Preparation of Heterogeneous Fenton Catalysts Cu-Doped MnO2 for Enhanced Degradation of Dyes in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Procedures
2.3. Characterization
2.4. Heterogeneous Fenton Degradation of Dyes
2.5. Kinetics of Dye Degradation
3. Results and Discussion
3.1. Characterization of CDM
3.2. Catalytic Performance of CDM
3.3. Optimum Catalytic Conditions of 50%-CDM
3.4. Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, R.; Fan, Y.; Ye, R.; Tang, X.; Cao, X.; Yin, Z.; Zeng, Z. MnO2-Based Materials for Environmental Applications. Adv. Mater. 2021, 33, 2004862. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Liang, Q.; Tang, L.; Tang, J.; Wang, J.; Shao, B.; Gong, S.; He, Q.; Pan, Y.; Liu, Z. Construction of a novel S-scheme heterojunction piezoelectric photocatalyst V-BiOIO3/FTCN and immobilization with floatability for tetracycline degradation. J. Hazard. Mater. 2023, 443, 130251. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, Y.; Liu, S.; Yi, X.; Wang, C.; Fu, H. Fabrication strategies of metal-organic frameworks derivatives for catalytic aqueous pollutants elimination. Chem. Eng. J. 2023, 463, 142466. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Wang, C. Selective oxidation of aqueous organic pollutants over MOFs-based catalysts: A mini review. Chem. Eng. J. 2023, 459, 141538. [Google Scholar] [CrossRef]
- Li, R.; Tang, X.; Wu, J.; Zhang, K.; Zhang, Q.; Wang, J.; Zheng, J.; Zheng, S.; Fan, J.; Zhang, W.; et al. A sulfonate-functionalized covalent organic framework for record-high adsorption and effective separation of organic dyes. Chem. Eng. J. 2023, 464, 142706. [Google Scholar] [CrossRef]
- Costa-Serge, N.D.; Gonçalves, R.G.L.; Ramirez-Ubillus, M.A.; Li, C.; Hammer, P.; Chiron, S.; Nogueira, R.F.P. Pupo Nogueira, Effect of the interlamellar anion on CuMgFe-LDH in solar photo-Fenton and Fenton-like degradation of the anticancer drug 5-fluorouracil. Appl. Catal. B-Environ. Energy 2022, 315, 121537. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, J.; Zhang, J.; Lv, L.; Zhang, W. An in-situ strategy to analyze multi-effect catalysis in iron-copper bimetals catalyzed Fenton-like processes. Appl. Catal. B-Environ. 2021, 299, 120697. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, W.; Lin, D.; Zhu, L.; Xing, B.; Liu, Z. Construction of dual active sites on diatomic metal (FeCo-N/C-x) catalysts for enhanced Fenton-like catalysis. Appl. Catal. B-Environ. 2022, 309, 121256. [Google Scholar] [CrossRef]
- Lai, C.; Yang, L.; Li, L.; Ma, D.; Cheng, M.; Liu, S.; Zhang, M.; Yan, H.; Tang, C.; Chen, Z.; et al. Design of a highly efficient Cu-based catalyst with two functional areas: The role of Cu0 and oxygen vacancies in Fenton-like system. Chem. Eng. J. 2023, 464, 142420. [Google Scholar] [CrossRef]
- Nie, X.; Li, G.; Li, S.; Luo, Y.; Luo, W.; Wan, Q.; An, T. Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters. Appl. Catal. B-Environ. 2022, 300, 120734. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Wang, Z.; Lou, Y.; Pan, C.; Zhu, Y. Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets. Appl. Catal. B-Environ. 2022, 312, 121438. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Z.; Wang, L.; Wang, P.; Zhang, X.; Luo, K.; Li, J.R. A general and programmable preparation of α-MnO2/GO/CS aerogels used for efficient degradation of MB in wastewater. Sep. Purif. Technol. 2022, 301, 122034. [Google Scholar] [CrossRef]
- Niu, M.; Yang, H.; Zhou, H.; Yi, X.; Zhou, X.; Zhan, J.; Liu, Y. Synergy of the successive modification of cryptomelane MnO2 by potassium insertion and nitrogen doping for catalytic formaldehyde oxidation. Chem. Eng. J. 2022, 431, 133928. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Zhou, L.; Wang, X.; Kang, C. Enhanced degradation mechanism of tetracycline by MnO2 with the presence of organic acids. Chemosphere 2022, 286, 131606. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhan, S.; Yao, L.; Xiong, Y.; Tian, S. Highly porous alpha-MnO2 nanorods with enhanced defect accessibility for efficient catalytic ozonation of refractory pollutants. J. Hazard. Mater. 2022, 437, 129235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, D.; Zhang, Z.; Zhou, T.; Zou, J. Singlet oxygen-dominated activation of peroxymonosulfate by 3D hierarchical MnO2 nanostructures for degradation of organic pollutants in water: Surface defect and catalytic mechanism. Sep. Purif. Technol. 2022, 303, 122177. [Google Scholar] [CrossRef]
- Lu, J.; Guo, Z.; Li, M.; Dai, P.; He, M.; Kang, Y.; Sun, B.; Zhang, J. The increased oxygen vacancy by morphology regulation of MnO2 for efficient removal of PAHs in aqueous solution. Chemosphere 2023, 318, 137966. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, L.; Chen, Z.; Shen, B.; Wei, J.; Zeng, P.; Wen, X. Catalytic ozonation for metoprolol and ibuprofen removal over different MnO2 nanocrystals: Efficiency, transformation and mechanism. Sci. Total Environ. 2021, 785, 147328. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; He, F.; Xie, J.; Fang, D. Catalytic removal of toluene using MnO2-based catalysts: A review. Chemosphere 2023, 318, 137938. [Google Scholar] [CrossRef]
- Wu, S.; Liu, H.; Huang, Z.; Xu, H.; Shen, W. O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation. Appl. Catal. B-Environ. 2022, 312, 121387. [Google Scholar] [CrossRef]
- Chen, L.; Jia, J.; Ran, R.; Song, X. Nickel doping MnO2 with abundant surface pits as highly efficient catalysts for propane deep oxidation. Chem. Eng. J. 2019, 369, 1129–1137. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Wang, R.; Gao, M.; Xin, Y.; Zhang, G.; Xu, P.; Ma, D. Activation of peroxymonosulfate with cobalt embedded in layered delta-MnO2 for degradation of dimethyl phthalate: Mechanisms, degradation pathway, and DFT calculation. J. Hazard. Mater. 2023, 451, 130901. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huo, W.; Yin, S.; Jiang, D.; Zhang, Y.; Zhang, Z.; Liu, X.; Dong, F.; Wang, J.; Li, G.; et al. One-step hydrothermal synthesis of Cu-doped MnO2 coated diatomite for degradation of methylene blue in Fenton-like system. J. Colloid Interface Sci. 2019, 556, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, P.; Hu, K.; Duan, X.; Ren, Y.; Sun, H.; Wang, S. Sustainable redox processes induced by peroxymonosulfate and metal doping on amorphous manganese dioxide for nonradical degradation of water contaminants. Appl. Catal. B-Environ. 2021, 286, 119903. [Google Scholar] [CrossRef]
- Xu, Y.; Wen, Y.; Ren, T.; Yu, H.; Deng, K.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Engineering the surface chemical microenvironment over CuO nanowire arrays by polyaniline modification for efficient ammonia electrosynthesis from nitrate. Appl. Catal. B-Environ. 2023, 320, 121981. [Google Scholar] [CrossRef]
- Ma, M.; Li, W.; Tong, Z.; Yang, Y.; Ma, Y.; Cui, Z.; Wang, R.; Lyu, P.; Huang, W. 1D flower-like Fe3O4@SiO2@MnO2 nanochains inducing RGO self-assembly into aerogels for high-efficient microwave absorption. Mater. Des. 2020, 188, 108462. [Google Scholar] [CrossRef]
- Bo, Z.; Yi, K.; Yang, H.; Guo, X.; Huang, Z.; Zheng, Z.; Yan, J.; Cen, K.; Ostrikov, K. More from Less but Precise: Industry-relevant Pseudocapacitance by Atomically-precise Mass-loading MnO2 within Multifunctional MXene Aerogel. J. Power Sources 2021, 492, 229639. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, Y.; Chen, D.; Zhou, T.; Zhang, Q.; Zou, J. Activation of peroxymonosulfate by g-C3N4/ε-MnO2 microspheres for nonradical pathway degradation of organic pollutants in water: Catalytic mechanism and degradation path. Chem. Eng. J. 2023, 459, 141643. [Google Scholar] [CrossRef]
- Wei, W.; Wang, A.; Guo, K.; He, S.; Li, A.; Kang, X.; Fang, J. Enhanced degradation of micropollutants by UV/freshly formed colloidal MnO2: Reactive species, kinetics and pathways. Appl. Catal. B-Environ. 2022, 313, 121441. [Google Scholar] [CrossRef]
- Gu, W.; Li, C.; Qiu, J.; Yao, J. Facile fabrication of flower-like MnO2 hollow microspheres as high-performance catalysts for toluene oxidation. J. Hazard. Mater. 2021, 408, 124458. [Google Scholar] [CrossRef]
- Rajendran, K.; Pandurangan, N.; Vinod, C.P.; Khan, T.S.; Gupta, S.; Haider, M.A.; Jagadeesan, D. CuO as a reactive and reusable reagent for the hydrogenation of nitroarenes. Appl. Catal. B-Environ. 2021, 297, 120417. [Google Scholar]
- Francis, M.M.; Thakur, A.; Balapure, A.; Dutta, J.R.; Ganesan, R. Fabricating effective heterojunction in metal-organic framework-derived self-cleanable and dark/visible-light dual mode antimicrobial CuO/AgX (X = Cl, Br, or I) nanocomposites. Chem. Eng. J. 2022, 446, 137363. [Google Scholar] [CrossRef]
- Kumar, V.G.D.; Kumari, S.; Balaji, K.R.; Khan, A.A.; Ravikumar, C.R.; Basavaraja, B.M.; Santosh, M.S.; Rtimi, S. Singlet oxygen driven enhanced photocatalytic degradation of 1,3,7-trimethylpurine-2,6-dione using surfactant mediated PVA-CuO nanocomposites: Combining physical adsorption and photocatalysis. Chem. Eng. J. 2023, 462, 142187. [Google Scholar] [CrossRef]
- Hsieh, M.C.; Su, Y.H.; Hsu, M.H.; Lin, A.Y.C. Enhanced MnO2 oxidation of methotrexate through self-sensitized photolysis. J. Hazard. Mater. 2022, 438, 129494. [Google Scholar] [CrossRef] [PubMed]
- Shokry, R.; Abd El Salam, H.M.; Aman, D.; Mikhail, S.; Zaki, T.; El Rouby, W.M.A.; Farghali, A.A.; Al, W.; Ko, Y. MOF-derived core–shell MnO@Cu/C as high-efficiency catalyst for reduction of nitroarenes. Chem. Eng. J. 2023, 459, 141554. [Google Scholar] [CrossRef]
- Ma, G.; Syzgantseva, O.A.; Huang, Y.; Stoian, D.; Zhang, J.; Yang, S.; Luo, W.; Jiang, M.; Li, S.; Chen, C.; et al. A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol. Nat. Commun. 2023, 14, 501. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Song, L.; Zhao, Z.; Liu, W.; Zhou, Y.; Shang, J.; Cheng, X. CuFe2O4/CuO magnetic nano-composite activates PMS to remove ciprofloxacin: Ecotoxicity and DFT calculation. Chem. Eng. J. 2022, 446, 137183. [Google Scholar] [CrossRef]
- Suresh, R.; Karthikeyan, N.S.; Gnanasekaran, L.; Rajendran, S.; Soto-Moscoso, M. Facile synthesis of CuO/g-C3N4 nanolayer composites with superior catalytic reductive degradation behavior. Chemosphere 2023, 315, 137711. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhu, P.; Duan, M.; Liu, M.; Lu, H.; Huang, Z. Mechanism and degradation pathways insight of photocatalytic oxidation antibiotics by geometrical Ag/AgNbO3/BiVO4 plasmon Z-type heterojunction. Sep. Purif. Technol. 2023, 311, 123287. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, W.; Li, W.; Bai, X.; Zhao, J.; Tse, E.C.M.; Phillips, D.L.; Zhu, Y. Steering Electron-Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angew. Chem. Int. Ed. 2021, 60, 8236–8242. [Google Scholar] [CrossRef]
- GB5749-2022; Hygienic Standard for Drinking Water. National Health Commission of the People’s Republic of China: Beijing, China, 2022.
- Zhang, X.; Verbist, M.; Kamali, M.; Xue, Y.; Liu, Y.; Jin, P.; Costa, M.E.V.; Appels, L.; Cabooter, D.; Dewil, R. Activation of periodate with pinewood biochar-CuO composite for the removal of recalcitrant organic pollutants—Mechanisms and degradation products. Chem. Eng. J. 2023, 465, 142916. [Google Scholar] [CrossRef]
- Davarazar, M.; Kamali, M.; Venâncio, C.; Gabriel, A.; Aminabhavi, T.M.; Lopes, I. Activation of persulfate using copper oxide nanoparticles for the degradation of Rhodamine B containing effluents: Degradation efficiency and ecotoxicological studies. Chem. Eng. J. 2023, 453, 139799. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, T.; Han, C.; Bai, L.; Sun, X. One-step preparation of lignin-based magnetic biochar as bifunctional material for the efficient removal of Cr(VI) and Congo red: Performance and practical application. Bioresour. Technol. 2023, 369, 128373. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Afzal, S.; Xu, L.; Ding, T.; Li, F.; Zhang, M. Heterogeneous photo-Fenton degradation of acid orange 7 activated by red mud biochar under visible light irradiation. Environ. Pollut. 2023, 327, 121454. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Zhang, H.; Yang, X.; Dai, Z.; Sun, Y.; Liu, H.; Hu, Z.; Zheng, X. Ru single atom catalyst with dual reaction sites for efficient fenton-like degradation of organic contaminants. Appl. Catal. B-Environ. 2023, 320, 121952. [Google Scholar] [CrossRef]
- You, J.; Liu, C.; Feng, X.; Lu, B.; Xia, L.; Zhuang, X. In situ synthesis of ZnS nanoparticles onto cellulose/chitosan sponge for adsorption-photocatalytic removal of Congo red. Carbohydr. Polym. 2022, 288, 119332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, L.; Zhang, X.; Liu, H.; An, Y.; Zhong, Y.; Hu, Z.; Shan, X.; Wu, J.; White, M.; et al. Adsorption of Zn(ii) on amination@wood-aerogel and high-value reuse to ZnO/ZnS as an efficient photocatalyst. J. Mater. Chem. A 2022, 10, 18644–18656. [Google Scholar] [CrossRef]
- Khan, M.E.; Mohammad, A.; Ali, W.; Khan, A.U.; Hazmi, W.; Zakri, W.; Yoon, T. Excellent visible-light photocatalytic activity towards the degradation of tetracycline antibiotic and electrochemical sensing of hydrazine by SnO2–CdS nanostructures. J. Clean. Prod. 2022, 349, 131249. [Google Scholar] [CrossRef]
- Qian, W.; Huang, H.; Diao, Z.; Li, H.; Liu, H.; Ye, M.; Deng, Y.; Xu, Z. Advanced treatment of dye wastewater using a novel integrative Fenton-like/MnO2-filled upward flow biological filter bed system equipped with modified ceramsite. Environ. Res. 2021, 194, 110641. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.; Zhang, Z.; Wei, T.; Zhu, Y.; Ma, J. CuO with (0 0 1)-plane exposure efficiently induces peroxymonosulfate to form Cu-OOSO3-intermediates directly oxidizing organic contaminants in water. Chem. Eng. J. 2022, 441, 136100. [Google Scholar] [CrossRef]
- Chen, L.; Wu, D.; Jiang, T.; Yin, Y.; Du, W.; Chen, X.; Sun, Y.; Wu, J.; Guo, H. A novel heterogeneous catalytic system (AC/ZVI/CaO2) promotes simultaneous removal of phosphate and sulfamethazine: Performance, mechanism and application feasibility verification. Water Res. 2023, 237, 119977. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Xu, L.; Ma, J.; Li, Y.; Yin, Z.; Chen, D.; Wang, Q.; Han, J.; Qiu, J.; Yang, Z.; et al. Enhanced interfacial charge transfer and photothermal effect via in-situ construction of atom co-sharing Bi plasmonic/Bi4O5Br2 nanosheet heterojunction towards improved full-spectrum photocatalysis. Chem. Eng. J. 2023, 459, 141557. [Google Scholar] [CrossRef]
Samples | 0%-CDM | 10%-CDM | 20%-CDM | 30%-CDM | 40%-CDM | 50%-CDM |
---|---|---|---|---|---|---|
Cu:Mn | 1:0 | 1:10 | 1:5 | 1:3.3 | 1:2.5 | 1:2 |
Samples | SBET (m2/g) | Vp (cm3/g) | Dp (nm) | Dp* (nm) |
---|---|---|---|---|
0%-CDM | 45.85 | 0.26 | 16.50 | 2.04 |
10%-CDM | 57.12 | 0.22 | 11.97 | 2.04 |
20%-CDM | 107.83 | 0.78 | 20.90 | 18.00 |
30%-CDM | 176.89 | 1.28 | 20.05 | 22.05 |
40%-CDM | 243.79 | 0.93 | 8.90 | 3.62 |
50%-CDM | 259.89 | 1.18 | 11.37 | 3.55 |
Model | Constant | 0 mL H2O2 | 6 mL H2O2 |
---|---|---|---|
Pseudo-first-order model | R2 | 0.9448 | 0.9608 |
Qe cal (mg g−1) | 86.90 | 146.28 | |
K1 (min−1) | 0.0290 | 0.0210 | |
Pseudo-second-order model | R2 | 0.9958 | 0.9999 |
Qe cal (mg g−1) | 175.44 | 294.12 | |
K2 (min−1) | 0.0054 | 0.0033 |
Catalyst. | Dye | Co (mg/L) | Degradation Method | Time (min) | Ddye (%) | Ref. |
---|---|---|---|---|---|---|
Biochar-CuO | MB | 10 | Periodate-AOP | 30 | 100 | [42] 2023 |
CuO | RhB | 50 | PMS-AOP | 60 | 100 | [43] 2023 |
Fe3O4/Biochar | CR | 100 | PMS-AOP | 60 | 94.3 | [44] 2023 |
Fe3O4/biochar | AO 7 | 200 | photo-Fenton | 120 | 100 | [45] 2023 |
RuSA-N-C | AO 7 | 90 | Fenton-like | 30 | 100 | [46] 2023 |
3D-MnO2 | AO 7 | 50 | PMS-AOP | 5 | 98.3 | [16] 2022 |
ZnS | CR | 50 | photocatalytic | 120 | 94.8 | [47] 2022 |
ZnO/ZnS@AWA | CR | 40 | photocatalytic | 150 | 98.8 | [48] 2022 |
SnO2-CdS | CR | 10 | photocatalytic | 40 | 83.0 | [49] 2022 |
MnO2-ceramsite | AO 7 | 100 | Fenton-like | 60 | 85.2 | [50] 2021 |
Cu doped MnO2 | CR | 60 | Fenton-like | 3 | 100 | This work |
300 | 5 | 99.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, L.; Li, J.; Li, R.; He, R.; Gao, W.; Yu, N. Preparation of Heterogeneous Fenton Catalysts Cu-Doped MnO2 for Enhanced Degradation of Dyes in Wastewater. Nanomaterials 2024, 14, 833. https://doi.org/10.3390/nano14100833
Liu X, Wang L, Li J, Li R, He R, Gao W, Yu N. Preparation of Heterogeneous Fenton Catalysts Cu-Doped MnO2 for Enhanced Degradation of Dyes in Wastewater. Nanomaterials. 2024; 14(10):833. https://doi.org/10.3390/nano14100833
Chicago/Turabian StyleLiu, Xiao, Lu Wang, Jiran Li, Rong Li, Runze He, Wanglong Gao, and Neng Yu. 2024. "Preparation of Heterogeneous Fenton Catalysts Cu-Doped MnO2 for Enhanced Degradation of Dyes in Wastewater" Nanomaterials 14, no. 10: 833. https://doi.org/10.3390/nano14100833
APA StyleLiu, X., Wang, L., Li, J., Li, R., He, R., Gao, W., & Yu, N. (2024). Preparation of Heterogeneous Fenton Catalysts Cu-Doped MnO2 for Enhanced Degradation of Dyes in Wastewater. Nanomaterials, 14(10), 833. https://doi.org/10.3390/nano14100833