High-Bonding-Strength Polyimide Films Achieved via Thermal Management and Surface Activation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Imidization Degree Change in PI under Fixed Bonding Temperature and Time
3.1.1. Imidization Degree of PI
3.1.2. PI-PI Bonding under Fixed Temperature and Time
3.2. Fixed Imidization Degree (Fully Cured) of the PI under Different Bonding Temperatures and Times
PI-PI Bonding under Different Temperatures and Time
3.3. Fixed Imidization Degree (Fully Cured) of the PI with Ar Plasma Surface Modification and Wetting Treatment
3.3.1. Effect of the Ar Plasma on the PI Surfaces
3.3.2. PI-PI Bonding with the Ar Plasma Surface Modification and Wetting Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Enquist, P.; Fountain, G.; Petteway, C.; Hollingsworth, A.; Grady, H. Low Cost of Ownership scalable copper Direct Bond Interconnect 3D IC technology for three dimensional integrated circuit applications. In Proceedings of the IEEE International Conference on 3D System Integration, San Francisco, CA, USA, 28–30 September 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Gambino, J.; Winzenread, R.; Thomas, K.; Muller, R.; Truong, H.; Defibaugh, D.; Price, D.; Goshima, K.; Hirano, T.; Watanabe, Y. Reliability of hybrid bond interconnects. In Proceedings of the IEEE International Interconnect Technology Conference (IITC), Hsinchu, Taiwan, 16–18 May 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Beyne, E.; Kim, S.-W.; Peng, L.; Heylen, N.; De Messemaeker, J.; Okudur, O.O.; Phommahaxay, A.; Kim, T.-G.; Stucchi, M.; Velenis, D. Scalable, sub 2 μm pitch, Cu/SiCN to Cu/SiCN hybrid wafer-to-wafer bonding technology. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 32.4.1–32.4.4. [Google Scholar] [CrossRef]
- Sukegawa, S.; Umebayashi, T.; Nakajima, T.; Kawanobe, H.; Koseki, K.; Hirota, I.; Haruta, T.; Kasai, M.; Fukumoto, K.; Wakano, T. A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor. In Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 484–485. [Google Scholar] [CrossRef]
- Yoneda, S.; Adachi, K.; Kobayashi, K.; Matsukawa, D.; Sasaki, M.; Itabashi, T.; Shirasaka, T.; Shibata, T. A Novel Photosensitive Polyimide Adhesive Material for Hybrid Bonding Processing. In Proceedings of the IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1 June–4 July 2021; pp. 680–686. [Google Scholar] [CrossRef]
- Ko, C.-T.; Hsiao, Z.-C.; Fu, H.-C.; Chen, K.-N.; Lo, W.-C.; Chen, Y.-H. Wafer-to-wafer hybrid bonding technology for 3D IC. In Proceedings of the 3rd Electronics System Integration Technology Conference ESTC, Berlin, Germany, 13–16 September 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Chidambaram, V.; Lianto, P.; Wang, X.; See, G.; Wiswell, N.; Kawano, M. Dielectric Materials Characterization for Hybrid Bonding. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1 June–4 July 2021; pp. 426–431. [Google Scholar] [CrossRef]
- Lu, C.-H.; Jhu, S.-Y.; Chen, C.-P.; Tsai, B.-L.; Chen, K.-N. Asymmetric Wafer-Level Polyimide and Cu/Sn Hybrid Bonding for 3-D Heterogeneous Integration. IEEE Trans. Electron Devices 2019, 66, 3073–3079. [Google Scholar] [CrossRef]
- Windrich, F.; Malanin, M.; Eichhorn, K.J.; Voit, B.; Lang, K.D. Low-Temperature Photosensitive Polyimide Processing for Use in 3D Integration Technologies. MRS Proc. 2014, 1692, 1–6. [Google Scholar] [CrossRef]
- Chen, W.; Chen, W.; Zhang, B.; Yang, S.; Liu, C.-Y. Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization. Polymer 2017, 109, 205–215. [Google Scholar] [CrossRef]
- Yang, W.-K.; Liu, F.-F.; Li, G.-M.; Zhang, E.-S.; Xue, Y.-H.; Dong, Z.-X.; Qiu, X.-P.; Ji, X.-L. Comparison of different methods for determining the imidization degree of polyimide fibers. Chin. J. Polym. Sci. 2015, 34, 209–220. [Google Scholar] [CrossRef]
- Aoki, M.; Hozawa, K.; Takeda, K. Wafer-level hybrid bonding technology with copper/polymer co-planarization. In Proceedings of the IEEE International 3D Systems Integration Conference (3DIC), Munich, Germany, 16–18 November 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Krasovskii, A.; Antonov, N.; Koton, M.; Kalnin’Sh, K.; Kudryavtsev, V. Methods of investigation determining the degree of imidization of polyamidoacids. Polym. Sci. USSR 1979, 21, 1038–1043. [Google Scholar] [CrossRef]
- Karim, Z.; Sautter, K.; Song, K.; Galande, C.; Singh, K. Cure Process Impact on Cure Time and Properties of Low Temperature Polyimide for 3D Stacking Applications. In Proceedings of the International Wafer Level Packaging Conference (IWLPC), San Jose, CA, USA, 13–30 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, M.; Niu, H.; Qi, S.; Tian, G.; Wu, D. Multilevel structure analysis of polyimide fibers with different chemical constitutions. Polymer 2018, 149, 96–105. [Google Scholar] [CrossRef]
- Kim, S.H.; Na, S.W.; Lee, N.-E.; Nam, Y.W.; Kim, Y.-H. Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma. Surf. Coat. Technol. 2005, 200, 2072–2079. [Google Scholar] [CrossRef]
- Louette, P.; Bodino, F.; Pireaux, J.-J. Polyimide XPS Reference Core Level and Energy Loss Spectra. Surf. Sci. Spectra 2005, 12, 121–126. [Google Scholar] [CrossRef]
- Ektessabi, A. Hakamata, XPS study of ion beam modified polyimide films. Thin Solid Films 2000, 377–378, 621–625. [Google Scholar] [CrossRef]
- Russat, J. Characterization of polyamic acid/polyimide films in the nanometric thickness range from spin-deposited polyamic acid. Surf. Interface Anal. 1988, 11, 414–420. [Google Scholar] [CrossRef]
- Meng, Y.; Gao, R.; Wang, X.; Huang, S.; Wei, K.; Wang, D.; Mu, F.; Liu, X. Direct Bonding Method for Completely Cured Polyimide by Surface Activation and Wetting. Materials 2022, 15, 2529. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Couranjou, M.; Manakhov, A.; Boscher, N.D.; Pireaux, J.-J.; Choquet, P. A Novel Dry Chemical Path Way for Diene and Dienophile Surface Functionalization toward Thermally Responsive Metal–Polymer Adhesion. ACS Appl. Mater. Interfaces 2013, 5, 8446–8456. [Google Scholar] [CrossRef] [PubMed]
- Major, G.H.; Farley, N.; Sherwood, P.M.A.; Linford, M.R.; Terry, J.; Fernandez, V.; Artyushkova, K. Practical guide for curve fitting in x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 2020, 38, 061203. [Google Scholar] [CrossRef]
- Vandencasteele, N.; Reniers, F. Plasma-modified polymer surfaces: Characterization using XPS. J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 394–408. [Google Scholar] [CrossRef]
- Tanikella, R.V.; Allen, S.B.; Kohl, P.A. Novel low-temperature processing of polymer dielectrics on organic substrates by variable frequency microwave processing. In Proceedings of the 8th International Advanced Packaging Materials Symposium, Stone Mountain, GA, USA, 3–6 March 2002; pp. 254–259. [Google Scholar] [CrossRef]
- Li, W.; Shen, Z.; Zheng, J.; Tang, S. FT-IR Study of the Imidization Process of Photosensitive Polyimide PMDA/ODA. Appl. Spectrosc. 1998, 52, 985–989. [Google Scholar] [CrossRef]
- Liu, H.Y.; Cao, K.; Huang, Y.; Yao, Z.; Li, B.G.; Hu, G.H. Kinetics and simulation of the imidization of poly(styrene-co-maleic anhydride) with amines. J. Appl. Polym. Sci. 2006, 100, 2744–2749. [Google Scholar] [CrossRef]
- Rebhan, B.; Hingerl, K. Physical mechanisms of copper-copper wafer bonding. J. Appl. Phys. 2015, 118, 135301. [Google Scholar] [CrossRef]
- Boiko, Y.M.; Prud’Homme, R.E. Bonding at Symmetric Polymer/Polymer Interfaces below the Glass Transition Temperature. Macromolecules 1997, 30, 3708–3710. [Google Scholar] [CrossRef]
- Inagaki, N.; Tasaka, S.; Hibi, K. Improved adhesion between plasma-treated polyimide film and evaporated copper. J. Adhes. Sci. Technol. 1994, 8, 395–410. [Google Scholar] [CrossRef]
- Nakamura, Y.; Suzuki, Y.; Watanabe, Y. Effect of oxygen plasma etching on adhesion between polyimide films and metal. Thin Solid Films 1996, 290–291, 367–369. [Google Scholar] [CrossRef]
- Lin, Y.S.; Liu, H.M.; Chen, H.T. Surface modification of polyimide films by argon plasma for copper metallization on microelectronic flex substrates. J. Appl. Polym. Sci. 2005, 99, 744–755. [Google Scholar] [CrossRef]
- Shie, K.-C.; Gusak, A.; Tu, K.-N.; Chen, C. A kinetic model of copper-to-copper direct bonding under thermal compression. J. Mater. Res. Technol. 2021, 15, 2332–2344. [Google Scholar] [CrossRef]
- Xu, F.; Xue, T.; Liang, X.; Tan, Q. High-temperature direct bonding of langasite using oxygen plasma activation. Scr. Mater. 2021, 194, 113681. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.-S.; Tran, D.-P.; Kuo, T.-Y.; Hsu, W.-Y.; Lin, H.-E.; Shie, K.-C.; Chen, C. High-Bonding-Strength Polyimide Films Achieved via Thermal Management and Surface Activation. Nanomaterials 2023, 13, 1575. https://doi.org/10.3390/nano13091575
He P-S, Tran D-P, Kuo T-Y, Hsu W-Y, Lin H-E, Shie K-C, Chen C. High-Bonding-Strength Polyimide Films Achieved via Thermal Management and Surface Activation. Nanomaterials. 2023; 13(9):1575. https://doi.org/10.3390/nano13091575
Chicago/Turabian StyleHe, Pin-Syuan, Dinh-Phuc Tran, Ting-Yu Kuo, Wei-You Hsu, Huai-En Lin, Kai-Cheng Shie, and Chih Chen. 2023. "High-Bonding-Strength Polyimide Films Achieved via Thermal Management and Surface Activation" Nanomaterials 13, no. 9: 1575. https://doi.org/10.3390/nano13091575
APA StyleHe, P. -S., Tran, D. -P., Kuo, T. -Y., Hsu, W. -Y., Lin, H. -E., Shie, K. -C., & Chen, C. (2023). High-Bonding-Strength Polyimide Films Achieved via Thermal Management and Surface Activation. Nanomaterials, 13(9), 1575. https://doi.org/10.3390/nano13091575