Modified 3D Graphene for Sensing and Electrochemical Capacitor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Synthesis of 3-Dimensional Graphene (Pristine-P3DG), Nitrogen-Doped Graphene (N3DG), and Nitrogen-Doped-Defective Graphene (N3DG-D)
2.2.2. More Details on Graphene Synthesis from Methane and Acetonitrile
2.2.3. Characterization and Measurements
2.2.4. Electrochemical Characterization for Lead Detection
2.2.5. Electrochemical Characterization for EDLC Performance
3. Results and Discussions
3.1. Surface Characterizations
3.1.1. Morphology
3.1.2. Raman Spectroscopy
3.1.3. X-ray Photoelectron Spectroscopy
3.2. Electrochemical Characterizations for Lead Detection
3.2.1. Electrochemical Characterization of Electrodes
3.2.2. Lead Detection
3.3. Electrochemical Characterizations for EDLC Properties
4. Conclusions and Future Perspective
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; DeArmond, D.; Alvarez, N.T.; Malik, R.; Oslin, N.; McConnell, C.; Adusei, P.K.; Hsieh, Y.; Shanov, V. Flexible Micro-Supercapacitor Based on Graphene with 3D Structure. Small 2017, 13, 1603114. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhang, L.; Siebold, D.; DeArmond, D.; Alvarez, N.T.; Shanov, V.N.; Heineman, W.R. Electrochemical Studies of Three Dimensional Graphene Foam as an Electrode Material. Electroanalysis 2017, 29, 1506–1512. [Google Scholar] [CrossRef]
- Brownson, D.A.C.; Banks, C.E. Graphene electrochemistry: An overview of potential applications. Analyst 2010, 135, 2768–2778. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Yang, S.; Lohe, M.R.; Müllen, K.; Feng, X. New-Generation Graphene from Electrochemical Approaches: Production and Applications. Adv. Mater. 2016, 28, 6213–6221. [Google Scholar] [CrossRef]
- Zhang, Z.; Ohta, S.; Shiba, S.; Niwa, O. Nanocarbon film electrodes for electro-analysis and electrochemical sensors. Curr. Opin. Electrochem. 2022, 35, 101045. [Google Scholar] [CrossRef]
- Lai, R.; Chen, H.; Zhou, Z.; Yi, Z.; Tang, B.; Chen, J.; Yi, Y.; Tang, C.; Zhang, J.; Sun, T. Design of a Penta-Band Graphene-Based Terahertz Metamaterial Absorber with Fine Sensing Performance. Micromachines 2023, 14, 1802. [Google Scholar] [CrossRef]
- Lu, W.; Yi, Z.; Zhang, J.; Xu, X.; Tang, B.; Li, G.; Zeng, L.; Chen, J.; Sun, T. A tunable broadband absorber in the terahertz band based on the proportional structure of a single layer of graphene. Diam. Relat. Mater. 2023, 140, 110481. [Google Scholar] [CrossRef]
- Wu, S.; He, Q.; Tan, C.; Wang, Y.; Zhang, H. Graphene-based electrochemical sensors. Small 2013, 9, 1160–1172. [Google Scholar] [CrossRef]
- Lin, X.; Lu, Z.; Dai, W.; Liu, B.; Zhang, Y.; Li, J.; Ye, J. Laser engraved nitrogen-doped graphene sensor for the simultaneous determination of Cd(II) and Pb(II). J. Electroanal. Chem. 2018, 828, 41–49. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, E. Graphene ultrathin film electrode for detection of lead ions in acetate buffer solution. Talanta 2013, 103, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Maity, A.; Sui, X.; Tarman, C.R.; Pu, H.; Chang, J.; Zhou, G.; Ren, R.; Mao, S.; Chen, J. Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring. ACS Sens. 2017, 2, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Ni, M.; Ren, X.; Tian, Y.; Li, N.; Su, Y.; Zhang, X. Graphene in Supercapacitor Applications. Curr. Opin. Colloid Interface Sci. 2015, 20, 416–428. [Google Scholar] [CrossRef]
- Zhang, L.; DeArmond, D.; Alvarez, N.T.; Zhao, D.; Wang, T.; Hou, G.; Malik, R.; Heineman, W.R.; Shanov, V. Beyond graphene foam, a new form of three-dimensional graphene for supercapacitor electrodes. J. Mater. Chem. A Mater. 2016, 4, 1876–1886. [Google Scholar] [CrossRef]
- Reddy, A.L.M.; Srivastava, A.; Gowda, S.R.; Gullapalli, H.; Dubey, M.; Ajayan, P.M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342. [Google Scholar] [CrossRef]
- Wang, C.; Vinodgopal, K.; Dai, G.-P. Large-Area Synthesis and Growth Mechanism of Graphene by Chemical Vapor Deposition. In Chemical Vapor Deposition for Nanotechnology; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Cui, T.; Lv, R.; Huang, Z.H.; Zhu, H.; Kang, F.; Wang, K.; Wu, D. Effect of feed rate on the production of nitrogen-doped graphene from liquid acetonitrile. Carbon 2012, 50, 3659–3665. [Google Scholar] [CrossRef]
- He, S.; Zhang, Z.; Wu, S.; Wu, W.; Jiang, K.; Liu, J.; Song, Y. Rapid growth of single-crystal graphene by acetonitrile and its nitrogen doping. Vacuum 2021, 194, 110609. [Google Scholar] [CrossRef]
- Ito, Y.; Christodoulou, C.; Nardi, M.V.; Koch, N.; Sachdev, H.; Müllen, K. Chemical vapor deposition of N-doped graphene and carbon films: The role of precursors and gas phase. ACS Nano 2014, 8, 3337–3346. [Google Scholar] [CrossRef]
- Joseph, K.M.; Shanov, V. Symmetric Supercapacitor Based on Nitrogen-Doped and Plasma-Functionalized 3D Graphene. Batteries 2022, 8, 258. [Google Scholar] [CrossRef]
- Noori, A.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019, 48, 1272–1341. [Google Scholar] [CrossRef]
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Chen, F.; Lu, H.; Zhang, N.; Ma, M. Hierarchical Porous N-doped Graphene Monoliths for Flexible Solid-State Supercapacitors with Excellent Cycle Stability. ACS Appl. Energy Mater. 2018, 1, 5024–5032. [Google Scholar] [CrossRef]
- Tavkhelidze, A.; Bibilashvili, A.; Jangidze, L.; Gorji, N.E. Fermi-Level Tuning of G-Doped Layers. Nanomaterials 2021, 11, 505. [Google Scholar] [CrossRef]
- Bokobza, L.; Bruneel, J.-L.; Couzi, M. Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites. C 2015, 1, 77–94. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The importance of interbands on the interpretation of the raman spectrum of graphene oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- Martin, P. Electrochemistry of gaphene: New horizons for sensing and energy storage. Chem. Rec. 2009, 9, 211–223. [Google Scholar] [CrossRef]
- Steffen, T.T.; Fontana, L.C.; Nahorny, J.; Becker, D. Role of nitrogen–oxygen plasma functionalization of carbon nanotubes in epoxy nanocomposites. Polym. Compos. 2019, 40, E1162–E1171. [Google Scholar] [CrossRef]
- Zhang, R.; Jing, X.; Chu, Y.; Wang, L.; Kang, W.; Wei, D.; Li, H.; Xiong, S. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors. J. Mater. Chem. A Mater. 2018, 6, 17730–17739. [Google Scholar] [CrossRef]
- Krüner, B.; Schreiber, A.; Tolosa, A.; Quade, A.; Badaczewski, F.; Pfaff, T.; Smarsly, B.M.; Presser, V. Nitrogen-containing novolac-derived carbon beads as electrode material for supercapacitors. Carbon 2018, 132, 220–231. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, J.P.; Zhuang, Q.Q.; Zhao, X.Y.; Zhou, Z.; Wei, Y.L.; Zhao, M.; Bai, H.-C. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte. Electrochim. Acta 2021, 371, 137825. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y. Nitrogen-doped graphene forests as electrodes for high-performance wearable supercapacitors. Electrochim. Acta 2017, 250, 320–326. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/reduced graphene oxide-carbon nanotubes composite electrodes: From capacitive to battery-type behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
Type of Graphene | Carbon Precursor | Dopant | Temperature |
---|---|---|---|
Pristine graphene (P3DG) | Methane | NA (Not Applicable) | 1000 °C |
Nitrogen-doped graphene (N3DG) | Methane | Acetonitrile | 1000 °C |
Nitrogen-doped graphene-Defective (N3DG-D) | Acetonitrile | Acetonitrile | 750 °C |
Element (%) | Samples | ||
---|---|---|---|
P3DG | N3DG | N3DG-D | |
Carbon (C1s) | 98.5 | 89.37 | 79.1 |
Oxygen (O1s) | 1.5 | 8.63 | 20.2 |
Nitrogen (N1s) | - | 2.0 | 0.7 |
Electrodes | Peak Separation (mV) | Active Area (cm2) |
---|---|---|
P3DG | 216 | 10.5 |
N3DG | 318 | 175 |
N3DG-D | 355 | 2.52 |
Electrodes | Peak Height (μA) | Peak Area (V·μA) |
---|---|---|
N3DG | 1.0 | 0.15 |
P3DG | 0.20 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, K.M.; Dangel, G.R.; Shanov, V. Modified 3D Graphene for Sensing and Electrochemical Capacitor Applications. Nanomaterials 2024, 14, 108. https://doi.org/10.3390/nano14010108
Joseph KM, Dangel GR, Shanov V. Modified 3D Graphene for Sensing and Electrochemical Capacitor Applications. Nanomaterials. 2024; 14(1):108. https://doi.org/10.3390/nano14010108
Chicago/Turabian StyleJoseph, Kavitha Mulackampilly, Gabrielle R. Dangel, and Vesselin Shanov. 2024. "Modified 3D Graphene for Sensing and Electrochemical Capacitor Applications" Nanomaterials 14, no. 1: 108. https://doi.org/10.3390/nano14010108
APA StyleJoseph, K. M., Dangel, G. R., & Shanov, V. (2024). Modified 3D Graphene for Sensing and Electrochemical Capacitor Applications. Nanomaterials, 14(1), 108. https://doi.org/10.3390/nano14010108