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Abstract: Infrared optoelectronic sensors have attracted considerable research interest over the
past few decades due to their wide-ranging applications in military, healthcare, environmental
monitoring, industrial inspection, and human–computer interaction systems. A comprehensive
understanding of infrared optoelectronic sensors is of great importance for achieving their future
optimization. This paper comprehensively reviews the recent advancements in infrared optoelectronic
sensors. Firstly, their working mechanisms are elucidated. Then, the key metrics for evaluating an
infrared optoelectronic sensor are introduced. Subsequently, an overview of promising materials and
nanostructures for high-performance infrared optoelectronic sensors, along with the performances of
state-of-the-art devices, is presented. Finally, the challenges facing infrared optoelectronic sensors are
posed, and some perspectives for the optimization of infrared optoelectronic sensors are discussed,
thereby paving the way for the development of future infrared optoelectronic sensors.
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1. Introduction

The infrared region of the electromagnetic spectrum, spanning near-infrared regime
(0.78–2.5 µm), mid-infrared regime (2.5–25 µm), and far-infrared regime (25–1000 µm),
is of significant interest due to its wide applications in optical communication, health
monitoring, industrial inspection, environment monitoring, and human–computer inter-
action systems [1]. Infrared optoelectronic sensors, which are able to selectively convert
infrared photons into electrical signals, play a crucial role in advancing the utilization of
infrared light [2,3]. According to their energy conversion processes, infrared optoelectronic
sensors can be broadly classified into photon-type, photothermal-type, and hybrid-type
devices. Photon-type optoelectronic sensors utilize photosensitive semiconductors to ab-
sorb incident infrared photons, exciting bound-state electrons to the conduction band of
the photosensitive semiconductor to generate photogenerated electron–hole pairs. These
electron–hole pairs are then separated and transported under external or built-in electric
fields to form electrical signals, achieving a direct conversion of light energy to electricity.
In contrast, photothermal-type infrared optoelectronic sensors first absorb infrared photons
to generate thermal energy through the photothermal effect. Then, that thermal energy
induces temporal or spatial variations in the temperature of the sensors, driving carrier
migration for electrical signal generation, thereby enabling indirect conversion of the light
energy to electricity. Hybrid-type infrared optoelectronic sensors leverage infrared photons
to simultaneously generate electron–hole pairs and induce temperature variations for mea-
surable electrical signals. Commercialized infrared optoelectronic sensors primarily rely
on epitaxially grown crystalline inorganic III–V compound semiconductors [4], which are
insufficient to meet the ever-changing demands of various applications. Hence, a variety
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of photosensitive materials and nanostructures have been developed to construct diverse
infrared optoelectronic sensors. These photosensitive materials and nanostructures include
narrow-bandgap two-dimensional (2D) semiconductor materials with high carrier mobility
and absorption coefficients [5,6], a narrow-bandgap conjugated polymer [7,8], ferroelectric
materials with high pyroelectric coefficients [9,10], and homo-/heterojunction structures
with a strong built-in electrical field for carrier separation and transport [11–14]. With
diverse functional materials and device configurations, the performance metrics of in-
frared optoelectronic sensors, including their response range, responsivity, detectivity, and
response speed, can vary significantly, tailoring them to specific demands. The rapid devel-
opment of infrared optoelectronic sensors, together with the daily evolution and industrial
requirements of infrared applications, highlights the critical need for a comprehensive
understanding of these sensors.

This paper provides a comprehensive review of recent advancements in infrared
optoelectronic sensors. It begins by elucidating their working mechanisms, followed by
an introduction to the key metrics utilized to evaluate device performance. Next, it offers
an overview of promising materials and nanostructures for high-performance infrared
optoelectronic sensors, along with the room-temperature performance of state-of-the-art
devices. Moreover, it outlines the recent applications of infrared optoelectronic sensors.
Finally, it discusses the challenges and prospects facing infrared optoelectronic sensors,
providing guidance for the development of future infrared optoelectronic sensors.

2. Working Mechanisms
2.1. Photovoltaic Effect

The photovoltaic effect refers to the phenomenon by which photoexcited electron–hole
pairs are generated, separated, and transported under the driving force of internal electric
fields to produce electric signals [15]. Based on the photovoltaic effect, infrared optoelec-
tronic sensors absorb light to generate electron–hole pairs, which are then extracted and
accelerated by internal electric fields, resulting in sizable photocurrent/photovoltaic signals.
Their internal electric fields mainly arise from the formation of a depletion region at the inter-
face of Schottky junctions [16,17], semiconducting homojunctions/heterojunctions [18–21],
and semiconductor/electrolyte junctions [22,23].

The energy difference between the Fermi levels of metals and semiconductors causes
a large potential difference, forming Schottky barrier junctions at metal/semiconductor
interfaces. The mechanism of electrical signal generation in Schottky junctions can be
understood with the assistance of energy band diagrams. Figure 1a illustrates the energy
band diagram of a typical Schottky junction formed at a Au/InSe interface [24]. Due to the
Fermi level difference between Au and InSe, electrons in the InSe migrate toward the Au
electrode, leaving behind positively charged ions on the InSe side. Consequently, the energy
bands of the InSe are bent upward to form a Schottky junction at the Au/InSe interface.
Upon illumination, photoexcited electron–hole pairs can be separated and extracted by the
Schottky junction, generating electrical signals.

A p-n junction is formed due to the diffusion of carriers under the driving force of
the carrier concentration difference in p-type and n-type semiconductors. For example,
when p-type black phosphorous (BP) and n-type PdSe2 come into contact, the holes in BP
and electrons in PdSe2 diffuse in opposite directions, establishing a built-in electric field at
the p-BP/n-PdSe2 interface, as shown in Figure 1b [25]. Upon illumination, electrons in
the valence band of BP can be excited to the conduction band, generating photogenerated
electron–hole pairs. Subsequently, photogenerated electron–hole pairs near the BP/PdSe2
interface can diffuse to the p-n junction, where they are separated and swept toward
opposite directions by the built-in electric field, forming electrical signals in the external
circuit. Infrared optoelectronic sensors based on p-n junctions can generate photogenerated
electron–hole pairs based on two main approaches: the band-to-band transition of electrons
within an individual semiconductor (Figure 1b), and the interlayer transition of electrons
at the interface of type-II staggered semiconductors. Figure 1c presents a representative
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energy band diagram of interlayer electron transition based on a type-II MoTe2/MoS2
heterostructure [26]. Under illumination, the electrons in the valence band of the MoTe2 can
be excited to the conduction band of the MoS2, thereby creating electrical signals. Due to the
small energy offset (0.657 eV) between the valence band of the MoTe2 and the conduction
band of the MoS2, an infrared response is beyond the limits of the intrinsic bandgaps of the
MoS2 and MoTe2 materials.
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Figure 1. Working mechanisms of photon-type infrared optoelectronic sensors. (a) Working mecha-
nism of an infrared optoelectronic sensor based on Schottky junctions [24] (with permission from the
American Chemical Society, 2018). (b) Working mechanism of an infrared optoelectronic sensor based
on a p-n junction with intralayer transition [25] (with permission from the American Chemical Society,
2020). (c) Working mechanism of an infrared optoelectronic sensor based on a p-n junction with
interlayer transition [26] (with permission from the American Chemical Society, 2016). (d) Working
mechanism of an infrared optoelectronic sensor based on a semiconductor/electrolyte junction [23]
(with permission from the American Chemical Society, 2022).
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A semiconductor/electrolyte junction is established because of the disparity between
the work functions of semiconductors and redox potential electrolytes. Figure 1d displays
the working mechanism of a representative infrared optoelectronic sensor based on a
semiconductor/electrolyte junction, where InSe is contact with the electrolyte [23]. Since the
work function of InSe is smaller than the redox potential of the electrolyte, electrons in the
InSe flow into the electrolyte until an electronic equilibrium is achieved. As a consequence,
a built-in electric field is established and works similar to a Schottky junction. Upon
illumination, the photogenerated electron–hole pairs generated in the InSe are separated
and transferred under the driving force of the built-in electric field, with electrons and holes
moving toward the Pt and ITO electrodes, respectively. Therefore, light-induced electrical
signals are created in the external circuit.

2.2. Photoconductive Effect

The photoconductive effect is an effect that means the conductivity of semiconductors
changes with the incident light’s intensity. The generation of an electric signal in infrared
optoelectronic sensors based on the photoconductive effect is quite similar to that based
on the photovoltaic effect, wherein photogenerated electron–hole pairs are created by
absorbing photons. However, in photoconductive sensors, the separation and transport
of photogenerated electron–hole pairs require an external electric field as the driving
force [27,28].

2.3. Pyroelectric Effect

The pyroelectric effect refers to the phenomenon in which electric charges are gener-
ated in response to a change in spontaneous polarization caused by a temperature variation,
which typically occurs in certain polar materials [29]. Pyroelectric infrared optoelectronic
sensors have several advantages over other types of sensors, such as room-temperature
operation, a wide wavelength response, and low cost, enabling their use for various appli-
cations [30–32]. To elucidate the working mechanism of pyroelectric infrared optoelectronic
sensors, the process of electrical signal generation in a device utilizing a ferroelectric
PMN-PT layer as its pyroelectric component is introduced. Figure 2a exhibits the schematic
diagram and output current of a PMN-PT pyroelectric infrared optoelectronic sensor, where
the PMN-PT layer is sandwiched between the top Ag nanowire electrode and the bottom
Au electrode [33]. Under dark conditions (dT/dt = 0), the electric dipoles within the
PMN-PT layer are well aligned and oscillate around their aligned axes to a certain degree,
resulting in a stable spontaneous polarization strength. As a consequence, negative and
positive charges are attracted to the Ag nanowire electrode and the Au electrode, respec-
tively, reaching an equilibrium state at which no current can be detected in the external
circuit. Upon illumination, the temperature of the PMN-PT sensor increases due to pho-
tothermal effect (dT/dt > 0), intensifying the oscillation of the electric dipoles and reducing
the spontaneous polarization strength in the PMN-PT. Hence, the attracted negative and
positive charges move toward the Au electrode and the Ag nanowire electrode, respectively,
until a new thermal equilibrium state is established. Consequently, a negative current
signal is observed in the external circuit. When the light is removed, the temperature of the
sensor gradually decreases to its original state (dT/dt < 0), which suppresses the oscillation
of electric dipoles in the PMN-PT, leading to a higher average spontaneous polarization
strength. Consequently, a positive current signal is generated in the external circuit. This
light-induced pyroelectric current can be obtained using the following equation [34]:

Ipyro =
ηpCSP

cdA
(1)

where η stands for the emissivity of the illuminated device surface, P is the incident light’s
intensity, d is the device thickness, Pc represents the pyroelectric coefficient, c stands for the
specific heat capacity, and A is a parameter related to the device’s thermal time constant.
For years, the pyroelectric effect has been considered to only exist in non-centrosymmetric
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materials, and always exhibited a sharp decay away from the phase transition temperature,
thereby limiting its working temperature. In 2020, the pyroelectric effect was demonstrated
in interfaces with polar symmetry, which exhibit a weak temperature dependence, suitable
for utilization across a wide temperature range [35].

2.4. Photothermoelectric Effect

The photothermoelectric effect leverages the coupling of the photothermal effect and
thermoelectric effect in semiconductors to generate electric potential [36]. Figure 2b shows
a typical photothermoelectric infrared optoelectronic sensor which possesses a planar
device configuration with electrodes positioned at both ends of a semiconductor [37].
When localized illumination is applied to the sensor, a temperature gradient ∆T within
the semiconductor is established due to the nonuniform heating caused by the incident
light. The temperature gradient ∆T drives charge carriers to diffuse from the hotter side
to the colder side of the semiconductor. Consequently, an electric potential difference ∆V
is produced owing to the Seebeck effect. The relationship between the electric potential
difference ∆V and the temperature gradient ∆T can be expressed utilizing the following
formula [38]:

∆V = S∆T (2)

where S represents the Seebeck coefficient of the semiconductor. The Seebeck coefficient
can be described by the Mott equation [39]:

S = −
π2k2

BT
3e

(
d(ln σ)

dE

)∣∣∣∣
E=Ef

(3)

where kB stands for the Boltzmann constant, T represents the absolute temperature, e is
the elementary charge, σ is the electrical conductivity, and Ef stands for the Fermi level.
According to this equation, semiconductor materials with high electrical conductivity, a
high light absorption coefficient, low thermal conductivity, and a low heat capacity can
contribute to high-performance photoelectric infrared optoelectronic sensors.

Besides n-type or p-type semiconductors, photothermoelectric infrared optoelectronic
sensors can also be constructed by utilizing the p-n junctions in certain materials. As
illustrated in Figure 2c, a p-n homojunction in a BP material can be achieved based on
electrical doping [40]. Under illumination, the electrons and holes in the homojunction
are driven by the temperature gradient and transported toward opposite directions, re-
sulting in enhanced current signals on both sides. Since the fundamental driving force for
charge carrier diffusion is the temperature gradient-induced carrier concentration gradient,
highly sensitive thermoelectric infrared optoelectronic sensors can be realized with device
configurations that allow for larger temperature gradients.
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Figure 2. Working mechanism of photothermal-type infrared optoelectronic sensors. (a) Working
mechanism of an infrared optoelectronic sensor based on the pyroelectric effect [33] (with permission
from the American Chemical Society, 2016). (b) Working mechanism of an infrared optoelectronic
sensor on the basis of the photothermoelectric effect in a single semiconductor [37] (with permission
from the American Chemical Society, 2015). (c) Working mechanism of an infrared optoelectronic
sensor based on the photothermoelectric effect in a p-n semiconducting homojunction. CB, VB, and
Eg stand for the conduction band, valence band and bandgap of pristine BP, respectively. CB*, VB*,
and Eg* are the conduction band, valence band, and bandgap of doped BP [40] (with permission
from Springer Nature, 2022).

2.5. Others

Taking the advantages of photovoltaic and photothermal effects, infrared optoelec-
tronic sensors can be constructed based on the pyroelectric–photovoltaic effect, which
is a coupling of pyroelectric polarization, semiconductor/ferroelectrics characteristics,
and photoexcitation processes [41]. Figure 3a illustrates the working mechanism of a
pyroelectric–photovoltaic infrared optoelectronic sensor, which is constructed based on a
p-Si/n-Ag2Se heterojunction [42]. Upon light illumination, photogenerated electrons and
holes move toward the Ag2Se and Si sides due to the photovoltaic effect, respectively. As
a result, a positive electric signal is produced in the external circuit. Meanwhile, a rapid
transient increase in the temperature is achieved in the Ag2Se because of the photothermal
effect, leading to a positive pyroelectric signal traversing the Ag2Se. Since the light-induced
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photovoltaic signal and pyroelectric signal possess the same polarity, the electrical signal of
a pyroelectric–photovoltaic infrared optoelectronic sensor can achieve enhanced infrared
responses compared to infrared optoelectronic sensors based on the pyroelectric effect or
photovoltaic effect alone.
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(a) Working mechanism of an infrared optoelectronic sensor based on the pyroelectric–photovoltaic
effect [42] (with permission from the American Chemical Society, 2022). (b) Working mechanism
of an infrared optoelectronic sensor based on the pyroelectric–photothermoelectric effect [43] (with
permission from the American Chemical Society, 2023).

The pyroelectric–photothermoelectric effect is another vital mechanism for construct-
ing infrared optoelectronic sensors because it maximizes the light-induced heat to gen-
erate electrical signals. Figure 3b illustrates the working mechanism of a pyroelectric–
photothermoelectric infrared optoelectronic sensor, where a heterostructure composed of
CH3NH3PbI3 (MAPbI3) and CdS materials serves as the photosensitive component [43].
Under illumination, the temperature of the sensor gradually increases due to the photother-
mal effect, leading to temporal variations in the device temperature for pyroelectric signals.
Moreover, the photothermal effect can create a longitudinal temperature gradient in the
MAPbI3/CdS heterojunction, thereby resulting in photothermoelectric signals that align
with the pyroelectric signals. The combination of the pyroelectric and photothermoelectric
effects is promising for achieving high responsivity.



Nanomaterials 2024, 14, 845 8 of 35

3. Key Performance Metrics

The critical parameters for evaluating the performance of infrared optoelectronic
sensors include their spectral response range, responsivity R, response speed, gain G,
Noise-equivalent power NEP, specific detectivity D*, on/off ratio Rratio, linear dynamic
range LER, and external quantum efficiency EQE.

The spectral response range refers to the region of wavelength that the infrared
optoelectronic sensors can detect. Each infrared optoelectronic sensor can only respond
to a specific wavelength due to the limitations imposed by their photosensitive material’s
properties, working mechanisms, and device configurations.

Responsivity R is one the most important device parameters for infrared optoelectronic
sensors, as it represents the magnitude of the photocurrent produced by illumination at a
given light intensity and wavelength. Responsivity R can be defined as

R =
Iph

Pin
(4)

where Iph is the light-induced current density (A cm−2) of the infrared optoelectronic sensor
and Pin stands for the incident light power density (W cm−2).

Response speed can be evaluated by the response time and recovery time. Generally,
the response time and recovery time are defined as the time required for the photocur-
rent/photovoltage to increase from 10% to 90% and to decrease from 90% to 10%, respec-
tively. The response speed relies on many factors, especially material properties, interface
defects, and temperature.

Gain G reflects the magnitude of recycled photoexcitation based on the accumulation
mechanism, which is determined by the lifetime of excitons. Gain G can be expressed using
the formula

G =
τlife

τtransit
=

τlife

L2/µV
(5)

where τlife stands for the lifetime of photogenerated excitons and τtransit means the time
taken for photogenerated excitons to transit through a channel. L represents the channel
length, µ is the carrier mobility, and V is the voltage exerted on the channel. In a photo-
voltaic optoelectronic infrared sensor, the gain is equal to 1 unless carrier multiplication
effects are involved. However, in a photoconductive optoelectronic infrared sensor, one
type of carrier (typically holes) is captured in trap states, while the other type of carrier
(electrons) traverses the channel. If the lifetime τlife of the holes is larger than the transit
time τtransit of the electrons, the electrons can recirculate many times before recombining
with the captured holes, resulting in a gain greater than 1. In this case, increasing the
trapping of holes can lead to a higher gain [44,45].

Noise-equivalent power (NEP) is the minimum light power required to distinguish
a signal from noise in an optoelectronic sensor. The NEP can be utilized to evaluate the
sensitivity of the device and is defined using the equation

NEP =

(
In

∆ f 1/2R

)
(6)

where In stands for the noise current detected in dark conditions and ∆f represents the
electrical bandwidth of the noise measurement.

The specific detectivity D* reflects the sensitivity of the optoelectronic sensors to weak
light detection and is given by the following formula:

D∗ =
A1/2R
NEP

=
R(A∆ f )1/2

In
(7)

where A is the effective device area. The unit of specific detectivity D* is Jones (1 Jones = 1 cm
Hz1/2 W−1).
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The on/off ratio Rratio is the ratio between the dark noise current and the photocurrent
and can be calculated by the formula

Rratio =
Iph

In
(8)

The linear dynamic range LDR is the specific range in which the photocurrent shows a
linear relationship to the incident light power. The linear dynamic range LDR is described
by the following equation:

LDR = 20 log
(

Pmax

Pmin

)
= 20 log

(
Jmax

Jmin

)
(9)

where Pmax stands for the maximum incident light power beyond which the photoresponses
deviate from their linear region and Pmin represents the minimum detectable light density.
Jmax and Jmin are the maximum and minimum values of photocurrent density, respectively.

The external quantum efficiency EQE depends on the number of primary charge
carriers generated per single input photon, which plays an important role in determining
responsivity. External quantum efficiency EQE can be calculated using the formula

EQE =
Iphhν

Pine
(10)

where hν represents the photon’s energy.

4. Materials and Their Performances
4.1. 2D Semimetals and Semiconductors

Two-dimensional materials hold great potential for building highly integrated and
efficient infrared optoelectronic sensors due to their thickness-tunable bandgaps, high
carrier mobility, and strong optical absorption. Because their infrared range corresponds to
a low photon energy of about 1.55 eV, most of the 2D materials used in infrared optoelec-
tronic sensing devices are semimetals and narrow-bandgap semiconductors. Semimetals,
such as graphene, TaAs, PdTe2, WTe2, and TaIrTe [46–48], possess gapless electronic band
structures with linear cones, enabling broadband infrared sensing extending to the far-
infrared spectral region [49]. The lifetime of the photogenerated carriers in semimetals
is dramatically decreased via fast electron–electron scattering, thereby allowing for rapid
responses [50]. However, because of their gapless nature, infrared optoelectronic sen-
sors based on semimetals usually suffer from high dark currents. Narrow-bandgap 2D
semiconductors, including BP [51], black AsP (B-AsP) [52], Bi2O2Se [53], tellurene [54],
metal chalcogenides, and transition-metal dichalcogenides [55], exhibit thickness-tunable
bandgaps, which contribute to their low dark currents. Table 1 summarizes the bandgaps of
promising 2D materials for infrared sensing. Among these 2D materials, graphene, BP, and
metal chalcogenides are most frequently utilized to fabricate infrared optoelectronic sensors.

Graphene, first mechanically exfoliated from graphite in 2004 [56], has become popular
due to its intriguing electronic and optical properties. Graphene possesses an in-plane
chemical bond connecting its carbon atoms and stacks through the van der Waals forces
between its layers. In graphene, a single layer of carbon atoms with sp2 hybridization
arranged in a honeycomb lattice, with each carbon atom in-plane bonded to its three nearest
carbon atoms, as illustrated in Figure 4a [57]. Graphene is gapless and dispersed linearly
near the Dirac point, making it theoretically capable of responding to all photons. This
property offers advantages for wideband photodetection, spanning from the ultraviolet to
the terahertz spectral regimes [58]. The conductivity and mobility of graphene are mainly
determined by its defects and are nearly independent of temperature [59]. With high carrier
mobility (up to 2 × 105 cm2 V−1 s−1) at room temperature [60], graphene enables ultrafast
infrared sensing based on photovoltaic, photothermoelectric, and photoconductive effects.
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BP is a direct-bandgap semiconductor with a thickness-tunable bandgap ranging from
0.3 eV to 2.0 eV. Since its rediscovery in 2014, BP has emerged as a preferred candidate for
infrared optoelectronic sensing due to its unique characteristics, including its strong in-
tralayer anisotropy, high mobility (103 cm2 V−1 s−1), and strong optical absorption [61–63].
Bulk BP possesses an orthorhombic structure with a D2h

18 space group symmetry. Within
a single atomic layer of BP, each phosphorous atom bonds with three neighboring atoms,
resulting in two distinct directions: the armchair direction along its x axis, and the zigzag
direction along its y axis, as illustrated in Figure 4b [64]. The highly anisotropic arrange-
ment of phosphorous atoms results in anisotropic electric band dispersion, thereby leading
to anisotropic optoelectronic properties. Benefiting from its moderate bandgap, large
tunability, and anisotropy, few-layer BP holds significant promise for polarized infrared
optoelectronic sensors. Due to its noncentrosymmetric structure, BP is expected to exhibit
pyroelectricity. In addition, the bandgap of BP demonstrates anomalous strain dependence
because of its puckered lattice structure, enabling the continuous and reversible tuning
of its operating wavelengths during infrared optoelectronic sensing through strain mod-
ulation. With its combination of a narrow bandgap, high charge carrier concentration,
and noncentrosymmetric structure, BP enables infrared optoelectronic sensing based on
photovoltaic, photothermoelectric, and pyroelectric effects [65].

Non-transition metal chalcogenides with narrow and tunable bandgaps are emerging
as popular candidates for the construction of infrared optoelectronic sensors. These materi-
als possess chemical formulas of MX, MX2, or M2X3, where M can be In, Ge, Bi, Sb, Pt, or Sn,
and X can be S, Se, or Te. Among the non-transition metal chalcogenides, In-based narrow-
bandgap materials such as InSe, α-In2Se3, and β-In2Se3 are notable. InSe exhibits a direct
bandgap of 1.26 eV in bulk, and an indirect bandgap of 2.72 eV in monolayer [66]. Due to
its small electron effective mass, InSe has a high electron mobility of about 103 cm2 V−1 S−1

and a low electron–hole recombination rate, enabling a high optoelectronic response. Sur-
face doping using AuCl3 can modify the energy band structure of InSe, which facilitates the
separation of photogenerated electron–hole pairs, leading to an improved optoelectronic
sensing performance [67]. Two-dimensional α-In2Se3 with a noncentrosymmetric crystal
structure exhibits robust ferroelectricity in both in-plane and out-of-plane directions, even
when reduced to a monolayer [68]. The bandgap of α-In2Se3 shows a strong thickness
dependence, which is 1.3 eV for bulk [69]. The ferroelectricity and direct bandgap of α-
In2Se3 make it well suited for applications in infrared optoelectronics. β-In2Se3 is predicted
to be an indirect-bandgap semiconductor at all thicknesses, with bandgap changes from
1.45 eV (bulk) to 1.5 eV (6.2 nm in thick) [70]. GeSe has a distorted NaCl-type crystalline
structure, with an indirect bandgap of 1.10 eV in bulk and a direct bandgap of 1.87 eV
in monolayer [71]. The detection wavelength of a GeSe-based optoelectronic sensor is
limited to about 1 µm due to its interband transitions, which can be broadened to 1.6 µm
by introducing Ge vacancies [72]. The Sn-based narrow-bandgap metal chalcogenides
include SnS, SnSe, and SnSe2. Orthorhombic SnS is an anisotropic layered semiconductor.
It possesses a mid-infrared direct bandgap of 1.19 eV and an absorption coefficient higher
than 104 cm−1 [73]. SnSe has an orthorhombic lattice configuration, maintaining an indirect
bandgap while changing its thickness from bulk (0.89 eV) to monolayer (1.63 eV) [70]. SnSe
has a high optical absorption coefficient of about 105 cm−1, which is about 1–2 orders of
magnitude larger than that of silicon and GaAs [74]. Besides its attractive bandgap and
absorption characteristics, SnSe also generates a recorded thermoelectric figure-of-merit
of about 2.6 from its anharmonicity, making it well-suited for constructing infrared pho-
tothermoelectric optoelectronic sensors [75]. SnSe2 has an indirect bandgap that changes
from 1.2 eV (bulk) to 2.04 eV (monolayer) [70]. Theoretical calculation results show that the
valence band and conduction band of SnSe2 reside at a point along the line G m and the
M point, respectively. When the thickness of SnSe2 is reduced to a monolayer, its valence
band becomes flat, increasing the density of tis states. The density of the states of mono-
layer and bilayer SnSe2 exhibit van Hove singularities [70]. These characteristics enable
SnSe2’s high photoabsorption. Tetradymites are an important class of non-transition metal
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chalcogenides for infrared optoelectronic sensing and include Bi2S3, Bi2Se3, Bi2Te3, Sb2Se3,
and Sb2Te3. Bi2S3, Bi2Se3, Bi2Te3, and Sb2Te3 possess direct bandgaps of 1.3 eV, 0.35 eV,
0.21 eV, and 0.45 eV in bulk, making them ideal for absorbing infrared photons. Moreover,
Bi2Se3, Bi2Te3, and Sb2Te3 also exhibit outstanding thermoelectric properties owing to their
high electron mobility induced by a strong spin-orbit [76,77]. The combination of a narrow
bandgap and high thermoelectric performance makes tetradymites promising for infrared
sensing applications.
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and band structure of graphene [57] (with permission from the American Chemical Society, 2018).
(b) Atomic structure of BP [64] (with permission from Springer Nature, 2018). (c) Elements for
transition metal chalcogenides, and structures of transition metal chalcogenides [78] (with permission
from the American Chemical Society, 2021).

Transition metal chalcogenides share the same chemical formula as non-transition
metal chalcogenides. However, in transition metal chalcogenides, the M stands for transi-
tion metals, such as Mo, W, Hf, and Zr (Figure 4c) [78]. Transition metal chalcogenides can
exist in various structures, including 1H, 1T, distorted 1T, 2H, and 3R, where 1T, 2H, and 3R
are the most stable and common. The conductivity of transition metal chalcogenides varies
greatly with their composition, exhibiting semiconducting or metallic properties. Semicon-
ducting transition metal chalcogenides undergo a transition from an indirect bandgap to a
direct bandgap as their thickness decreases to monolayer or bilayer. The bandgaps of typi-
cal semiconducting transition metal chalcogenides are in the range of 0.21–2.1 eV [78,79],
which can be modulated through strain engineering, electric fields, temperature, and alloy-
ing to meet specific demands. For example, DFT calculations predict that the bandgap of
monolayer transition metal chalcogenides can be adjusted from 0.68 eV to 2.34 eV through a
small tensile strain of 8% [80]. Furthermore, strain can induce an indirect-to-direct bandgap
transition in monolayer ZrS3 and HfS3. Transition metal dichalcogenides, including MoS2,
MoSe2, MoTe2, WS2, WSe2, and MoTe2, are popular materials for infrared sensing because
their monolayers exhibit strong light–matter interactions [78]. MoS2 is one of the most
popular transition metal chalcogenides for infrared sensing, with a bandgap ranging from
1.2 eV to 1.9 eV, corresponding to a photodetection of wavelengths of about 0.652–1.033 µm.
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Experimental results indicate that monolayer MoS2 possesses high-field-effect electron
and hole mobilities of about 260 cm2 V−1 s−1 and 175 cm2 V−1 s−1 [81], respectively. This
facilitates fast infrared photodetection.

Table 1. Bandgaps of promising 2D semiconductors for infrared optoelectronic sensors.

Material
Bandgap (eV)

Ref.
Bulk Monolayer

Graphene 0 0 [60]

Tellurene 0.325 1.265 [82]

BP 0.3 2.0 [83]

B-AsP 0.3 0.92 [84,85]

InSe 1.26 2.72 [66]

α-In2Se3 1.3 1.55 [86]

β-In2Se3 0.7 1.29 [87]

SnS 1.19 2.46 [73]

SnSe 0.89 1.63 [70]

SnSe2 1.2 2.04 [72]

Bi2S3 1.3 -

[70]

Bi2Se3 0.35 -

Bi2Te3 0.21 -

Sb2Te3 0.45 -

ZrSe3 0.75 1.17

GeSe 1.1 1.87 [71]

TiS3 1.02 1.06
[79]

TiSe3 0.21 0.57

MoS2 1.2 1.9 [81]

MoSe2 1.1 1.44 [88,89]

MoTe2 0.88 0.90 [90–93]

WS2 1.3 2.05 [89,94–96]

WSe2 1.2 1.70 [97,98]

WTe2 0.7–0.81 0.18 [78]

ReSe2 1.09 1.24 [99]

PdSe2 0.03 1.43 [100]

Bi2O2Se 0.8 - [101]

In addition to the aforementioned 2D materials, transition metal chalcogenophos-
phates such as FePS3, FePSe3, Mn2P2X3, and Ni2P2Te3, and Bi-based oxychalcogenides such
as Bi2O2Se, are also promising candidates for constructing infrared optoelectronic sensors.
Furthermore, 2D materials can be utilized in various heterostructures to effectively generate
and separate photogenerated electron–hole pairs for infrared sensing. Heterostructures
intended for interlayer exciton generation have attracted considerable attention because
they break the limits of intrinsic bandgaps. Their interlayer excitons exhibit a lower-energy
spectral peak with a much weaker intensity compared to intralayer excitons, granting them
a high photoresponse. The performances of advanced infrared optoelectronic sensors based
on 2D materials are presented in Table 2.
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Table 2. Performance of advanced infrared optoelectronic sensors based on 2D semiconductors.

Active Material
Spectral

Range (µm)
Responsivity

(A W−1)
Specific Detectivity

(Jones)
Response Speed (µs)

Ref.
Rise Time Fall Time

Graphene 1.55–11 0.28–38 1 × 109 - - [102]
Graphene 5–20 7.62 × 106 6.24 × 1013 [103]
Antenna/graphene 5.5–7.5 0.27 - 9.5 × 10−3 - [104]
Graphene/SnS2 0.365–2.24 2 1.8 × 1010 - - [105]
Graphene/Si 0.375–3.8 0.1 - 1 - [106]
Graphene/Si 1.1–4.0 0.003–0.011 1.6 × 1011 0.02–0.03 - [107]
Tellurium 0.52–3.0 1.36 × 103 1.15 × 1010 48.7–62.7 62.7–78.0 [108]
Tellurium 0.83–1.55 6.65 × 103 4.68 × 108 31.7 25.5 [109]
Tellurium 0.635–1.55 9.38 1.19 × 1010 70 - [110]
BP 0.52–1.45 1.06 1 × 1011 - - [40]
BP/MoS2 2.3–3.5 - 1.2 × 1010 - - [111]
B-AsP 0.52–4.6 0.023 2.7 × 1010 0.4 0.6 [112]
B-AsP 0.98–1.55 1.02 × 104 - 8.2 × 104 9.2 × 104 [113]
InSe 0.976 0.38 - 4.1 × 10−3 - [114]
InSe 0.5–1.45 56 5.70 × 1010 0.17 × 106 - [115]
InSe/PdSe2 ≤1.65 58.8 1 × 1010 7.2 × 104 1.8 × 105 [116]
α-In2Se3 0.325–1.8 1.081 × 103 5.61 × 109 8 × 103 - [117]
α-In2Se3/Si 0.405–0.98 0.56 1.6 × 1013 43 - [118]
β-In2Se3/Si 0.265–1.3 6.4 4.3 × 1010 2.2 - [119]
In2Se3 0.59–0.94 5.6 7 × 1010 1.4 × 105 2.5 × 104 [120]
SnS 0.405–0.808 1.62 × 104 - 3.84 × 104 3.98 × 104 [121]
SnSe 0.532–1.064 1.4 × 10−3 2.36 × 108 5 × 103 2.8 × 104 [122]
SnSe 0.44–0.85 78.6 9 × 1011 2.3 × 105 2.7 × 105 [123]
SnSe/InSe 0.405–0.808 0.35 5.8 × 109 2.6 × 105 1.7 × 105 [124]
SnSe2 0.45–1.55 0.761 1.03 × 1012 2.13 × 104 2.04 × 104 [125]
SnSe2/MoSe2 0.39–1.088 7.09 6.44 × 1012 2.1 × 105 - [126]
MoS2 0.532–1.064 1.65 × 104 - 4.63 × 105 3.15 × 105 [127]
MoS2 0.473–2.712 0.0475 1.26 × 107 1 × 104 1.6 × 104 [128]
MoSe2/GaAs 0.405–0.808 5.25 1.13 × 1013 2.9 1.8 [129]
MoSe2 0.52–0.94 2.25 1010 490 495 [130]
MoTe2/MoS2 0.4–1.48 9.74 - 42 - [131]
WS2/Ge 0.2–4.6 0.634 4.3 × 1011 9.8 12.7 [132]
WSe2/Si 0.265–1.55 0.689 1.59 × 1012 0.215 - [133]
WTe2 0.32–1.2 8.5 × 10−4 1.23 × 108 3.2 × 105 3.7 × 105 [134]
Bi2Se3/Si ≤0.808 24.28 4.39 × 1012 2.5 5.5 [135]
Sb2Se3/Si 0.43–0.98 - - 1.6 × 105 2.8 × 105 [136]
Sb2Te3/Si 0.405–1.55 0.15 1.65 × 1014 98 133 [137]
ReS2/perovskite 0.532–2.0 2.2 1.8 × 1014 443 720 [138]
ReSe2/PtSe2 0.405–0.98 0.153 7.72 × 1011 - - [139]
PtSe2/Ge ≤1.55 0.766 1.1 × 1011 54.9 56.6 [140]
PtTe2 0.2–0.98 0.406 3.62 × 1012 7.51 36.7 [141]
Ta2NiSe5/WSe2 0.532–2.2 103 - 1 - [142]
HgCdTe/BP 0.637–4.3 0.193 7.93 × 1010 150 110 [143]
SnP2Se6 0.78–1.56 103 5.1 × 1010 412 - [144]

4.2. Group III–V Semiconductor Materials

Group III–V semiconductors with a narrow bandgap have been widely utilized in
constructing infrared optoelectronic sensors due to their high carrier mobility, excellent
stability, low dielectric constants, and high absorption coefficients [145]. So far, group III–V
semiconductor quantum dots, thin films, and single-crystal nanowires have been devel-
oped to achieve high-performance infrared sensing. Infrared sensors based on group III–V
semiconductor quantum dots and thin films usually exhibit relatively poor performance
compared to those based on single-crystal nanowires, because many bulk and surface
defects are created in quantum dots and thin films during their fabrication process. Semi-
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conductor single-crystal nanowires can transport charge carriers along their axis, reducing
carrier scattering and trapping, thereby promoting device performance [146]. Chemical
vapor deposition (CVD) is one of the most effective approaches to synthesize high-quality
group III–V semiconductor nanowires. For example, InAs nanowires fabricated on Si sub-
strates utilizing the CVD method show an ultra-high carrier mobility of 104 cm2 V−1 s−1

and an attractive narrow bandgap of about 0.354 eV [147]. InxGa1−xAs nanowires prepared
by alloying InAs and GaAs materials exhibit a tunable bandgap (0.35–1.42 eV), meeting
their sensors’ ever-changing requirements [148]. In particular, In0.65Ga0.35As nanowire
materials exhibit a wide spectral response up to 2.0 µm. The light absorption in group III–V
semiconductor nanowires such as GaSb and InP nanowires exhibits anisotropy, making
them promising for detecting the polarization properties of incident infrared light [149,150].

Since heterojunctions provide a powerful built-in electric field for carrier separation
and transport, group III–V single-crystal nanowires have been designed into various hetero-
junctions, including vertically aligned nanowire homojunctions/heterojunctions, core–shell
nanowire heterojunctions, and superlattice structures. For example, a p-i-n homojunc-
tion based on InGaAs demonstrates a spectral response from 1.2 µm to 1.7 µm, enabling
high-speed optical data reception (32 Gb s−1) [151]. Additionally, a p-n GaAs1–xSbx/InAs
core–shell heterojunction nanowire demonstrates a wide spectral response ranging from
0.488 µm to 1.8 µm, suitable for wide-spectrum photodetection [152]. Infrared optoelec-
tronic sensors based on group III–V semiconductor type-II superlattices have gained signif-
icant interest due to their broad-spectrum response, low noise, and high sensitivity. For
instance, the GaN/AlN superlattices embedded in GaN nanowires rely on the transitions
between quantum-confined electron levels in semiconductor heterostructures, enabling the
absorption of light up to 1.63 µm [153]. This structure holds promise for ultrafast and ultra-
sensitive infrared sensing. Infrared sensors based on various group III–V semiconductors
and device structures demonstrate distinct performances, as summarized in Table 3.

Table 3. Performance of advanced infrared optoelectronic sensors based on group III–V semiconductors.

Active Material
Spectral

Range (µm)
Responsivity

(A W−1)
Specific Detectivity

(Jones)
Response Speed (µs)

Ref.
Rise Time Fall Time

InGaAs 0.6–1.7 0.53 5.18 × 1011 - 50.8 [154]
InGaAs 1.2–1.7 0.2 - - - [151]
In0.51Ga0.49As ≤1.55 7300 4.2 × 1010 480 810 [155]
InSb 0.637–4.3 311.5 9.8 × 109 4.2 × 106 5.5 × 106 [156]
InAs 2.0–3.5 0.44 1.25 × 1010 25 24 [157]
InAs/SnBr2 0.98–1.1 0.36 - 13.5 9 [158]
GaAs1–xSbx/InAs 0.488–1.8 0.12 - 4.5 × 103 - [152]
InAs/GaAs 1–3.5 - 2 × 108 - - [159]
InSb ≤5.3 - 8.8 × 109 - - [160]
GaSb/GeS 0.405–1.31 0.061 6.8 × 1011 2 × 106 1.2 × 104 [161]
InxGa1−xSb 0.532–1.55 6 × 103 3.7 × 109 38 53 [162]
InGaAsSb ≤2.2 2.9 × 10−6 7.4 × 1011 - - [163]
In0.28Ga0.72Sb ≤1.55 1.52 × 103 - 13 16 [164]
InGaAs ≤1.6 6.5 × 103 - 7 × 104 2.8 × 105 [148]
GaAsSb ≤1.31 1.7 × 103 - 6 × 104 - [155]
InGaAs ≤1.55 7.3 × 103 4.2 × 1010 480 - [165]
GaSb ≤1.55 77.3 1.14 × 1010 - - [166]
In-rich InGaAs ≤1.55 5.75 - - - [167]
GaAsSb/GaAs ≤0.9 110 1.1 × 1014 - - [168]
GaN/AlN ≤1.55 1.1 - - - [153]
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4.3. Ferroelectric Materials

Ferroelectric materials are a key group for the fabrication of infrared optoelectronic
sensors due to their remarkable pyroelectric effect and anomalous photovoltaic effect.
Compared with other types of pyroelectric materials, ferroelectric materials possess unique
advantages, such as high pyroelectric coefficients, excellent chemical and mechanical sta-
bility, and low manufacture costs [169]. Moreover, some ferroelectric materials possess a
narrow bandgap, making them suitable for simultaneously utilizing pyroelectric and photo-
voltaic effects to detect infrared light. Ferroelectric LiTaO3 single-crystal materials possess
a high Curie temperature, excellent stability, and a high pyroelectric coefficient, making
them benchmark materials for infrared sensing applications [170]. Single-crystal materials
based on a lead magnesium niobate–lead titanate solid solution system, xPbMg1/3Nb2/3O3-
(1−x)PbTiO3 (PMN-PT), have been developed as promising candidates for detecting in-
frared light. The high pyroelectric coefficient (≥500 µC m−2 K−1) of PMN-PT materials
was first presented by Davis et al. [171]. Since then, many efforts have been made to
develop PMN-PT infrared optoelectronic sensors. The pyroelectric coefficient of a PMN-
PT single crystal with a PMN:PT molar ratio of 72:28 is 7.5 × 10−4 C m−2 K at room
temperature, enabling infrared sensing over the entire infrared region [33]. Ferroelectric
LiNbO3 (LNO) materials are important functional materials for constructing integrated
optics, nonlinear optics, and optoelectronic devices. Due to their high pyroelectric coeffi-
cient of −40 µC m−2 K−1, LNO materials exhibit a highly sensitive infrared response [172].
Heterostructures based on LNO and graphene materials can have a wide spectral response
region (0.405 µm to 2 µm).

A recently emerging class of ferroelectric materials for infrared sensing applications
is that of the molecular perovskite materials, which possess infinite structural flexibility,
such as metal-halide perovskites, metal formates, and metal-free molecules [173]. Per-
ovskite ferroelectric (IA)2(EA)2Pb3Cl10, where IA and EA stand for isoamylammonium
and ethylammonium, respectively, shows almost unchanged dielectric constants over a
wide range of temperatures, exhibiting exceptional pyroelectricity [9]. The pyroelectric
effect in (IA)2(EA)2Pb3Cl10 materials enables their high photoresponse to wavelengths up
to 1.95 µm. Aside from their high pyroelectricity, some ferroelectric materials exhibit a
narrow energy bandgap, which makes them ideal functional materials for photon-type
and hybrid-type infrared optoelectronic sensors. For example, ferroelectric YMnO3 (YMO)
materials with a hexagonal structure possess a narrow bandgap (of about 1.55 eV), thereby
having the potential for infrared optoelectronic sensing based on their photovoltaic and
photoconductive effects [174]. However, driven by a totally different geometric force,
YMO materials exhibit a small remnant polarization (5 µC cm−2), leading to a weak pho-
toresponse. Bi doping can greatly increase the ferroelectricity of YMO materials while
maintaining an almost unchanged bandgap, therefore promoting their pyroelectric and
photovoltaic responses to infrared light. Infrared optoelectronic sensors based on YMO
materials show a wide response region with wavelengths up to at least 0.9 µm. Most oxide
ferroelectric materials have bandgaps that are usually larger than 2 eV, causing a weak or
absent photovoltaic current when responding to infrared light. To solve this problem, a
+2 valence d8 cation substitution at the B site of ABO3-type perovskite ferroelectrics has
been utilized to effectively decrease the bandgap. For instance, Ni2+-doped ferroelectric
0.9KNbO3-0.1(BaNi1/2Nb1/2O3−δ) exhibits a narrow direct bandgap of 1.39 eV, enabling
infrared sensing by generating photovoltaic signals [175]. Moreover, Ni-modified ferro-
electric lead lanthanum zirconate titanate (PLZT) materials exhibit two new absorption
peaks in the range of 0.6–1.0 µm and 1.0–1.2 µm compared to pristine PLZT, which has a
large bandgap of about 3.3 eV, allowing for infrared optoelectronic sensing [176]. Table 4
summarizes the key metrics of advanced infrared optoelectronic sensors constructed based
on ferroelectric materials.
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Table 4. Performance of advanced infrared optoelectronic sensors based on ferroelectric materials.

Active Material
Spectral

Range (µm)
Responsivity

(A W−1)
Specific Detectivity

(Jones)
Response Speed (µs)

Ref.
Rise Time Fall Time

(IA)2(EA)2Pb3Cl10 0.266–1.95 - - - - [9]
PMN-PT 0.375–118.8 1.64 × 10−8 - - - [33]
YMO 0.365–0.9 0.6 2.5 × 1012 400 300 [174]
PLZT ≤1.3 1.64 × 10−7 4.05 × 107 - - [176]
YMO/graphene 6–10 - 1.14 × 105 1.3 × 106 - [177]
LNO 0.405–2 2.92 × 106 8.6 × 1014 2.3 × 104 2.3 × 104 [178]
BZT-BCT 0.3–2.5 5.32 × 10−8 1.49 × 105 - - [179]
LuMnO3 ≤0.9 0.39 6.89 × 1011 1.44 × 104 1.64 × 104 [180]
BiFeO3 0.005–0.808 1.8 × 103 - 6.97 × 103 1.2 × 103 [181]

4.4. Organic Semiconductor Materials

Organic semiconductor materials are appealing candidates for constructing infrared
optoelectronic sensors due to their intrinsic flexibility, light weight, low cost, scalability and
ease of fabrication [8]. Additionally, organic semiconductor materials allow for cooling-free
infrared sensing, thereby having great potential for future wearable devices. Significant
efforts have been made to explore suitable organic semiconductors for high-performance
infrared optoelectronic sensors. Currently, research on organic semiconductor materials
for infrared optoelectronic sensors mainly focuses on developing narrow-bandgap organic
polymers and small molecules.

To obtain narrow-bandgap polymer materials, a variety of methods have been de-
veloped, including donor–acceptor structures, chemical rigidification, quinone structures,
and inductive and mesomeric effects. Of these methods, donor–acceptor structures and
quinone structures are most used. Donor–acceptor-structured polymers can be fabricated
by polymerizing donor and acceptor units. During the polymerization process, two new
highest occupied molecular orbital (HOMO) energy levels, together with two new lowest
unoccupied molecular orbital (LUMO) energy levels, are generated, forming organic poly-
mers which have narrower bandgaps with higher HOMO and lower LUMO energy levels.
Organic polymers with quinone structures can be synthesized by breaking the aromatic
units in their backbone and converting the broken aromatic units into double-bond linkages
to achieve narrower bandgaps.

The first narrow-bandgap organic polymer for infrared optoelectronic sensing was
reported in 2007, which is a new kind of ester group-modified polythieno[3,4-b]thiophene
(PTT) [182]. The absorption onset of the fabricated PTT films possesses a bandgap of 1.3 eV,
making them well-suited for detecting infrared light with a wavelength less than about
0.95 µm. In 2009, poly(5,7-bis(4-decanyl-2-thienyl)-thieno(3,4-b)diathiazole-thiophene-2,5),
with a narrow bandgap of approximately 0.8 eV, was developed for highly sensitive infrared
sensing applications, extending the photoresponse region of organic polymer materials
to about 1.45 µm [183]. An organic D-A copolymer PBBTPD composed of a donating
dithienopyrrole group and a strong accepting benzobisthiadiazole unit shows an absorption
onset at 2.5 µm and was presented in 2018, greatly extending the infrared spectral response
range [184]. Since then, many other narrow-bandgap polymers have been synthesized for
infrared optoelectronic sensing, such as polypyrrole nanoparticles, PTTQn(HD), PBTTT,
diketopyrrolopyrrole DPP-based polymer PDPP-DTT, indanone-condensed thiadiazolo[3,4-
g]quinoxaline-based polymer PBTTQCN-TT, and PDPP3T:PC61BM [185–189].

Compared to polymers, organic small molecules possess superior characteristics such
as high carrier mobility, well-defined structures, and excellent reproducibility. A variety
of narrow-bandgap small molecules have been developed for infrared sensing by uti-
lizing various units within different molecular frameworks. Of these small molecules,
phthalocyanines are the conventional materials used for constructing infrared optoelec-
tronic sensors. The frequently utilized phthalocyanines include copper phthalocyanine,
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copper hexadecafluorophthalocyanine, lead phthalocyanine (PbPc), zinc phthalocyanine,
phthalocycanine, vanadylphthalocyanine, tin phthalocyanine, and chloroaluminum ph-
thalocyanine [190–197]. Another important kind of infrared-sensitive small molecules is
the group of porphyrin-based compounds. For example, the porphyrin small molecule
DHTBTEZP shows a good response in the near infrared region. More advanced infrared
optoelectronic sensors based on organic materials are presented in Table 5.

Table 5. Performance of advanced infrared optoelectronic sensors based on organic semiconductors.

Active Material
Spectral

Range (µm)
Responsivity

(A W−1)
Specific Detectivity

(Jones)
Response Speed (µs)

Ref.
Rise Time Fall Time

PPy-NPs 0.8–2 1.3 - 130 203 [186]
PBTTT:PC71BM 0.75–1 0.05 - - - [187]
PBTTT:PC61BM 0.775–1.075 - - - - [187]
PDPP-DTT 0.808–1.55 2 × 103 - 1.8 × 105 1.5 × 105 [188]
PDPP3T:PC61BM 0.405–0.85 - 7.8 × 1013 2.24 × 104 6.8 × 103 [189]
TPBi:PDPP3T:PC61BM 0.405–0.85 - 4.49 × 1014 1.09 × 104 4.5 × 103 [189]
PDPP3T:PS:PC61BM 0.405–0.85 - 1.52 × 1014 2.31 × 104 9.4 × 103 [189]
TPBi:PDPP3T:PS:PC61BM 0.405–0.85 - 5.43 × 1014 5.3 × 103 1.8 × 103 [189]
η-F16CuPc 0.589–0.94 - - 4.48 × 105 4.48 × 105 [191]
PbPc 0.9–1 0.035 - - - [192]
ZnMe2Pc 0.698–0.79 0.013 - - - [193]
8OH2Pc ≤0.77 - 2.1 × 1012 - - [194]
SnPc 0.405–0.98 7.2 × 10−4 6.98 × 109 - - [196]
ClAlPc ≤0.78 - 5.8 × 1012 0.75 0.7 [197]
CDT-TQ:PC71BM 0.4–1.4 0.1 7.8 × 109 167 - [198]
CO1-4Cl 0.92–0.96 0.5 3.1 × 1013 - - [199]
PBBTCD 0.8–1.2 4 × 10−4 - 51 55 [200]
TQ-T:IEICO-4F 0.35–1.8 8.4 × 10−6 1010 - - [201]
BDP-OMe:C60 0.3–0.9 - 1013 - - [202]
CPDT-TQ:PC71BM 0.9–1.31 - 5 × 1010 - - [203]

4.5. Others

Aside from the abovementioned advanced materials, which have been extensively
researched, some other materials have also been utilized to construct high-performance
infrared optoelectronic sensors, such as mercury chalcogenides and organic–inorganic
hybrid perovskite semiconductors. Mercury chalcogenides exhibit unique ultra-broad and
tunable photoresponses across the near-infrared and mid-infrared regions, demonstrating
an optoelectronic sensing performance comparable to commercial devices and particularly
advantageous at high operating temperatures [204]. Among the various mercury chalco-
genides, HgCdTe shows a broad tunability of its absorption spectrum (3–12 µm) and a
long photocarrier lifetime (up to 1 µs), having remained the leading material for infrared
detection for years. HgCdTe emerged as a photoconductive material with a performance
comparable to that of InSb in 1959 [205]. Its bandgap can be conveniently adjusted by
controlling the Hg to Cd ratio. Recently, HgTe nanocrystals have been proven to be promis-
ing materials capable of replacing the bandgap tunability of HgCdTe alloys, transitioning
from mixed composition to quantum confinement. The bandgap of HgTe materials can be
modulated from 1.5 eV to almost 0.02 eV [204]. Organic–inorganic hybrid perovskite semi-
conductors have been considered one of the most promising materials for infrared sensing
applications due to their long excitation diffusion length, high charge carrier mobility,
direct bandgap, and high absorption coefficient [206]. The performance of state-of-the-art
infrared optoelectronic sensors based on diverse mercury chalcogenide quantum dots and
organic–inorganic hybrid perovskite semiconductors is provided in Table 6.
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Table 6. Performance of advanced infrared optoelectronic sensors based on mercury chalcogenide
quantum dots and organic–inorganic hybrid perovskite semiconductors.

Active Material
Spectral

Range (µm)
Responsivity

(A W−1)
Specific Detectivity

(Jones)
Response Speed (µs)

Ref.
Rise Time Fall Time

Mercury
chalcogenide

HgCdTe/graphene 4 2.5 2 × 1010 0.013 - [207]
HgTe ≤2.6 1 >1010 - - [208]
HgTe ≤2.5 0.25 1.5 × 1010 1 - [209]
HgTe ≤2.3 0.023 3.2 × 106 - - [210]
HgTe ≤4.8 0.23 5.4 × 1010 0.9 2 [211]
HgTe ≤2.5 103 1012 20 - [212]
HgTe ≤4 0.7 2 × 1010 11 - [213]
HgTe ≤4 0.32 7 × 1010 0.07 - [214]
HgTe-P3HT 2.5 1 >1011 - 1.5 [215]
HgTe-graphene ≤3 150 6 × 108 400 700 [216]
HgTe p-n junction ≤2.5 2 × 10−3 - - 3 × 10−3 [217]
HgTe/Ag2Te ≤3–5 1.62 4 × 1011 <1 - [218]
HgTe/HgTe ≤2.5 0.02 3 × 109 - 0.37 [219]
Bi2Se3/HgTe/Ag2Te ≤2.5 0.22 7.5 × 1010 - - [220]
Bi2Se3/HgTe/Ag2Te 1.5–2.1 0.2 >1010 0.12 - [221]
SnO2/HgTe/Ag2Te ≤2 0.3 5 × 1010 0.3 - [222]
CdSe2/HgTe/Ag2Te ≤2 0.8 9 × 1010 0.17 - [223]
HgSe ≤4.2 0.077 1.7 × 109 - - [224]
HgSe/HgTe ≤4 0.003 109 0.17 0.15 [225]

Hybrid
perovskite

MAPbI3/Gd-ZnO 0.25–1.357 0.22 9.3 × 109 4 × 105 5 × 105 [226]
MAPbIxCl3−x/Si 0.3–1.15 0.87 6 × 1012 5 × 104 1.5 × 105 [227]
MAPbI3/CuO 0.35–1.05 0.562 2.15 × 1013 2 × 105 2 × 105 [228]
MAPbI3/PbSe 0.3–2.6 0.628 2.59 × 1012 4 32 [229]
MAPbI3/CuInSe2 0.3–1.1 0.15 7.7 × 1011 0.277 0.277 [230]
MAPbI2.5Br0.5/PbS 0.4–1.4 0.99 4 × 1012 <10 <10 [231]
MAPbI3/PDPPTDTPT 0.35–1.05 - 1 × 1011 6.1 × 10−3 6.1 × 10−3 [232]
MAPbI3 0.4–1 4 - 39 1.9 [233]
FA0.85Cs0.15PbI3/Bi2Se3 0.3–1 1.02 2.08 × 1012 16 14 [234]
MAPbI3/SnPc 0.3–1 0.72 × 10−3 6.98 × 109 390 530 [196]
MAPbI3/MoS2 0.5–0.85 110 7.93 × 107 6.17 × 106 4.5 × 106 [235]
MAPbI3/PbSe 0.3–1.5 0.7 7 × 107 2.5 × 103 3 × 103 [236]
MAPbI3−xClx/PbS 0.3–1.5 0.35 9 × 1010 250 500 [237]
MAPbI3−x(SCN)x/Si 0.35–1.1 13 1 × 1013 22.2 17.6 [238]
MASnI3 0.2–1 0.47 8.8 × 1010 1.5 × 106 4 × 105 [239]
FASnI3 0.3–1 2 × 103 3.2 × 1012 - - [240]
FA0.85Cs0.15Sn0.5Pb0.5I 0.6–1 0.53 6 × 1012 5.83 × 10−2 0.86 [241]
(FASnI3)0.6(MAPbI3)0.4 0.3–1 0.4 1.1 × 1012 6.9 9.1 [242]
MA0.5FA0.5Pb0.5Sn0.5I3 0.35–1 >0.2 >1012 - - [243]
MASnxPb1−xI3 0.3–1.1 0.2 >1011 0.09 2.27 [244]
(CsPbI3)0.05(FAPbI3)1−x 0.405–0.81 84.77 3.22 × 1012 2.46 × 104 1.47 × 104 [245]

Notes: “MA” stands for methylammonium CH3NH3. “FA” stands for formamidinium CHNH3.

5. Applications

Infrared optoelectronic sensors have become deeply integrated into modern technol-
ogy and human society, with applications spanning image sensing, optical neuromorphic
computing, logic operations, and health monitoring.

5.1. Image Sensing

Imaging sensing is one of the most widespread applications of infrared optoelectronic
sensors, and a large number of image devices based on different materials have been
developed. For instance, a highly sensitive infrared optoelectronic image sensor has been
developed utilizing a two-dimensional Bi2O2Se crystal exhibiting a high sensitivity of
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65 AW−1 at 1.2 µm and an ultrafast response speed of about 1 ps at room temperature [246].
Figure 5a illustrates the schematic diagram and the performance of a single pixel of the
Bi2O2Se infrared image sensor. The device demonstrates a broadband response with a
spectrum ranging from visible to 1.7 µm. Scanning a laser beam over the sensor results
in a photovoltage distribution, generating electrical signals with opposite polarities at its
Bi2O2Se/metal interfaces, indicating that the electrical signals are primarily produced by
photogenerated carrier separation at the symmetric Bi2O2Se/metal interfaces. Bi2O2Se
infrared image sensors can be fabricated on a flexible mica substrate and consistently deliver
a photocurrent even if undergoing a bending process with a strain of 1%. Moreover, these
devices exhibit a non-attenuating photocurrent after more than 4 weeks, indicating their
excellent stability in the ambient environment. When illuminated by lasers with different
wavelengths (1.55 µm, 1.31 µm, 1.2 µm, and 0.655 µm), the photocurrent generated from
a 3 × 5 multi-pixel Bi2O2Se sensor array can clearly show the laser beam’s distribution
(Figure 5a).
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Figure 5. Infrared optoelectronic sensors for image sensing. (a) Infrared optoelectronic sensor based
on Bi2O2Se for image sensing [246] (with permission from Springer Nature, 2018). (b) Device design
and performance of an infrared polarimetric image sensor [149] (with permission from the American
Chemical Society, 2022). (c) A hemispherical infrared optoelectronic sensor based on perovskites for
wide-angle imaging sensing [247] (with permission from Springer Nature, 2022).
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Infrared polarimetric image sensors are capable of extending their detection of pho-
toelectric signals from light wavelength and intensity to the light’s polarization vector,
exhibiting great potential in the fields of remote image sensing, medical diagnosis, and
environmental monitoring. Figure 5b exhibits an infrared polarimetric image sensor con-
structed utilizing sulfur-passivated GaSb nanowire arrays [149]. This 5 × 5 GaSb sensor
array with interdigital electrodes is fabricated on a flexible PET substrate. One single
pixel demonstrates a high responsivity of 9.39 × 102 A W−1, an ultrahigh detectivity of
1.10 × 1011 Jones, a high dichroic ratio of 2.65, and a wide spectral response from 0.808 µm
to 1.55 µm. With the assistance of a hollow mask “E”, linear polarization light with a
wavelength of 1.55 µm can be illustrated on the GaSb sensor array within the “E” area.
The output three-dimensional images show a clear “E” pattern, with polarization angles
of 0◦ and 180◦ stronger than those of 45◦, 90◦, and 135◦, demonstrating its significant
near-infrared polarization imaging ability.

In addition to the abovementioned flat image sensors, infrared optoelectronic sensors
can also be designed in a hemispherical shape for wide-angle imaging applications, as
illustrated in Figure 5c [247]. A hemispherical image sensor with 9 × 9 pixels can be
constructed based on photosensitive phenylethylammonium/formamidinium lead halide
perovskite materials using a spray-coating method. The device can capture images at
various wavelengths, with a wide incident light angle of 180◦.

5.2. Optical Neuromorphic Computing

Neuromorphic optoelectronic sensors, which utilize artificial photosensitive synapses,
are capable of emulating biological nervous systems, with in-memory sensing and com-
puting abilities. Based on a planar heterostructure composed of perylene and graphene
oxide, optoelectronic sensors exhibit a broadband photoperception range from 0.365 µm to
1.55 µm and an ultrahigh specific detectivity of 3.1 × 1013 Jones [248]. Figure 6a exhibits
the schematic diagram and performance of the sensor, where a type-II band structure is
formed at the perylene/graphene oxide interface due to the energy level mismatch in
the perylene and graphene oxide materials. The perylene/graphene oxide heterostruc-
ture can effectively absorb photons and separate photogenerated electron–hole pairs for
photoelectric signal generation. Upon illumination, the sensor is able to emulate visual
perception and diverse synaptic plasticity, including biological neurons, with the features
of an excitatory postsynaptic current, spike-intensity-dependent plasticity, spike-number-
dependent plasticity, and short-/long-term memories. When a pattern image is fed into
a 10 × 10 perylene/graphene oxide array, the weighted graphs of the learning patterns
become more and more distinct with the light pulse number, facilitating image recognition.
By utilizing the sensor array as a neuron, the accuracy of an artificial neural network for
image classification can reach 85%. Additionally, infrared optoelectronic sensors can also be
utilized for edge computing (in-sensor computing), significantly reducing communication
latency and energy consumption for artificial vision in distributed systems and robotic
devices. As illustrated in Figure 6b, a BP-based programmable phototransistor optoelec-
tronic sensor is capable of being programmed with 5-bit precision to perform an in-sensor
convolutional neural network, with a high accuracy of 92%, by electrically and optically
modulating the stored charges in its gate dielectrics [249].
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Figure 6. Infrared optoelectronic sensor for neuromorphic computing. (a) Device design, photonic
synaptic characteristics, and image memorization and recognition capability of an infrared opto-
electronic sensor based on a perylene/graphene oxide heterostructure [248] (with permission from
Springer Nature, 2022). (b) Device configuration, current-voltage characteristics, and in-sensor com-
puting performance of an infrared optoelectronic sensor based on black phosphorus materials [249]
(with permission from Springer Nature, 2022).

5.3. Logic Operation

The growing demand for a wide range of data processing has driven interest toward
optoelectronic logic gate platforms because of their broad bandwidth and fast data trans-
mission. An optoelectronic sensor based on a back-to-back p+-i-n-p-p+ diode structure
exhibits a bipolar spectral photoresponse to visible and infrared light [250]. As illustrated
in Figure 7, the sensor consists of vertically stacked low-bandgap (1.21 eV) perovskite
FA0.5MA0.5Pb0.4Sn0.6I3 for infrared photon adsorption, and a large-bandgap (1.67 eV) per-
ovskite MAPbI3 for visible photon adsorption. When illuminated by visible and infrared
light, the sensor generates currents with positive and negative polarities, respectively,
paving the way for optical logic gate operations. By controlling the wavelength and in-
tensity of the incident light, a single sensor can achieve five basic logic operations “OR”,
“AND”, “NAND”, “NOR”, and “NOT”. For instance, the sensor executes an “AND” op-
eration when illuminated with visible light (0.625 µm at 0.6 mW cm−2) combined with
intensity-varying near-infrared light (0.94 µm).
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Nature, 2022).

5.4. Health Monitoring

Infrared optoelectronic sensors provide an effective approach to monitoring health con-
ditions, particularly blood pulse frequency and blood oxygen saturation (SpO2). Figure 8a
shows a metal halide perovskites-based flexible optoelectronic sensor, which can be utilized
for blood pulse signal detection based on photoplethysmography [251]. The basic working
principle of the sensor can be described as follows: When light with a wavelength of
0.8 µm is incident on the fingertip, a part of the light is absorbed, reflected, and scattered
by human tissues, and then transmits through the finger to enter the flexible optoelectronic
sensor. During this process, the light intensity measured by the sensor fluctuates with the
variations in the volume of the blood vessels, induced by the heartbeat. The contraction of
the heart leads to an increase in the blood volume in the vessels, thereby decreasing the
detectable light’s intensity. Conversely, the diastole of the heart results in a decreased blood
volume in the vessels, hence increasing the detectable light’s intensity. In this way, the heart
rate can be extracted from the generated electrical signals of the sensor for cardiopulmonary
function evaluations. When the light is turned on, reproducible electrical signals can be
observed due to the periodic contraction and diastole of the human heart, from which a
patient’s blood pulse frequency can be derived according to the electrical signal’s frequency.
An infrared optoelectronic sensor for SpO2 monitoring is illustrated in Figure 8b [252]. This
optoelectronic sensor is fabricated based on a PffBT4T-2OD:PC71BM heterostructure, which
exhibits a high detectivity of 7.2 × 1012 Jones at 0.85 µm. According to the Beer–Lambert
law, SpO2 can be derived from the difference in transmission at specific wavelengths of
light utilizing the equation [252,253]
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SpO2 =
εHb(λ625)− εHb(λ850)Ros[

εHb(λ625)− εHbO2(λ625)
]
+

[
εHbO2(λ850)− εHb(λ850)Ros

] (11)

where εHb and εHbO2 stand for the molar extinction coefficients of oxyhemoglobin and
deoxyhemoglobin, respectively. Ros can be obtained from the ratio of the pulsatile (AC) and
stationary (DC) parts of the photoplethysmogram signals utilizing the formula [252,253]

ROS =
AC850/DC850

AC625/DC625
(12)

Due to its broadband photoresponse, the PffBT4T-2OD:PC71BM optoelectronic sensor
exhibits distinct photocurrent signals under the illumination of both 0.625 µm and 0.85 µm
wavelengths, achieving SpO2 detection.
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Figure 8. Infrared optoelectronic sensors for health monitoring. (a) Device configuration, working
mechanism, and outputs of a perovskite infrared optoelectronic sensor for detecting blood pulse
frequency [251] (with permission from Springer Nature, 2023). (b) Device structure and outputs of an
organic infrared optoelectronic sensor for monitoring blood oxygen saturation [252] (with permission
from the American Chemical Society, 2023).

5.5. Others

In addition to the aforementioned applications, infrared optoelectronic sensors also
demonstrate potential applications in optical communication and gas sensing. Figure 9a
illustrates a photothermoelectric infrared optoelectronic sensor used for optical commu-
nication applications [254]. The sensor is fabricated utilizing tellurium nanoribbons. By
converting its polarization-sensitive absorption into a large temperature gradient with
the assistance of the finite-size effects of perfect plasmonic absorbers, the sensor shows
advantages including a high responsivity (410 V W−1) and ultrahigh polarization ratio
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(2.5 × 104) that make it well suited for polarization-coded communication. During the
communication process, mid-infrared light can first be converted into American Standard
Code for Information Interchange (ASCII) codes by varying the polarization angle, with 0◦

for “0” and 90◦ for “1”, respectively. In this way, the input signals can be encoded by the
polarization-sensitive sensor and finally fed into a terminal computer. The received signals
match well with the input signals, demonstrating the capability of the sensor for informa-
tion transmission. Figure 9b illustrates an infrared optoelectronic sensor for gas sensing
applications [255]. The device is composed of a single-mode Ge28Sb12Se60 waveguide, a
graphene channel, split graphene back-gates, and HfO2 gate dielectrics. The graphene
back-gates can be utilized to electrostatically create a p-n junction along the center of the
graphene channel. The sensor enables NO detection at concentrations comparable to the
recommended exposure limit of 25 ppm, which pushes forward the development of gas
sensing microsystems.
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response, and measured noise spectral density of a graphene-based infrared optoelectronic sensor for
gas sensing [255] (with permission from Springer Nature, 2022).
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6. Conclusions and Prospects

In this review, we summarized the current status of infrared optoelectronic sensors.
Based on their working mechanisms, these sensors can be roughly classified into three
categories: photon, photothermal, and hybrid sensors. Two-dimensional semimetals
and semiconductors, group III–V semiconductors, ferroelectric materials, and organic
semiconductors exhibit unique advantages in infrared optoelectronic sensing. For instance,
2D semimetals and semiconductors are suitable for high-speed photodetection due to their
high carrier mobility, and ferroelectric materials have the potential to simultaneously utilize
pyroelectric and photovoltaic effects for an enhanced photoresponse. Embedded deeply in
modern technology and human society, infrared optoelectronic sensors show promise in
diverse applications, including image sensing, neuromorphic computing, logic operations,
optical communication, health monitoring, and gas sensing.

While plenty of advancements have been made in exploring infrared optoelectronic
sensors, several challenges remain in this field. (1) The response speed of most existing
infrared optoelectronic sensors is in the order of microseconds, which is insufficient for
capturing rapidly changing light. (2) Comprehensive characterizations of infrared optoelec-
tronic sensors, including their response range, responsivity, specific detectivity, response
time, NEP, LDR, and EQE, are needed for the further optimization of these devices. (3) Al-
though some infrared optoelectronic sensors have been utilized for health monitoring
applications, research on their biocompatibility is lacking.

Considering the growing demand for high-performance infrared optoelectronic sen-
sors, various research directions could be pursued to advance the development of infrared
optoelectronic sensors in the near future. (1) Most 2D materials for infrared optoelectronic
sensors are fabricated based on small-size mechanically exfoliated flakes, so it is essen-
tial to develop techniques for their scalable production. The most promising methods to
achieve large-scale 2D materials might be CVD and molecular beam epitaxy. (2) Infrared
optoelectronic sensors based on narrow-bandgap semiconductors usually exhibit unstable
performances due to variations in ambient temperature, hence developing temperature-
insensitive devices is of great importance. Micro-constant temperature systems which can
be integrated into infrared optoelectronic sensors can help solve this problem. (3) The
development of optical logic operations and optical communication pose new challenges
for high-frequency devices; therefore, ultrafast infrared optoelectronic sensors are desirable.
To achieve this, materials with ultrahigh carrier mobility and homo-/heterostructures with
strong built-in electric fields are required. (4) The investigation of biocompatible infrared
optoelectronic sensors is promising for future healthcare. This might be realized using
non-toxic organic semiconductors. (5) In optical neuromorphic computing applications, the
development of photosynapses with a long memory, for weight storage, is essential. Carrier
trapping using device interfaces or ferroelectric polarization are promising for achieving
this goal. Overall, the development of infrared optoelectronic sensors will contribute to
advancements in daily life, industry, and the medical field, and more efforts are needed to
further improve their performance.
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