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Abstract: Mg3Bi2−vSbv (0 ≤ v ≤ 2) is a class of promising thermoelectric materials that have a high
thermoelectric performance around room temperatures, whereas their thermoelectric properties
under pressures and temperatures are still illusive. In this study, we examined the influence of
pressure, temperature, and carrier concentration on the thermoelectric properties of Mg3Bi2−vSbv

using first-principle calculations accompanied with Boltzmann transport equations method. There is
a decrease in the lattice thermal conductivity of Mg3Sb2 (i.e., v = 2) with increasing pressure. For a
general Mg3Bi2−vSbv system, power factors are more effectively improved by n-type doping where
electrons are the primary carriers over holes in n-type doping, and can be further enhanced by applied
pressure. The figure of merit (zT) exhibits a positive correlation with temperature. A high zT value of
1.53 can be achieved by synergistically tuning the temperature, pressure, and carrier concentration in
Mg3Sb2. This study offers valuable insights into the tailoring and optimization of the thermoelectric
properties of Mg3Bi2−vSbv.

Keywords: thermoelectric materials; PBE-D3; vdW-DFq; first-principles calculation; Mg3Bi2−vSbv;
MatCloud

1. Introduction

In recent decades, the pressing challenges of climate change and pollution have un-
derscored the critical importance of alternative energy sources. The increasing demand
for energy, especially electricity, has become a central focus in the development of our
civilization. To address these challenges sustainably, there is growing necessity for inno-
vative renewable energy sources that can harness the power of nature and convert it into
electricity [1]. Thermoelectric materials, which have the ability to convert heat energy into
electrical energy and vice versa, are considered a promising approach to improving energy
conversion efficiency [2,3]. Materials with exceptional thermoelectric properties are often
used in waste heat recovery and refrigeration applications [4,5].

In general, the Seebeck coefficient (S) is defined as the ratio of the potential difference
under zero current conditions to the applied temperature difference. On the other hand,
the electrical conductivity (σ) is used to describe the system’s electrical performance. We
can use the power factor (S2σ) to accurately characterize the thermoelectric properties of
the system [6,7]. To maintain the temperature gradient of the material, we also need to
consider the material’s thermal conductivity, which is generally divided into lattice thermal
conductivity (κl) and electronic thermal conductivity (κe). The former is related to the trans-
fer of phonons, while the latter is proportional to the electrical conductivity. An excellent
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thermoelectric material needs to have a higher power factor and lower thermal conduc-
tivity [8,9], which ensures a higher thermoelectric conversion efficiency. Quantitatively,
we typically use zT = S2σT/(κl + κe), to describe the thermoelectric performance of the
system [10,11]. The higher the zT value, the greater the thermoelectric conversion efficiency.
In recent years, emerging nanomaterials such as TiS3 [12], MoS2 [13], and CNTs [14] have
been reported to exhibit excellent thermoelectric properties.

Certain theoretical studies propose that the thermoelectric properties of materials may
be modified through the application of stress or pressure [15–18]. Under the influence of
applied pressure, some systems can undergo changes in electrical conductivity, resulting in
a transition between insulating and metallic states [19,20]. In general, the energy difference
between the bottom of the conduction band (CBM) and the top of the valence band (VBM),
known as the bandgap, is a crucial parameter that describes the electronic structure of a
system. When pressure is applied, both the CBM and the VBM shift, resulting in a change
in the bandgap. This change in the bandgap also results in variations in the electrical
transport coefficients, such as the Seebeck coefficient and the electrical conductivity. In the
case of intrinsic semiconductors, the correlation between electrical conductivity and the
Seebeck coefficient is given by [21,22]:
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where σ is the total electrical conductivity, σn and σp are the partial conductivity for
electrons and holes, Eg is the bandgap, k is Boltzmann’s constant, T is the temperature,
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(
rp
)
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)
are the scatterging parameters and effective

masses of the density of states of electrons (holes), respectively. A noticeable trend is the
decrease in the Seebeck coefficient as the bandgap decreases, accompanied by an increase
in electrical conductivity. Consequently, in materials where the bandgap is affected by
the application of pressure, such as PbTe, PbSe, and Bi2Te3 [23–25], the power factors also
demonstrate notable variations under pressure.

In recent years, there has been a notable surge in research interest surrounding
Mg3Bi2−vSbv as a promising material for thermoelectric applications at room temper-
ature. According to the study by Peng et al. [26], the Mg3Bi2−vSbv system demonstrates
significantly low lattice thermal conductivity. Kanno, T. et al. [27] indicated that disorder in
the system enhances carrier mobility and reduces the lattice thermal conductivity. Imasato
et al.’s [28] study demonstrated that alloying in the Mg3Bi2 system alters its electronic trans-
port properties, thereby influencing the thermoelectric properties. Pan et al.’s study [29]
revealed that Mg3Bi1.25Sb0.75, with moderate doping, achieves a higher carrier mobility. Shi
et al.’s research [30] revealed that the high carrier mobility in Mg3Sb2 is attributed to the pu-
rification of phases and the presence of coarse grains. Some experiments and computational
studies suggest that Mg3Sb1.5Bi0.5, with n-type doping, exhibits excellent thermoelectric
properties at certain temperatures [31–34]. Additionally, there are studies that describe how
the thermoelectric performance of the system can be experimentally optimized [35–37].
The corresponding experimental reports also exist for p-type doping in Mg3Sb2 [38]. Com-
pared to conventional thermoelectric materials like Bi2Te3 [39], Ag2Se [40], and GeTe [41],
Mg3Bi2−vSbv presents the benefit of being cost-effective. Extensive research has been
conducted into the different aspects of the Mg3Bi2−vSbv system. These investigations
focused on exploring band topology [42–45], phonon dynamics [46–50], mechanical proper-
ties [51,52], and the topological thermoelectric properties of nodal-line semimetals [53–56].
According to previous studies [52], van der Waals (vdW) corrections, which are a specific
type of intermolecular force that occur between neutral atoms or molecules, also play a
significant role in influencing the properties of the system. The comprehension of the
alterations in the thermoelectric characteristics of Mg3Bi2−vSbv under specific pressure con-
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ditions is of the utmost importance, given the potential of this material as a thermoelectric
substance. Nevertheless, there is a dearth of research in this particular field.

In this study, we conducted computational calculations to determine the lattice thermal
conductivity, Seebeck coefficient, electrical conductivity, and power factor of Mg3Bi2−vSbv
at various temperatures and pressures. Specifically, in the context of lattice thermal con-
ductivity, we utilized various methodologies to simulate the impacts of vdW corrections
and subsequently compared the obtained outcomes. We have undertaken a comprehen-
sive analysis to investigate the impact of pressure and temperature on the thermoelectric
properties of the system.

2. Materials and Methods
2.1. Structure of Mg3Bi2−vSbv

The crystal structure of Mg3Bi2−vSbv is depicted in Figure 1. The crystal structures of
all concentrations within the system exhibit the trigonal crystal system, characterized by
a symmetry group of P3m1. In these systems, the three crystal axes, denoted by a and b,
exhibit equal lengths, and the angles formed between them are α = β = 90◦, with γ being
120◦. Sb and Bi atoms are located in identical positions within the system. By enlarging the
unit cell and subsequently replacing Bi atoms with Sb atoms, structures with varying Sb
compositions can be obtained. It is apparent that, when considering the same Sb content,
there are typically multiple configurations present. We utilize the LAsou [57,58] method to
determine the lowest energy configuration, which serves as the representative structure
for the given Sb content. In the LAsou method, a minimal number of first-principles
calculations is necessary to determine the lowest energy configuration, given a specific
Sb content.
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Figure 1. The atomistic structures of the Mg3Bi2−vSbv: the 5-atom unit cell of (a) Mg3Bi2 and
(b) Mg3Sb2, and (c–e) the 10-atom cells of Mg3Bi2−vSbv with v in 0.5, 1.0, and 1.5, respectively.

2.2. Method of DFT Calculations

The Vienna Ab initio Simulation Package (VASP) [59–62] was employed for conducting
our primary first-principles calculations, with a cutoff energy of 450 eV being set. To
streamline the production of K-point input files, we utilized VASPKIT [63]. The K-points
were generated using the Methfessel–Paxton [64] method, which is a technique utilized
by VASP to generate reciprocal space K-point grids. We configured the grid density to a
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value of 0.03. The Perdew–Burke–Ernzerhof (PBE) [62] functional, which is a commonly
used exchange-correlation functional, was utilized for the computational calculations.
It was determined that these specific parameter configurations yielded convergent and
resource-efficient calculations.

We employ two approaches, namely PBE-D3 [65] and vdW-DFq [66], to count the non-
local vdW corrections. The computational method DFT-D3, developed by Grimme et al.,
is used to characterize the vdW dispersion energy-correction terms. The incorporation of
empirical parameters in density functional theory has been proposed as a means to address
its limitations, particularly in calculations involving heavy elements. This approach has
demonstrated promising outcomes in terms of accuracy and reliability. Another method,
known as vdW-DFq, has been developed by Peng et al., which demonstrates high accuracy
in calculating the density and geometry of semihard materials. Both of these methods
can be readily incorporated into VASP calculations by adjusting the relevant calculation
parameters in VASP.

2.3. Method of Electrical Transport Properties

For the electrical transport properties, we utilized the relaxation time approximation
(RTA) to solve the Boltzmann equation [67] with the conductivity and Seebeck coefficient
expressed as follows:

σαβ(µ, T) =
1
V ∑

nk
vnkαvnkβτnk

[
−

∂ fµ(εnk, T)
∂εnk

]
(3)

Sαβ(µ, T) =
1

eTV
σαβ(µ, T)−1 ∑

nk
vnkαvnkβτnk(µ − εnk)

[
−

∂ fµ(εnk, T)
∂εnk

]
(4)

where vnk is electron group velocity corresponding to band index n and the reciprocal
coordinate k, T, µ, V, fu and e are the absolute temperature, Fermi level, volume of unite
cell, the Fermi–Dirac distribution, and electron charge, respectively. εnk is the band energy,
and τnk is the electronic relaxation time. The TransOpt [68] package implements such
calculations. Regarding the treatment of the relaxation time, we used two methods. One
assumes a constant relaxation time (CRTA). In this approximation, the expression for the
Seebeck coefficient does not include the relaxation time. By comparing the experimentally
measured conductivity of a system with a specific carrier concentration and the calculated
value of σ/τ, the relaxation time can be determined. The determined relaxation time is
then applied to the results for other carrier concentrations to obtain the corresponding
conductivity and electronic thermal conductivity. The second method involves introducing
constant-time electron–phonon coupling (CEPCA) in TransOpt. It considers the primary
scattering mechanism of electron–phonon coupling in the electrical transport process,
treating the electron–phonon coupling matrix as a constant. And, the relaxation time is
approximated as follows:

τnk
−1 =

2πkBE2
de f

VℏG ∑
mk′

δ(εnk − εnk′) (5)

Here, G is the Young’s modulus, Ede f is the DP of the band edge state. We can input
such a value to TransOpt and it can deal τnk by itself.

2.4. Method of Thermal Properties

We utilized the finite displacement method offered by PHONOPY [69] to calculate
the phonon spectrum, phonon density of states, and second-order force constants for the
system. The supercell of the system was set to 3 × 3 × 2. The lattice thermal conductivity
for the system was calculated using the SHENGBTE-v1.5.0 software, and third-order force
constants were computed in conjunction with VASP using the ThirdOrder program [70,71].
We employed the third-order program to expand the unit cell and generated a large number
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of perturbed configurations. Subsequently, we used VASP to calculate the energies of these
configurations. By combining these energies, we obtained the third-order force constants.
In the calculation of force constants, we introduced a parameter called the cutoff neighbor
n. This parameter represents the distance of the farthest n-th neighbors and is used as
the cutoff radius. Interactions beyond this radius will be disregarded. This parameter
needs to be tested for convergence. The supercell size was maintained at 3 × 3 × 2. Due to
the extensive number of configurations to be calculated, only the Γ-point was employed
to reduce the computational overhead. To investigate the impact of vdW corrections on
the thermal properties of the system, we compared the results obtained using two vdW
simulation methods, namely PBE-D3 and vdW-DFq, with the results obtained without any
vdW contributions using the PBE functional.

Particularly, due to the complex third-order force constant calculations, it is necessary
to compute a significant number of structural configurations, often in the thousands.
Ensuring the completeness of the VASP calculations for these configurations, and handling
the convergence of the near-neighbor cutoff, is a demanding task. It requires generating a
large number of perturbed structural configurations with various cutoff parameters, leading
to a substantial number of redundant structures. Calculating each of them individually
would be a wasteful consumption of computational resources. To address this challenge,
we developed and integrated a workflow, as shown in Figure S1, using the high-throughput
materials cloud platform, MatCloud [72]. This workflow allows us to set supercell sizes
and the cutoff neighbor parameters using the structure generator node. This node can
automatically drive the ThirdOrder program to generate the perturbed structure needed for
calculation. The parallel controller node orchestrates high-performance computing (HPC)
resources to carry out the VASP calculations for all generated configurations.

It is important to note that this workflow assigns a unique ID to each generated
configuration file based on the MD5 hash value of its structure. The MD5 algorithm has
an extremely low probability of hash collisions, ensuring uniqueness. In other words,
structures with the same hash value have identical file contents. The entire computational
result is stored and indexed according to the hash values of the configuration files. This
approach offers a significant advantage. When a specific near-neighbor cutoff parameter is
set, we attempt to generate third-order force constants for all parameters within this cutoff
after the calculations. However, in cases where it is found that third-order force constants
involving set atomic near-neighbors are insufficient to achieve the convergence of lattice
thermal conductivity, increasing the near-neighbor cutoff parameter allows us to calcu-
late the additional perturbed structures. During post-processing, we retrieve previously
calculated structures from the entire database to generate results, thereby avoiding the re-
source consumption caused by redundant calculations. Furthermore, all results calculated
using the MatCloud-v2023 platform are securely uploaded to the cloud service, ensuring
data integrity.

3. Results
3.1. Lattice Thermal Conductivity of Mg3Sb2

The lattice thermal conductivity of Mg3Sb2 was initially calculated without the ap-
plication of external pressure. The results, obtained using various vdW corrections and
directions, are presented in Figure 2a,b, respectively.

The values of lattice thermal conductivity obtained from PBE, PBE-D3, and vdW-DFq
are quite similar. In general, vdW-DFq calculates slightly higher values for lattice thermal
conductivity than PBE-D3, which, in turn, are slightly higher than those obtained from
PBE. Since the lattice thermal conductivity is primarily governed by phonon transport, it
typically increases with stronger atomic bonding. Therefore, the vdW corrections adds
additional contributions, resulting in a slight increase in lattice thermal conductivity, which
is understandable. Additionally, as the temperature rises, these differences tend to diminish.
They are all very close to the experimental data reported in the literature [38]. Moving
on to the lattice thermal conductivity in different directions, the variations are relatively
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small. For the Mg3Sb2 system, the values of the thermal conductivity tensor components
(xx, yy, zz) exhibit minor differences, indicating limited anisotropy. The total thermal
conductivity is typically the average of these three directions, which is used for further dis-
cussions on thermal conductivity. Finally, as the temperature increases, there is a decreasing
trend in thermal conductivity. This is primarily attributed to the elevated temperature,
which leads to increased phonon scattering rates and consequently reduces the lattice
thermal conductivity.
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Figure 2. (a) Lattice thermal conductivity of Mg3Sb2 at varying temperatures in various vdW and
experimental data [38]. (b) Lattice thermal conductivity of Mg3Sb2 at varying temperatures in various
directions. (c) Lattice thermal conductivity under different pressures and at different temperatures.

We further examined the trends in lattice thermal conductivity under different pres-
sures, and the results are illustrated in Figure 2c and listed in Table 1. Without external
pressure, the thermal conductivity is at its maximum. The application of external pressure,
whether compressive or tensile, leads to a decrease in thermal conductivity. Moreover, with
increasing external pressure, there is an overall decreasing trend in thermal conductivity.
However, this trend is not consistent throughout. When comparing the thermal conductiv-
ity at 3 GPa and 5 GPa, it increases at 5 GPa compared to 3 GPa. At a pressure above 7 GPa,
the lattice thermal conductivity approaches zero.

Table 1. This table shows the lattice thermal conductivity of Mg3Sb2 at different temperatures and
different pressures.

Temperature (K) Pressure (GPa) Lattice Thermal Conductivity
(W/m·K)

300

−2.0 0.573
0.0 1.251
1.0 0.988
5.0 0.519

500

−2.0 0.258
0.0 0.765
1.0 0.605
5.0 0.322

800

−2.0 0.165
0.0 0.483
1.0 0.383
5.0 0.204

It is noteworthy that, when the pressure reaches 10 GPa, there is a slight increase in
thermal conductivity. Considering that the phonon spectrum of the crystal starts exhibit-
ing significant imaginary frequencies at pressures exceeding 7 GPa, indicating structural
dynamical instability, it is not necessary to further consider higher pressures.
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We plotted the phonon spectra and phonon density of states of Mg3Sb2 under various
pressures in Figure 3. The phonon spectra of Mg3Sb2 can be roughly divided into three
regions. Below 3 THz, the primary contribution comes from the acoustic branches, mainly
driven by the vibrations of Sb atoms, as observed in the phonon density of states. The range
from 3 THz to 5 THz is dominated by the vibrations of magnesium atoms. In the absence of
external pressure, there is no distinct boundary between these two parts. However, under
tensile conditions, there is a tendency for these two parts to merge. Conversely, under
compression, they gradually separate as the pressure increases. This phenomenon is one
of the reasons for the reduction in thermal conductivity. The third part consists of optical
branches with frequencies exceeding 5 THz. These optical phonons exhibit a noticeable gap
compared to the acoustic phonons below. They are primarily generated by the vibrations of
magnesium atoms. With an increase in pressure, the peak of the density of states increases,
and phonon frequencies also increase. Furthermore, the gaps between different phonon
branches increase as pressure increases.
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Figure 3. Phonon spectra and phonon density of states of Mg3Sb2 at various pressures.

To gain a deeper understanding of the contributions of different phonon modes to
lattice thermal conductivity, we plotted the cumulative thermal conductivity as well as the
three-phonon scattering rates at 300 K without pressure in Figure 4. The cumulative thermal
conductivity is a graph where the horizontal axis represents the vibrational frequency, and
it indicates the contribution of phonons with frequencies up to a certain value to the lattice
thermal conductivity [73]. Naturally, this should be an increasing curve. For the results
at 0 GPa, the curve can be roughly divided into three sections. There is an increasing
process below 5 THz with a significant increase from 0 to 3 THz and a relatively smaller
increase from 3 THz to 5 THz. Based on the phonon spectrum, these phonons correspond
to the acoustic branches and a small fraction of the optical branches. In general, the vast
majority of the contribution to thermal conductivity comes from the acoustic branches. In
the range of 5–6 THz, the thermal conductivity increases level off. This corresponds to
phonon modes with a state density of almost zero, indicating that there is no increase in
thermal conductivity in this range. Afterwards, there is a slight increase, suggesting that
optical phonons also contribute to the thermal conductivity of Mg3Sb2, increasing it by
approximately 20%.
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Figure 4. (a) Cumulative lattice thermal conductivity of Mg3Sb2 at 300 K without pressure.
(b) Anharmonic scattering rate of Mg3Sb2 at 300 K without pressure.

It is important to note that the anharmonic scattering process encompasses both
absorption and emission processes when examining the scattering rates. The former
involves two phonons combining to form a single phonon, while the latter is a process
where one phonon splits into two. It can be observed that the phonon scattering rates
undergo an initial increase followed by a decrease, peaking at around 4 THz. This peak
corresponds to the initial phase of the cumulative thermal conductivity increase, where
the rate of increase gradually decreases. Below 4 THz, the phonon scattering processes are
dominated by phonon absorption, while in the range after 4 THz, the phonon emission
processes predominate. Meanwhile, the gap between 5 THz and 6 THz correspond to the
aforementioned portion of the phonon spectrum with a state density of nearly zero. This
indicates that there are almost no scattering processes occurring in this frequency range.

Next, we examined the changes with increased pressure. We plotted these results in
Figure 5. In the frequency range of 0–5 THz, both systems under added pressure, whether
−2 GPa or 3 GPa, exhibit significantly higher phonon scattering rates compared to the
scenario without any added pressure. This also results in significantly lower increases
in the lattice thermal conductivity within this frequency range, compared to the scenario
without pressure. The comparison of the phonon spectra suggests that the introduction of
3 GPa of pressure results in a gap at the 4 THz position. This causes the thermal conductivity
at 3 GPa to enter the flat region earlier. On the other hand, introducing a pressure of
−2 GPa significantly increases the scattering rate for phonon emission processes near
4 THz. This, in turn, reduces the contribution of these phonons to thermal conductivity.

Below 4 THz, the lattice thermal conductivity and scattering rate of the −2 GPa
system are higher than those of the 3 GPa system. This is because the specific heat of
the −2 GPa system is slightly higher than that of the 3 GPa system. Moving onto the
latter part, which is the cumulative thermal conductivity beyond 5 THz, the 3 GPa system
exhibits slightly higher scattering rates and, consequently, lower thermal conductivity. In
any case, despite variations in the specific scattering mechanisms, the thermal conductivity
ultimately converges to a similar value, with minimal disparity between them. For the
5 GPa scenario, the trends are identical to those of the 3 GPa system, with the only difference
being that the former has relatively lower scattering rates, which results in higher lattice
thermal conductivity.

Furthermore, we examined the scenario with an increased pressure of 7 GPa which
is shown in Figure 6. From the phonon spectrum, it is evident that increased pressure
causes a significant gap to open in the phonon spectrum near 4 THz. Although there
are limited changes in the spectral lines below 4 THz, these alterations are significant
enough to affect the overall thermal conductivity. Based solely on the phonon spectrum,
it can be anticipated that, at 7 GPa, the thermal conductivity will be relatively low. When
considering the scattering rates and cumulative thermal conductivity, it is observed that
the scattering rates at 7 GPa are significantly higher, by several orders of magnitude,
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compared to those in the other systems. The excessively high scattering rates indicate that
the phonons of the acoustic branch contribute very little to the lattice thermal conductivity
in this scenario. It should be noted that, at 7 GPa, the Mg3Sb2 system starts to show some
imaginary frequencies. As the pressure increases, these imaginary frequencies become
more significant. This pressure may reach a critical point at which certain computational
conditions are no longer met. The exact mechanisms involved in this behavior require
further investigation.
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In brief, applying pressure, regardless of its polarity, leads to a reduction in the lattice
thermal conductivity of the Mg3Sb2 system. This observation suggests that increasing the
pressure could potentially enhance the thermoelectric performance of the system to some
extent. Moreover, when the pressure surpasses 7 GPa, the system exhibits the discernible
presence of imaginary phonon frequencies, making the calculation of thermal conductivity
unreliable beyond this threshold.

3.2. Thermoelectricity Properties of Ternary Mg3Bi2−vSbv

In terms of electronic structure, we utilized the PBE method to calculate the band
structures of ternary Mg3Bi2−vSbv. The results obtained without applying pressure are
shown in Figure 7. When comparing the band structures for different v values, we can ob-
serve that they are initially quite similar. During the transition from Mg3Bi2 to Mg3Sb2, the
conduction band gradually shifts upward at the Γ point, eventually reaching a degeneracy
with the preceding band. The bandgap also gradually increases. With the exception of the
v = 0 and v = 0.5 structures, the other three structures all exhibit indirect bandgaps, with
gap widths below 0.2 eV.
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To evaluate the impact of increased pressure on the bandgaps of the structures, we
subjected the system to various pressures and calculated the resulting bandgaps. For the
purpose of comparison, we plotted the results as the difference between the CBM and
VBM in Figure 7d. From the figure, it is evident that the band gaps for all systems initially
increase and then decrease as the pressure varies. Moreover, this change, whether it is an
increase or decrease in pressure, follows a linear trend. Although the v = 0 and v = 0.5
structures exhibit metallic properties under no pressure, they still develop bandgaps and
demonstrate semiconductor characteristics when pressure is applied. The peak values of the
band gaps differ for structures with a varying Sb content, but the overall trend indicates that
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the distance between the CBM and VBM increases with a higher Sb content. Empirically,
narrow-gap semiconductors of this type tend to exhibit favorable thermoelectric properties.

We used TransOpt-v2.0 to calculate the electrical transport properties of the Mg3Bi2−vSbv
system. This software can simultaneously output results based on both the CRTA and the
CEPCA approaches. When comparing with experimental data, we observed a significant
discrepancy. Specifically, the electrical conductivity obtained through the CEPCA was
higher by two to three orders of magnitude compared to the experimental results [38].
This discrepancy indicates that considering the electron–phonon coupling matrix as a
constant does not accurately represent the electron scattering scenarios in the Mg3Bi2−vSbv
system. For the sake of simplicity, we initially disregard the relaxation time. Figure 8
illustrates the changes in the power factor, the absolute value of the Seebeck coefficient,
and electrical conductivity as a function of pressure for the Mg3Bi2−vSbv system under
n-type doping, while maintaining a constant carrier concentration of 0.03 × 1020 cm−3.
Combining the bandgap information from Figure 7d, it is evident that, for the Mg3BiSb
(v = 1), Mg3Bi0.5Sb1.5 (v = 1.5), and Mg3Sb2 (v = 2) structures, as per Equations (1) and (2),
the bandgap exhibits an initial increase followed by a decrease with pressure. Consequently,
there is an initial decrease followed by an increase in electrical conductivity, while the
Seebeck coefficient exhibits an initial increase followed by a decrease. This leads to the
power factor reaching its maximum value at moderate pressures. However, the observed
trend is not as evident for Mg3Bi2 (v = 0) and Mg3Bi1.5Sb0.5 (v = 0.5), which may be
attributed to the initially small bandgap, leading to less pronounced changes. Further
exploration is necessary to elucidate a more detailed mechanism.
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Figure 8. (a) The changes in power factor as a function of pressure for the Mg3Bi2−vSbv system
under n-type doping, maintaining a constant carrier concentration of 0.03 × 1020 cm−3. (b) The
absolute value of the Seebeck coefficient as a function of pressure for the Mg3Bi2−vSbv system under
n-type doping, maintaining a constant carrier concentration of 0.03 × 1020 cm−3. (c) The electrical
conductivity as a function of pressure for the Mg3Bi2−vSbv system under n-type doping, maintaining
a constant carrier concentration of 0.03 × 1020 cm−3.

We plotted the variation of the maximum power factor for both p-type and n-type
carriers with pressure in Figures 9 and 10, respectively.

For p-type Mg3Bi2−vSbv, an overall trend is that the peak power factor of all systems
increases as v increases, except for the structure with v = 0.5. With increasing pressure, the
peak values of structures with v = 0, 1.0, and 1.5 increase, while the other two structures
exhibit varying trends of increase and decrease, similar to the Seebeck coefficient. It is
evident that, despite the relatively low Seebeck coefficient for v = 0.5, the higher electrical
conductivity results in a reasonably significant power factor. This suggests that, at higher
doping levels, the system with v = 0.5 may exhibit favorable thermoelectric performance.
For the Mg3Bi2 structure, a significant drop in electrical conductivity is observed at a
pressure of 7 GPa. This is because the peak power factor at this point shifts the carrier
concentration from around 5.0 × 1020 cm−3 to 1.5 × 1020 cm−3, indicating a decrease in the
required doping concentration for optimal performance.
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Figure 9. (a) The maximum PF/τ of p-type-doped Mg3Bi2−vSbv under various pressures. (b) See-
back coefficient of p-type-doped Mg3Bi2−vSbv under various pressures. (c) σ/τ of p-type-doped
Mg3Bi2−vSbv under various pressures. (d) Max zT of p-type doped Mg3Sb2 under various pressures.
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For n-type Mg3Bi2−vSbv, the power factor increases with the increase in Sb content.
Additionally, as pressure increases, the peak power factors of all systems also increase.
Furthermore, in n-type semiconductors, the peak power factors are generally higher than
those in p-type semiconductors. This indicates that n-type doping tends to result in higher
thermoelectric performance when the system is doped. However, the Seebeck coefficient
and electrical conductivity do not exhibit a distinct trend with increasing pressure. This
behavior is related to the different positions of the optimal carrier concentration.

In order to obtain an accurate calculation of the zT value for the system, it is necessary
to take into account the relaxation time. During the calculation, the relaxation time is
considered to be an unknown constant and is determined by comparing it with exper-
imental values. We adopt the simplifying assumption that the relaxation time remains
constant regardless of changes in doping concentration and pressure. When comparing
the experimental results obtained at a doping concentration of 0.39 × 1020 cm−3 and a
temperature of 300 K, the Seebeck coefficient calculated using the CRTA method in Tran-
sOpt is 122 µV/K. This value closely aligns with the experimental value of 114 µV/K [38].
Through this comparative analysis, it is observed that the relaxation time is estimated to be
approximately 4.55 femtoseconds. We will utilize this period of relaxation to engage in a
discussion regarding the computation of the zT value for Mg3Sb2.

The zT values of Mg3Sb2 were plotted as a function of pressure in Figures 8c and 9d,
incorporating the thermal conductivity previously calculated for Mg3Sb2. Some data are
listed in Table 2. Figure 8c illustrates the p-type semiconductor, whereas Figure 9d depicts
the n-type doping scenario. The zT values reported in this study were determined based
on the optimal power factor. Higher temperatures lead to higher zT values at the same
pressure. For p-type semiconductors, the zT value is initially at its lowest without the ap-
plication of additional pressure. However, increasing the pressure up to a certain threshold
enhances the peak value of zT. Beyond this threshold, further increases in pressure lead to a
decrease in the zT value. At a pressure of 3 GPa and a temperature of 800 K, the maximum
achieved zT value is 0.55, accompanied by a carrier concentration of 1.99 × 1020 cm−3. For
n-type semiconductors, the zT exhibits an increasing trend with rising pressure, reach-
ing its maximum value at 3 GPa, after which it starts to decline. At a temperature of
800 K, the highest achieved zT value is 1.53, accompanied by a carrier concentration of
1.99 × 1020 cm−3.

Table 2. This table list max zT of Mg3Sb2 at different temperatures under 3 GPa.

Main Carrier Type Temperature (K) Concentration
(×1020 cm−3) zT

Holes (p-type)
300 0.85 0.17
500 0.89 0.43
800 1.99 0.55

Electrons (n-type)
300 2.00 0.21
500 2.00 0.74
800 1.99 1.53

In summary, the thermoelectric performance of n-type doping in the Mg3Bi2−vSbv
system is generally superior to that of p-type doping. Under pressure modulation, the
power factor exhibits fluctuations. For the Mg3Sb2 system, the maximum zT value is
achieved at a pressure of 3 GPa and a temperature of 800 K, reaching a maximum of 1.53.
This result of the unrecorded high zT value of Mg3Sb2 might suggest that the zT value of
Mg3Bi2−vSbv systems can be further improved by synergistically tuning the temperature,
pressure, and carrier concentration.

4. Conclusions

We conducted a comprehensive investigation to examine the influence of pressure
on the thermoelectric properties of Mg3Bi2−vSbv. We used two computational methods,
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PBE-D3 and vdW-DFq, to include non-local vdW corrections in calculating the lattice
thermal conductivity of Mg3Sb2. The inclusion of vdW effects generally led to slightly
larger outcomes compared to simulations that did not take vdW corrections into account.
However, it is important to note that the observed difference was not statistically significant.

We calculated the lattice thermal conductivity of Mg3Sb2 at different pressures and
temperatures and conducted an analysis. The thermal conductivity of the lattice in this
structure decreases as the temperature increases. Additionally, the value decreases as
the pressure increases, eventually approaching zero at 7 GPa. We conducted a thorough
analysis of the contributions made by different phonon modes to the overall lattice thermal
conductivity. We then discussed the effect of pressure on the electronic transport properties
of Mg3Bi2−vSbv. Both Mg3Sb2 and Mg3Bi1.5Sb0.5 showed significantly higher power factors
compared to the other three systems when used for n-type doping. No distinct pattern in
their behavior was observed when different levels of pressure were applied. However, the
other three systems showed improvements in power factor.

The power factor increased with a higher Sb content and pressure for n-type doping,
surpassing that of p-type doping. The zT values of Mg3Sb2 were calculated at different
pressures and temperatures. Regardless of the type of doping, whether it is n-type or p-type,
the maximum values of the zT were achieved at a temperature of 800 K and a pressure of
3 GPa. A dopant concentration of 1.99×1020 cm−3 was found to be necessary to achieve the
maximum zT values. The highest achieved zT value for n-type doping was 1.53, while for
p-type doping, it reached 0.55. Our research uncovered the performance characteristics of
Mg3Bi2−vSbv under varying external pressure conditions, offering valuable insights into the
potential applications of this system in the realm of thermoelectric materials and additional
revenue to further improve zT by synergistically tuning the temperature, pressure, and
carrier concentration.
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