their size distribution. Among these 100 samples
of nanoparticles, the range of 12–18 nm is the main interval of diameter distribution,
which basically shows a typical Gaussian distribution. Due to the silver hemispherical
nanoparticles obtained by using the thermal evaporation method, the integrity of the
microstructure and its overall uniformity are ensured, which allows the ideal hot spots to
be excited. EDS is used to map the surface of the composite substrate. The composition of
various elements (O, Al, Ag, and Au) is depicted in Figure 2f. The continuous distribution of
elements reaffirms the uniformity of silver nanoparticles and films, indicating the successful
construction of the composite structure.

3.2. Simulation and Theory

In order to further reveal the coupling mechanism of LSP and SPP, the models of Ag
NPs, Au film and interval layer (Al2O3) are constructed, as shown in Figure 3a. The LSP
in the composite system results from the superposition of LSP as produced by individual
metallic nanoparticles, which SPP propagates along the metallic surface. When LSP matches
SPP in the conditions of excitation, Ag NPs induce a mirror dipole with an opposite
charge in the metallic film. The redistribution of induced charges makes the potential
difference more significant. The electromagnetic field is severely constrained in the gap.
Due to the near-field coupling effect, the surface of metallic film frees charges to form a
significantly enhanced electric field. The existence of the interval layer is effective not only
in restricting the coupling distance between LSP and SPP, but also in preventing the loss of
electromagnetic field in the air gap.
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Figure 2. (a) SEM top view and (b) front view. The inset is an enlarged view of the part. (c) The
cross-sectional SEM image of the composite SERS substrate. (d,e) SEM images and size distribution
histograms of Ag NPs. The inset is an enlarged view of the part. (f) EDS element diagram of
different elements.
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Figure 3. (a) LSP-SPP coupling model. (b–e) Electric field distribution for different structures at
532 nm wavelength of exciting light: (b) PSS and Au/Al2O3, (c) PSS and Ag NPs, (d) PSS and Ag
NPs/Au, (e) PSS and Ag NPs/Au/Al2O3. (f) The variation in electric field enhancement (E/E0)
and the Raman intensity of R6G at 613 cm−1 for the different structures. (g) Bottom cavity array
electric field.

In order to better understand the electric field distribution of the PSS composite struc-
ture and to establish whether the LSP and SPP are successfully coupled, the finite element
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method is used to perform simulation. The parameters were based on the SEM charac-
terization results. The electric field distribution is simulated for 4 different combinations,
respectively. By comparing the electric fields shown in Figure 3b,c, it can be found that
the SPP fails to be excited when there are only metallic and interval layers on the PSS, as
indicated by the weak electric field. This is because the wave vector of SPP is higher than
the wave vector of light at all times given the same frequency [33]. As a result, it cannot
be excited directly by the incoming light in the air, whereas Ag NPs lead to the uneven
distribution of charges under the disturbance of external electromagnetic waves. That is
to say, under the electromagnetic excitation of the incident light, the electronic oscillation
frequency is identical to that of the excitation light, which meets the condition of momen-
tum matching of LSP. Moreover, the structure exhibits strong hot spots. When Ag NPs are
combined with Au film, the system becomes asymmetric, with the corresponding mirror
image dipoles generated in the Au film. Due to the coexistence of Ag NPs and dipoles, there
are a large number of opposite charges accumulating between the gold film and the Ag NPs.
This gives rise to a potential difference. Then, a strong electromagnetic field is generated
in the gap. As an interval layer, Al2O3 controls the coupling distance and divides the Ag
NPs and Au films into cavity-like structures [34]. As a result, there is a stronger “hot spot”
in Figure 3e than in Figure 3d. As shown in Figure 4f, the Raman test results of different
structures are compared with the enhancement factors obtained by electric field simulation.
It can be found that the simulation results are highly consistent with the experimental
results, suggesting that the substrate performance can be significantly improved by the
coupling of LSP and SPP. In addition, the micrometer-tapered cavities and micrometer
trumpet-shaped cavities demonstrate outstanding electrical and optical properties. When
SPP is conducted along the metal surface in the form of waves, the electromagnetic wave
conducted from adjacent structures to the bottom interferes with each other due to the
difference in phases, thus resulting in the enhancement of the electric field. The periodic
arrays create a series of cavities at the base of the pyramid-like structures, enhancing the
substrate’s light-harvesting capabilities and leading to an expansion of “hot spots” [35,36].
This is manifested as the reduced light reflectivity of the substrate and the focusing electric
field caused by the concentration of incident light at the bottom, according to Figure 3g.
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Figure 4. (a) Raman spectra of R6G on the composite SERS substrate with different concentrations
(10−6 M to 10−11 M). (b) SERS intensity at 613 cm−1 for R6G as a function of the molecular concentra-
tion. (c) Raman spectrum of 10−9 M R6G on SERS substrate and that of 10−3 M R6G on Si substrate.
(d) 15 Raman spectra of R6G at a concentration of 10−6 M are randomly collected from the substrate.
(e) The average Raman intensity of R6G at 613 cm−1 from 12 different batches of the SERS substrates.
(f) Local uniformity test results of 100 sampling points within the rectangle.
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3.3. Performance Exploration

To further explore the surface-enhancing ability of the substrates, the R6Gs of different
concentrations (10−11–10−6 M) were titrated on the substrates and Raman tests were
performed. As shown in Figure 4a, the intensity of the SERS signal is proportional to the
concentration of R6G, with distinct signal peaks observed at 613, 774, 1183, 1364, 1510 and
1651, respectively. When the concentration of R6G declines to 10−11 M, the signal is low
in intensity and the peaks are observable only at 613 and 774, indicating that the limit of
substrate detection is reached. In order to ensure the reliability of the data, 10 sampling
points were taken from the samples with different R6G concentrations. Additionally, a
linear relationship between the signal intensity and concentration was fitted, as illustrated
in Figure 4b.

A quantitative analysis of substrates is conducted using computational enhancement
factors:

EF =

ISERS
NSERS
IRaman
NRaman

(1)

where ISERS denotes the intensity of the peak of 10−9 M R6G at 613 cm−1 on the composite
SERS substrate; IRaman indicates the intensity of 10−3 M R6G at the same wavelength on
the silicon substrates as shown in Figure 4c; NSERS and NRaman represent the number of
probe molecules accumulating in the laser spot on the composite SERS substrate and the
silicon substrates, respectively. 2 µL of R6G is titrated on PSS substrate and silicon sub-
strate, respectively. Then, the formed dispersion area and laser spot area are measured and
calculated. The final EF [37] is calculated to be 7.2 × 107, as detailed in the supplement to
this paper. In addition to quantitative analysis, the widely used SERS substrates are also
required to have excellent uniformity and reproducibility. To ensure the accuracy of results,
15 sampling points are randomly selected on the R6G substrate of a 10−6 M concentra-
tion. The Raman signal corresponding to each concentration is taken as the mean value of
15 sampling points. According to Figure 4d, the data is highly consistent. Furthermore, the
reproducibility of the substrate during preparation is evaluated by collecting the charac-
teristic peaks from 12 batches of samples, as depicted in Figure 4e. The adjacent sampling
points are selected on the substrate, and the color of the rectangular range represents the
results of the Raman test. To assess the uniformity of the substrate, 100 sampling points
are selected on the substrate, with the color depth in the rectangular range indicating the
size of the peak value. As can be seen from Figure 4f, the substrate exhibits high local
uniformity. The results mentioned above indicate that the mass-produced PSS composite
substrate can preserve the high uniformity of the SERS signal, thereby guaranteeing high
reproducibility despite minor manufacturing errors.

As a quinoneimine dye containing multiple chromophores and auxochromes,
TB [38,39] is commonly applied as a biochemical probe in cells. Clinically, it has been
adopted to diagnose such symptoms as oral cancer and diphtheria, playing an important
role in the nucleic acid test. To evaluate the clinical viability of the SERS substrate, TB
is employed to evaluate the substrate’s efficacy in detecting toxic substances. 2 µL of TB
aqueous solutions of different concentrations (10−9–10−4) are titrated on the substrate,
and the SERS spectra are shown in Figure 5a. There is a reduction in the intensity of the
characteristic Raman peak of TB (1630 cm−1) when the concentration of solution decreases
given the detection limit of about 10−9 M. As shown in Figure 5b, there is a typical linear
relationship between the intensities of Raman peaks at different concentrations. According
to Figure 5c, a comparison is drawn in the characteristic peak intensities of the above 15 TB
spectra. The blue dot represents the relative intensity of the peak at 1630 cm−1, whereas
the red dashed line indicates the average intensity with a relative standard deviation (RSD)
of 7.17%, as shown in Figure 5d. These results demonstrate that this substrate applies to
the detection of probe molecules, as well as biochemical and medical detection.
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3.4. Hydrophobicity Characterization and Self-Cleaning Test

As suggested in studies, substrates with high hydrophobicity can be used to enrich
solutes when solutions are detected, which is beneficial to the detection of trace molecules
in liquids. According to Figure 6a, the liquid of the same volume to be tested on different
hydrophobic substrates shows different evaporation modes under the limitation of tension,
and there is a significant difference in the remaining area of the test object on the substrate.
By collecting more test objects in a more confined area, the acquisition of optical and electri-
cal signals can be facilitated, which is conducive to Raman detection [40,41]. Figure 6b,c
illustrate the hydrophobicity characterization of the substrate. Compared with the planar
Al2O3 of the same composite structure, the PSS composite structure shows significant
hydrophobicity. Based on the characterization results, the 3D microstructure proves to
be effective in imparting hydrophobicity to the initially hydrophilic surface. In addition,
high hydrophobicity is essential for the detection of oil-water mixtures and the long-term
storage of substrates, which makes it suitable for practical applications.
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The self-cleaning capability of the substrate not only reduces the production cost but
also prevents the destruction of the substrate’s surface structure during manual cleaning
processes. Figure 7a shows the decreasing trend displayed by the signal intensity of the
characteristic peak for the 10−6 M solution of R6G under intense UV irradiation over time.
It can be seen from the figure that R6G continues degradation over a period of 150 min
and reaches the detection limit of Raman intensity after one period. According to the
Langmuir-Hinshelwood theory, the UV photons and photo-induced carriers on PSS can be
used to control the surface degradation reaction. Take the photolysis process of R6G as an
example. The self-cleaning process of the substrate is evidenced in two aspects. On the one
hand, it has been demonstrated previously that Ag NPs can catalyze the degradation of
small organic molecules [42]. On the other hand, the microstructure of PSS can significantly
improve the light-capturing ability. As shown in Figure 7b, a comparison is performed in
the reflectivity of the plane Al2O3 composite structure and the PSS composite structure to
the light in the ultraviolet band. The latter improves the utilization of light, thus promoting
the self-cleaning process of R6G molecules. To further evaluate the self-cleaning capability
of the substrate, three cycles of R6G molecular detection and three self-cleaning cycles are
performed on the same substrate, as shown in Figure 7c. The reused substrate exhibits
a comparable detection capability to the brand-new substrates, and there is a significant
reduction in the intensity of background fluorescence, as shown in Figure 7d. The above
results can be applied to measuring a broader range of molecules, thus providing a valuable
reference for substrate recycling.
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3.5. Outlook and Development

The 3D PSS composite substrate proposed in this article has great potential for appli-
cation in fields such as biological detection, environmental monitoring, chemical analysis,
etc. Therefore, how to increase the applicability of the substrate is the focus of future work.
Uddin et al. used a metal–dielectric–metal structure instead of a single metal layer on a
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typical SPCE glass prism used in fluorescence microscopy, which can significantly improve
the sensitivity of SPCE based fluorescence microscopy systems, which will help enhance
single molecule detection [43]. Rai et al. used solidus as a reducing and capping agent to
obtain Ag NPs, Au NPs, and Ag-Au nanocomposites, and constructed a plasma coupling
model for spacer, activity, and extended activity nanoconfigurations, which played an
important role in the development of SPCE bioplatform sensors [44]. Similarly, building
molecular monitoring platforms on SERS substrates with excellent properties will have
great development prospects. Additionally, in the experiment, it is possible to construct
a core–shell structure using ZIF-8 and Au NPs to form a MOF hybrid. Using these MOF
structures to further improve the SERS platform can achieve system specific recognition
and improve monitoring sensitivity.

4. Conclusions

To conclude, the current study proposes a novel method for constructing a 3D com-
posite structure on PSS, and the electric field distribution of the structure is theoretically
simulated to demonstrate its enhanced LSP-SPP coupling mechanism, which effectively
enhances the electric field. Moreover, the EF of the composite SERS substrate is close to
7.2 × 107. According to SEM and EDS results, the substrate shows controllable and uniform
morphology in the production process. When the concentration of the R6G solution reaches
as low as 10−11 M, the SERS signal remains detectable, and the detection limit is 10−9 M
for the TB. The substrate displays excellent hydrophobicity, with the liquid contact angle
reaching 120◦. In the self-cleaning test, the substrate can be reused after 150 min of UV
irradiation, maintaining low background fluorescence after three cycles. Due to the high
reproducibility and uniformity of the substrate as revealed in the above experiments, it can
be mass-produced in practice.
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