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Abstract: Inorganic chiral nanoparticles are attracting more and more attention due to their pecu-
liar optical properties and potential biological applications, such as bioimaging, therapeutics, and
diagnostics. Among inorganic chiral nanoparticles, gold chiral nanostructures were demonstrated
to be very interesting in this context, with good physical chemical stability and also the possibility
to decorate the surface, improving biomedical application as the interaction with the bio-systems.
Gold (Au) nanostructures were synthesized according to a seed-mediated procedure which envisages
the use of cetyltrimethylammonium bromide (CTAB) as the capping agent and L- and D-cysteine to
promote chirality. Au nanostructures have been demonstrated to have opposite circular dichroism
signals depending on the amino acid enantiomer used during the synthesis. Then, a procedure to
decorate the Au surface with penicillamine, a drug used for the treatment of Wilson’s disease, was
developed. The composite material of gold nanoparticles/penicillamine was characterized using
electron microscopy, and the penicillamine functionalization was monitored by means of UV-Visible,
Raman, and infrared spectroscopy, highlighting the formation of the Au–S bond. Furthermore,
electron circular dichroism was used to monitor the chirality of the synthesized nanostructures and it
was demonstrated that both penicillamine enantiomers can be successfully bonded with both the
enantiomers of the gold nanostructures without affecting gold nanoparticles’ chirality. The effective
modification of nanostructures’ surfaces via penicillamine introduction allowed us to address the
important issue of controlling chirality and surface properties in the chiral nano-system.

Keywords: gold nanoparticles; chiral nanostructures; D-penicillamine; spectroscopic characterization;
circular dichroism

1. Introduction

Chirality is a physical–chemical phenomenon characterizing all the natural and bi-
ological systems from the intramolecular to the supramolecular scale [1]. Basically, two
enantiomers of a chiroptical compound are characterized by the capability to rotate, in
the opposite direction, the versus of rotation of circularly (clockwise or anticlockwise)
polarized incident light [2]. This feature confers them peculiar optical activities, such as
circular dichroism, circularly polarized luminescence, and non-linear optics [3]. Biological
and physiological processes are basically stereoselective, being based on chiral molecules
and/or chiral building blocks (amino acids, sugars) [4]. Taking inspiration from this aspect,
in recent years, researchers have focused their attention on the synthesis of chiral inorganic
nanostructures with the aim to combine the outstanding (bio)technological applications
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of nanoparticles (NPs) with the intriguing and multifaceted potentials of chiral systems.
Thus, chiral inorganic NPs should provide similarities with the molecular building blocks
normally present in the organisms in a completely bio-inspired frame being, so that they are
suitable for different biological and biomedical applications, such as imaging, diagnostics,
biosensing, and therapeutics [5].

Not less important, NPs can be easily functionalized by surface ligands and the in-
troduction on NPs’ surface of specific ligands of biological interest plays a major role in
the subsequent bio-applications [6]. Surface ligands, in fact, affecting surface properties,
can be used to improve interactions with the biosystems (such as cells and bacteria) pro-
viding higher biocompatibility, cellular uptake and stability [7], and improving the final
application. For instance, it was demonstrated that the chirality of the structures strongly
influences their biological application [8–10], such as cell differentiation [11] and cellular
uptake [12]. In fact, it is reported that achiral structures decorated with chiral molecules
are internalized in the cells with a marked enantio-specificity [13,14]. More recently, as well
as the nanoparticles functionalized with organic chiral molecules, it was demonstrated that
chiral-selectivity rules the cellular uptake of chiral inorganic structures, too [15].

More generally, among inorganic nanoparticles, plasmon metal nanoparticles and
their synthesis and functionalization are a hot topic in physical sciences, chemistry, and
in material science [16,17]. The interest in these nanostructures rises from the manifold
and multi-faceted applications where they can be applied: devices for energy harvest-
ing [18], active platforms for environmental issues [19,20], opto-electronic devices [21–23],
sensors [24–26], and biological applications [27]. Among the plasmonic materials, gold
nanoparticles (AuNPs) show several advantages if compared with other plasmonic nanos-
tructures. For example, they are stable, they can be obtained by means of biological
approaches [28], they are not toxic to human beings and animals [29], and they can be
functionalized by different compounds and molecules for pharmacological tests [30], as
well as sensor and opto-electronic applications [31,32].

In addition to the straightforwardness of functionalizing AuNPs with interesting
biomolecules, the naked gold nanoparticles can be efficiently uptaken by living cells [33].
The AuNPs’ cellular internalization is influenced by the nanoparticle dimension, by the
shape, by the surface charge [33–35], and by the molecules and biomolecules used to
decorate the AuNPs’ surface [36]. For synthetizing chiral AuNPs, it is possible to list three
main approaches: the synthesis of metal nanoparticles with intrinsic chiral morphology,
the complexation of chiral molecules and nanoparticles, and the chiral arrangement of
nanoparticles [37–39].

In the present work, Au nanoparticles with intrinsic chiral morphology mainly based
on rhombic dodecahedrons were synthesized and were further functionalized using a chiral
molecule that was demonstrated as very interesting from a pharmacological point of view,
that is, penicillamine (Scheme 1).
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Scheme 1. Chemical structures of the two enantiomers of penicillamine (A) D enantiomer and
(B) L enantiomer.

Penicillamine is used for the treatment of Wilson’s disease, a clinical condition that
derives from an over-accumulation of copper in the human body, in particular in the liver
and brain [40]. It causes several and severe health problems such as rheumatoid arthritis,
hepatic impairment, and neurological disorders. Penicillamine is reported as a heavy
metal antagonist drug and D-penicillamine is largely used to chelate copper ions forming
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D-penicillamine: Cu = 2:1 complex [41]. As typically observed when chiral drugs are used,
the L enantiomer of penicillamine’s effects on human health are considered dangerous;
L-penicillamine is not clinically used due to its strong inhibition of pyridoxine-dependent
enzymes, leading to neurotoxicity in animal experiments [42], and D-penicillamine is
exclusively used for the treatment of Wilson’s disease and other clinical treatments.

Therefore, in this contribution, we prepared chiral gold nanostructures exploiting a
seed-mediated procedure to produce gold nanostructure seeds further treated in a growth
solution containing L- and D-cysteine to drive the formation of chiral helicoidal nanos-
tructures [39,43–45]. Then, a capping agent exchange easy procedure was developed to
introduce D-penicillamine, preserving the chirality of the starting nanoparticles.

2. Materials and Methods
2.1. Materials

Hexadecyltrimethylammonium bromide (CTAB, 98%), L-ascorbic acid (AA, 99%),
sodium borohydride (NaBH4, 98%), gold(III) chloride trihydrate (HAuCl4·3H2O, 99.9%),
L-cysteine hydrochloride monohydrate (98%), D-cysteine hydrochloride monohydrate
(95%), and D-penicillamine (98–101%) were purchased from Merck and used as received
without any further purification. All solutions were prepared in ultrapure water
(18 MΩ cm).

2.2. Chiral AuNP Synthesis Procedure

Chiral AuNPs were synthesized according to a seed-mediated reported procedure [44,45]
with slight modifications. In a typical experiment, a first spherical Au seed was prepared
by mixing saturated (or at least above the critical micellar concentration) CTAB solution
and 10 mM HAuCl4 in 7.75 mL final volume under gentle stirring. Then, 0.8 mL of 10 mM
NaBH4 was added dropwise and the reaction was left for 3 h at room temperature. In
the second step, growth envisaged the dispersion of 0.2 mL of 10 mM HAuCl4 in 1.6 mL
of saturated CTAB aqueous solution and was then diluted in 8 mL of ultrapure water. A
total of 0.95 mL of L-AA (50 mM) and 0.01 mL of the first seed solution were finally added
to the mixture, which was left for 45 min and then washed twice via centrifugation at
5000 rpm for 5 min. The produced seeds (Au@CTAB) were redispersed in CTAB (1 mM).
The third step of the proposed synthesis procedure allowed the fabrication of helicoidal
chiral AuNP, L-AuNH@CTAB, and D-AuNH@CTAB: 0.1 mL of HAuCl4 (10 mM) was
dispersed in 1.6 mL of saturated CTAB solution and then diluted in 7.9 mL of ultrapure
water. Then, 0.95 mL of L-AA (0.1 M) and 0.01 mL of 0.1 mM Cys (L or D) were added.
Finally, 0.1 mL of the second Au seeds was added. The reaction was carried out at 37 ◦C for
30 min, then chiral AuNPs were centrifuged twice (5000 rpm, 5 min) and concentrated in
2 mL of 1 mM CTAB solution to be stored at room temperature for further experiments.

2.3. D- and L-Penicillamine Functionalization of Chiral Gold Nanostructures

1 mL of L-AuNH@CTAB and D-AuNH@CTAB, in four different experiments, was
mixed with 1 mL of 10 mM D- and L- penicillamine aqueous solution in order to have a
large excess of penicillamine in the mix to induce a capping agent exchange, substituting
CTAB with penicillamine to obtain L- and D-AuNH capped with penicilammine. The
reaction was carried out under gentle agitation (100 rpm) for 12 h at room temperature.
The penicillamine excess was removed via centrifugation (5000 rpm, 5 min), and then L-
and D-AuNH capped with penicillamine were washed twice in ultrapure water and finally
resuspended in 1 mL as the final volume for the characterization.

2.4. Characterization Methods

The samples were investigated by means of UV-Vis spectroscopy (Cary5000, Agilent);
Electronic Circular Dichroism (ECD) spectra were recorded using a JASCO (J-1500 CD
Spectrometer) with a scanning speed of 20 nm min−1; the electrostatic charge of the nanopar-
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ticles was monitored by means of a Malvern Panalytical Nano ZS Zetasizer instrument
(Malvern Panalytical Limited, Malvern, UK).

Scanning electron microscopy (SEM) images were recorded on a FEI-Q FEG250 instrument.
Transmission electron microscopy (TEM) was used for the morphological characteri-

zation of the synthesized nanostructures (Jeol Jem-1011 microscope operating at 100 kV
and equipped with a high-contrast objective lens, a W filament as an electron source,
with an ultimate point resolution of 0.34 nm). For TEM samples’ preparation, 300-mesh
amorphous carbon-coated Cu grids were dipped in water solutions of the AuNPs and the
measurements were carried out after water evaporation.

Raman spectroscopy was used to monitor the capping exchange from
Hexadecyltrimethylammonium bromide (CTAB) to penicillamine: a 785 nm laser (power
0.125 mW cm−2) was used as a luminous source. For this characterization, the samples
dispersed in water were drop-casted on silicon substrates and, after the solvent evapo-
ration, Raman spectra with 50 scans and 10 s of integration were recorded using a 10×
objective. Raman spectroscopy was performed using a microRaman Xplora Horiba. Fourier
Transform Infrared characterization (FTIR) with ATR tool [46] was used for monitoring the
presence of CTAB and penicillamine: the AuNPs were deposited directly on ATR crystal
via drop-casting and 64 scans in the range 3400–800 cm−1 were acquired for each sample
using a Perkin-Elmer Spectrum One spectrophotometer.

3. Results and Discussion
3.1. Spectroscopic and Morphologic Characterization of L- and D-AuNH@CTAB

With the final aim of producing gold nanostructures that were intrinsically chiral but
also further decorated with a chiral ligand of biological interest, i.e., penicillamine [40],
chiral AuNPs were fabricated by exploiting a slightly modified method reported in the
literature [39,44]. The procedure is a two-step seed-mediated protocol which guaranteed
the formation of nanostructures with high-Miller-index surfaces characterized by innate
chirality due to the atomic arrangement and by enantioselective interactions with chiral
ligands [47]. Therefore, during the last step of the synthesis procedure, the adding of
L-Cys and D-Cys and the formation of Au–S bonds further contribute to the chirality of the
synthesized nanoparticles.

The structures obtained after the second step growth, Au@CTAB, were characterized
by means of UV-Vis spectroscopy and circular dichroism (black lines in Figure 1a,b). The
plasmonic peak was centered at about 570 nm and, as was easily predictable, no dichroic
signal was observed.
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Figure 1. (a) UV-Vis spectra and (b) ECD spectra of Au@CTAB seed and chiral AuNPs. Black
line is the absorption spectrum of the Au seeds, blue line is the profile of the plasmonic peak of
L−AuNH@CTAB, and red line is related to D−AuNH@CTAB nanoparticles. (c) g-factor intensity of
L−AuNH@CTAB and D−AuNH@CTAB was monitored during the experiment at 37 ◦C in the last
step of the synthesis procedure.
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Particularly interesting is the new profile and position of the plasmonic peak after the
synthetic procedure in the presence of the two enantiomers of cysteine. The signals, both
for the L-AuNH@CTAB and for D-AuNH@CTAB, are strongly shifted up to 756 nm and the
spectral profile appears very similar for both the obtained nanostructures (blue and red line
in Figure 1a). On the contrary, ECD spectra clearly suggest that a chiral form is induced by
the presence of the two enantiomers of cysteine, and a positive/negative signal is observed
for the D-AuNH@CTAB (red line Figure 1b) and negative/positive for L-AuNH@CTAB
(blue line) [45]. The not perfectly symmetric profile of the ECD spectra of the two chiral
forms is probably a consequence of the L-cysteine (purity ≥ 99%) and D-cysteine (purity
98%) used to promote the chirality in the gold nanostructures. The optical activities of the
two species were monitored during the experiment and an optimum value was observed
after 30 min of the thermal treatment at 37 ◦C in both cases (Figure 1c).

Morphological investigations were performed using SEM and TEM. In particular,
SEM images of both D- and L-AuNH@CTAB (Figure 2a,b) showed multifaced tridimen-
sional structures comprising rhombic dodecahedron shapes in the range 150–300 nm
(Figure S1) [45]. TEM images (Figure S2) confirm the reported morphologies already high-
lighted by SEM, and they appear in good agreement with the data reported by Lee and
co-workers [39,44], which ascribed such structures to nanoparticles with chiral features
induced by the helicoidal geometric patterns.
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Figure 2. SEM images of D-AuNH@CTAB (image (a)) and L-AuNH@CTAB (image (b)).

ζ-potential measurements performed on D-AuNH@CTAB and L-AuNH@CTAB re-
vealed a surface positive charge of 53 mV for both nanostructures due to the presence of
cetrimonium bromide as the capping agent [48]. The typical Raman spectrum of CTAB-
capped AuNPs was obtained for both the gold chiral nanostructures (Figure 3a); the signal
at 190 cm−1 is indeed ascribable to the formation of a Br–Au bond [49]. Furthermore, it
is worth observing that a weak band at about 270 cm−1 is observed both in the case of L-
and D-AuNH@CTAB nanostructures. Such a small signal, almost negligible if compared
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with the contributions of the formation of Au-CTAB adduct, is ascribable to the Au–S
formation [50].
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FTIR spectrum of L-AuNH@CTAB is reported in Figure 3b (black spectrum) and
compared with FTIR spectrum of CTAB (blue line). L-AuNH@CTAB and D-AuNH@CTAB
are completely superimposable. The signals at 2916 cm−1 and 2846 cm−1 are ascribable to
methyl and methylene CH stretching modes arising from CTAB, and the corresponding
bending modes comprise a 1500–1300 cm−1 frequency range (zoom in Figure 3b), confirm-
ing the presence of CTAB as the main capping agent [51]. Additionally, the contribution of
AA on the surface of AuNH is visible. The peaks localized at 1750 cm−1 and 1670 cm−1

are typical of lactone C=O and C=C stretching modes, and even alcoholic C-O stretching
modes are present in the region 1250–1000 cm−1 [52].

3.2. Spectroscopic and Morphologic Characterization of D-Penicillamine-Capped AuNPs

The chiral gold nanostructures were further manipulated in order to functionalize
them by means of the D enantiomer of penicillamine (see Section 2) to obtain L- or
D-AuNH@D-Pen. In fact, as reported in the medical literature, L-penicillamine is not
used as a pharmacological compound since the side effects due to its consumption cannot
be neglected. Nevertheless, the capping exchange was studied even in the presence of
L-penicillamine (L- and D-AuNH@L-Pen) for the better understanding of the effect of
the different chirality of the capping agent on the intrinsic physical chemical features of
the chiral gold nanoparticles. Of course, in both cases, the exchange can be supposed to
be driven by Au–S bond formations due to the presence of the thiol group in the chosen
compounds [45].

After the capping exchange with D-penicillamine, the ζ-potential reveals that two
populations of particles are present: a minority part is represented by AuNPs with a surface
charge of 50.8 mV (about 34% of the total population), and the rest shows an electrostatic
charge of 37.3 mV (about 66%). It suggests that at least a part of CTAB was substituted
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with penicillamine on the AuNPs’ surface, reducing the electrostatic charge on the gold
nanoparticles. Similar results were obtained using L-penicillamine as the capping agent; in
particular, a reduction in the negative charge as a consequence of the CTAB substitution
was observed both for L- and D-AuNH@L-Pen nanoparticles (54.8 mV for a population of
about 31% and 39.4 mV of about 69% of the total population).

As a confirmation of the capping exchange, Raman spectra of both L-AuNH@D-Pen
and D-AuNH@D-Pen show an intense signal at 275 cm−1 typical of the formation of
Au–S interaction [50] (Figure 4a). The band of Au–Br is still evident, even though it is
slightly shifted at lower wave numbers. FTIR spectroscopy clearly confirmed the presence
of penicillamine on the surface of the nanostructures. In fact, Figure 4 panel b reports
the spectra obtained for D-penicillamine (blue line), D-AuNH@D-Pen (red line), and D-
AuNH@CTAB (black line), and the presence of both CTAB and penicillamine is undoubtably
evident. It is interesting to underline that, according to Raman characterization, the
exchange was driven by the Au–S interaction, as expected. The SH stretching modes
localized at 2625 cm−1 and 2550 cm−1 in the penicillamine spectrum undergo a modification
in terms of intensity and position in the D-AuNH@D-Pen spectrum.
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The UV-Vis spectroscopy characterization after the capping exchange (reported for L-
and D-AuNH@D-Pen in Figure 5) suggests that for both cases, the nanoparticles’ population
substantially changes [53]. In fact, the main plasmonic peak appears blue-shifted at about
20 nm, and the other two signals appear at 665 and 520 nm (Figure 5a). This rationale,
that a change in shape and/or dimension of D-penicillamine-capped gold nanoparticles
takes place, was further confirmed with the SEM and TEM micrographs. In fact, after the
capping exchange, it is possible to observe, both in the L- and D-AuNPs’ case, that rhombic-
dodecahedron-shaped structures represent the most relevant nanoparticle population, even
though elongated structures (of about 400–500 nm length) with defined edges appear for
all the samples (Figures 5b,c, S3 and S4).

Upon L-penicillamine exchange, very interestingly, a similar behavior was monitored
by means of the morphological characterization (Figure S5) according to ζ-potential mea-
surements. Indeed, at least two morphologies can be identified as ascribable to the rhombic
dodecahedrons and to more elongated structures. Such an evidence, again, is confirmed
for both the nanoparticles’ enantiomers.

Circular electronic spectra of L-AuNPs and D-AuNPs after the capping exchange
with D-penicillamine (Figure 6) show that the two nanostructures preserve the same
chirality that was observed before the capping exchange. Furthermore, the ECD profiles
of L-AuNH@D-Pen and D-AuNH@D-Pen appear very different: the ECD related to the
D-gold nanoparticles is in complete agreement with the UV-Vis spectrum of the same
nanostructures: two dichroic signals appear at 730 and 665 nm with the respective Cotton
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signals. On the contrary, in the case of L-AuNH@D-Pen, a sharp negative signal located at
730 nm suggests that the chirality of the nano-system is still ruled by the particles’ chirality
and, very appealing, the interaction of D-penicillamine with the AuNPs is influenced by
the gold AuNPs’ chirality.
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Figure 6. ECD spectra of L-AuNH@D-Pen (blue line) and D-AuNH@D-Pen (red line).

It can be argued that the functionalization with the chiral ligand on the surface of the
chiral nanoparticles does not affect the chirality of the nanostructure itself. According to
the literature [44], the chirality of the inorganic plasmonic structures is slightly influenced
by the presence of the organic chiral molecules attached to their surface, so the presence of
L- and D-penicillamine only influences the g-factor profile without modifying the chirality
of the assembly. Additionally, that attachment appears different depending on the chirality
of the AuNPs. This means that by fixing the chirality of the AuNPs, the pharmaceutical
compound, D-penicillamine, can be easily used to decorate their surface to drive eventual
cellular uptake, which will be dependent only on the intrinsic chirality of the nanoparticles,
as reported in the literature [15].
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The capping exchange process was monitored as g-factor variation during the in-
cubation time, and a slight bleaching of the g-factor was observed after the incubation
performed to allow the capping exchange (12 h), in agreement with the literature [44]. In
particular, for L-AuNH@D-Pen, a reduction of about 15% (Figure S6c) was observed after
1 h, then a plateau was reached (Figure S6a red triangles). A similar trend was observed
for D-AuNH@D-Pen, and a reduction of about 18% (Figure S6c) of the initial g-factor was
recorded until reaching the plateau during the monitored reaction time (Figure S6a black
triangles). A slight decrease in the g-factor value upon L-penicillamine exchange with L-
and D-AuNH was also monitored (Figure S6b).

4. Conclusions

In conclusion, we proposed the synthesis of chiral gold nanostructures by means of
a well-established procedure based on a seed-mediated synthesis and the use of a chiral
amino acid, cysteine, to encode intrinsic chirality. Then, we developed an easy procedure
to attach a chiral ligand, L- and D-penicillamine, on the gold surface through Au–S bonds
and partially removing the capping agent (CTAB). The final aim was to preserve the
obtained gold nanostructures’ intrinsic chirality. In fact, the enantioselective biological and
biomedical applications were assessed as stereoselective. In particular, cellular uptake of
chiral inorganic nanoparticles is nowadays well-known and, in this frame, our main goal
was to achieve the functionalization using a specific enantiomer of a molecule of interest
(in this case penicillamine), preserving the AuNPs’ chirality encoded in the first part of
the synthesis procedure. Indeed, L- and D-AuNH capped by penicillamine were deeply
characterized and we demonstrated carrying out the exchange between CTAB and D- and
L-penicillamine while avoiding affecting the overall AuNPs’ chirality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13091526/s1, Figure S1: SEM images of (a) D-AuNH@CTAB
and (b) L-AuNH@CTAB; Figure S2: TEM images of L-AuNH@CTAB (image a) and D-AuNH@CTAB
(image b), Figure S3: SEM images of (a) D-AuNH@D-Pen and (b) L-AuNH@D-Pen, Figure S4:
Some examples of TEM images of D-AuNH@D-Pen (images a, b) and L-AuNH@D-Pen (c, d) are
reported, Figure S5: SEM images of D-AuNH@L-Pen (a and b) and L-AuNH@L-Pen (c and d),
Figure S6: g-factor variation in the capping exchange experiments using (a) D-penicillamine and
(b) L-penicillamine; (c) |g-factor|loss (%) vs. reaction time (hours) (|g-factor|loss = G0−Gt

G0
× 100).

Author Contributions: Conceptualization, S.B., G.G. and L.V.; methodology, S.B., G.G., M.O. and
R.P.; investigation, R.P., M.O., D.V. and C.I.; writing—original draft preparation, M.O. and R.P.;
writing—review and editing, S.B., G.G., J.H., M.R. and L.V.; supervision, G.G.; funding acquisition,
L.V. All authors have read and agreed to the published version of the manuscript.
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knowledges the Research Foundation—Flanders for his Ph.D. fellowship (FWO Grant No 1S45223N).
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