Nanoparticle-Modified 3D-Printed Denture Base Resins: Influence of Denture Cleansers on the Color Stability and Surface Roughness In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Heat-Polymerized Acrylic Resin Specimens
2.2. Preparation of Nanoparticles Mixture
2.3. Preparation of 3D-Printed Specimens
2.4. Thermocycling Procedure
2.5. Denture Cleanser Preparation and Immersion Protocol
2.6. Testing Procedures
2.6.1. Surface Roughness (Ra)
2.6.2. Color Measurements
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Thobity, A.M.; Gad, M.; ArRejaie, A.; Alnassar, T.; Al-Khalifa, K.S. Impact of Denture Cleansing Solution Immersion on Some Properties of Different Denture Base Materials: An In Vitro Study. J. Prosthodont. 2019, 28, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Abualsaud, R.; Fouda, S.M.; Rahoma, A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Al-Abidi, K.S.; Ali, M.S.; Al-Harbi, F.A. Color Stability and Surface Properties of PMMA/ZrO2 Nanocomposite Denture Base Material after Using Denture Cleanser. Int. J. Biomater. 2021, 2021, 6668577. [Google Scholar] [CrossRef] [PubMed]
- Alqanas, S.S.; Alfuhaid, R.A.; Alghamdi, S.F.; al-Qarni, F.D.; Gad, M.M. Effect of Denture Cleansers on the Surface Properties and Color Stability of 3D Printed Denture Base Materials. J. Dent. 2022, 120, 104089. [Google Scholar] [CrossRef] [PubMed]
- Paranhos, H.F.O.; Silva-Lovato, C.H.; Souza, R.F.; Cruz, P.C.; Freitas, K.M.; Peracini, A. Effects of Mechanical and Chemical Methods on Denture Biofilm Accumulation. J. Oral Rehabil. 2007, 34, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Sara, D.; Saraç, Y.Ş.; Kurt, M.; Yüzbaiolu, E. The Effectiveness of Denture Cleansers on Soft Denture Liners Colored by Food Colorant Solutions. J. Prosthodont. 2007, 16, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Porwal, A.; Khandelwal, M.; Punia, V.; Sharma, V. Effect of Denture Cleansers on Color Stability, Surface Roughness, and Hardness of Different Denture Base Resins. J. Indian Prosthodont. Soc. 2017, 17, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Namala, B.B.; Hegde, V. Comparative Evaluation of the Effect of Plant Extract, Thymus Vulgaris and Commercially Available Denture Cleanser on the Flexural Strength and Surface Roughness of Denture Base Resin. J. Indian Prosthodont. Soc. 2019, 19, 261–265. [Google Scholar] [CrossRef]
- Coimbra, F.C.T.; Rocha, M.M.; Oliveira, V.C.; Macedo, A.P.; Pagnano, V.O.; Silva-Lovato, C.H.; Paranhos, H.d.F.O. Antimicrobial Activity of Effervescent Denture Tablets on Multispecies Biofilms. Gerodontology 2021, 38, 87–94. [Google Scholar] [CrossRef]
- Khan, M.A.; Dhaded, S.; Shalini, B.N. Commercial and Plant Extract Denture Cleansers in Prevention of Candida Albicans Growth on Soft Denture Reliner: In Vitro Study. J. Clin. Diagn. Res. 2016, 10, ZC42–ZC45. [Google Scholar] [CrossRef]
- Ragher, M.; Vinayakumar, G.; Patil, S.; Chatterjee, A.; Mallikarjuna, D.M.; Dandekeri, S.; Swetha, V.; Pradeep, M.R. Variations in Flexural Strength of Heat-Polymerized Acrylic Resin after the Usage of Denture Cleansers. J. Contemp. Dent. Pr. 2016, 17, 322–326. [Google Scholar] [CrossRef]
- De Souza, R.F.; De Freitas Oliveira Paranhos, H.; Lovato Da Silva, C.H.; Abu-Naba’a, L.; Fedorowicz, Z.; Gurgan, C.A. Interventions for Cleaning Dentures in Adults. Cochrane Database Syst. Rev. 2009, CD007395. [Google Scholar] [CrossRef] [PubMed]
- Paranhos, H.d.F.O.; Peracini, A.; Pisani, M.X.; Oliveira, V.d.C.; de Souza, R.F.; Silva-Lovato, C.H. Color Stability, Surface Roughness and Flexural Strength of an Acrylic Resin Submitted to Simulated Overnight Immersion in Denture Cleansers. Braz. Dent. J. 2013, 24, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Lohitha, K.; Prakash, M.; Gopinadh, A.; Sai Sankar, A.; Sandeep, C.; Sreedevi, B. Color Stability of Heat-Cure Acrylic Resin Subjected to Simulated Short-Term Immersion in Fast-Acting Denture Cleansers. Ann. Med. Health Sci. Res. 2016, 6, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Taremi, N.; Malyala, R. A Novel Low-Shrinkage Resin for 3D Printing. J. Dent. 2022, 118, 103957. [Google Scholar] [CrossRef] [PubMed]
- Prpić, V.; Schauperl, Z.; Ćatić, A.; Dulčić, N.; Čimić, S. Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials. J. Prosthodont. 2020, 29, 524–528. [Google Scholar] [CrossRef]
- Hada, T.; Kanazawa, M.; Iwaki, M.; Arakida, T.; Soeda, Y.; Katheng, A.; Otake, R.; Minakuchi, S. Effect of Printing Direction on the Accuracy of 3D-Printed Dentures Using Stereolithography Technology. Materials 2020, 13, 3405. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.; Marti, B.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Gowri, S.; Rajiv Gandhi, R.; Sundrarajan, M. Structural, Optical, Antibacterial and Antifungal Properties of Zirconia Nanoparticles by Biobased Protocol. J. Mater. Sci. Technol. 2014, 30, 782–790. [Google Scholar] [CrossRef]
- Alghazzawi, T.F. Advancements in CAD/CAM Technology: Options for Practical Implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef]
- Shim, J.S.; Kim, J.E.; Jeong, S.H.; Choi, Y.J.; Ryu, J.J. Printing Accuracy, Mechanical Properties, Surface Characteristics, and Microbial Adhesion of 3D-Printed Resins with Various Printing Orientations. J. Prosthet. Dent. 2020, 124, 468–475. [Google Scholar] [CrossRef]
- Perea-Lowery, L.; Gibreel, M.; Vallittu, P.K.; Lassila, L.V. 3D-Printed vs. Heat-Polymerizing and Autopolymerizing Denture Base Acrylic Resins. Materials 2021, 14, 5781. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J. Prosthodont. 2022, 31, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Al-Dwairi, Z.N.; Al Haj Ebrahim, A.A.; Baba, N.Z. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2023, 32, 40–48. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M. Factors Affecting Flexural Strength of 3D-Printed Resins: A Systematic Review. J. Prosthodont. 2023, 32, 96–110. [Google Scholar] [CrossRef]
- Aati, S.; Akram, Z.; Ngo, H.; Fawzy, A.S. Development of 3D Printed Resin Reinforced with Modified ZrO2 Nanoparticles for Long-Term Provisional Dental Restorations. Dent. Mater. 2021, 37, e360–e374. [Google Scholar] [CrossRef] [PubMed]
- Hada, T.; Kanazawa, M.; Miyamoto, N.; Liu, H.; Iwaki, M.; Komagamine, Y.; Minakuchi, S. Effect of Different Filler Contents and Printing Directions on the Mechanical Properties for Photopolymer Resins. Int. J. Mol. Sci. 2022, 23, 2296. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, A.A.; Khattar, A.; Almindil, I.A.; Alsaif, M.H.; Akhtar, S.; Khan, S.Q.; Gad, M.M. 3D-Printed Nanocomposite Denture-Base Resins: Effect of ZrO2 Nanoparticles on the Mechanical and Surface Properties In Vitro. Nanomaterials 2022, 12, 2451. [Google Scholar] [CrossRef]
- Alzayyat, S.T.; Almutiri, G.A.; Aljandan, J.K.; Algarzai, R.M.; Khan, S.Q.; Akhtar, S.; Matin, A.; Gad, M.M. Antifungal Efficacy and Physical Properties of Poly(Methylmethacrylate) Denture Base Material Reinforced with SiO2 Nanoparticles. J. Prosthodont. 2021, 30, 500–508. [Google Scholar] [CrossRef]
- Gad, M.M.; Abualsaud, R.; Rahoma, A.; Al-Thobity, A.M.; Al-Abidi, K.S.; Akhtar, S. Effect of Zirconium Oxide Nanoparticles Addition on the Optical and Tensile Properties of Polymethyl Methacrylate Denture Base Material. Int. J. Nanomed. 2018, 13, 283–292. [Google Scholar] [CrossRef]
- Hameed, H.K.; Rahman, H.A. The Effect of Addition Nano Particle ZrO2 on Some Properties of Autoclave Processed Heat Cure Acrylic Denture Base Material. J. Baghdad Coll. Dent. 2015, 27, 32–39. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, X.J.; Huang, Z.L.; Zhu, B.S.; Chen Rong-Rong, R.R. Hybrid Effects of Zirconia Nanoparticles with Aluminum Borate Whiskers on Mechanical Properties of Denture Base Resin PMMA. Dent. Mater. J. 2014, 33, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Ayad, N.; Badawi, M.; Fatah, A. Effect of Reinforcement of High-Impact Acrylic Resin with Zirconia on Some Physical and Mechanical Properties. Arch. Oral Res. 2008, 4, 145–151. [Google Scholar]
- Unkovskiy, A.; Bui, P.H.B.; Schille, C.; Geis-Gerstorfer, J.; Huettig, F.; Spintzyk, S. Objects Build Orientation, Positioning, and Curing Influence Dimensional Accuracy and Flexural Properties of Stereolithographically Printed Resin. Dent. Mater. 2018, 34, E324–E333. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Lin, Y.M.; Lai, Y.L.; Lee, S.Y. Mechanical Properties, Accuracy, and Cytotoxicity of UV-Polymerized 3D Printing Resins Composed of Bis-EMA, UDMA, and TEGDMA. J. Prosthet. Dent. 2020, 123, 349–354. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal Cycling Procedures for Laboratory Testing of Dental Restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Silva, C.d.S.; Machado, A.L.; Chaves, C.d.A.L.; Pavarina, A.C.; Vergani, C.E. Effect of Thermal Cycling on Denture Base and Autopolymerizing Reline Resins. J. Appl. Oral Sci. 2013, 21, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Guler, A.U.; Yilmaz, F.; Kulunk, T.; Guler, E.; Kurt, S. Effects of Different Drinks on Stainability of Resin Composite Provisional Restorative Materials. J. Prosthet. Dent. 2005, 94, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Atalay, S.; Çakmak, G.; Fonseca, M.; Schimmel, M.; Yilmaz, B. Effect of Different Disinfection Protocols on the Surface Properties of CAD-CAM Denture Base Materials. J. Prosthet. Dent. 2023, 130, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Adawi, H. Effect of Effervescent Denture Cleansers on 3D Surface Roughness of Conventional Heat Polymerized, Subtractively, and Additively Manufactured Denture Base Resins: An In Vitro Study. J. Prosthodont. 2023, 32, 244–252. [Google Scholar] [CrossRef]
- Sepúlveda-Navarro, W.F.; Arana-Correa, B.E.; Ferreira Borges, C.P.; Habib Jorge, J.; Urban, V.M.; Campanha, N.H. Color Stability of Resins and Nylon as Denture Base Material in Beverages. J. Prosthodont. 2011, 20, 632–638. [Google Scholar] [CrossRef]
- Carreira, M.; Antunes, P.V.; Ramalho, A.; Paula, A.; Carrilho, E. Thermocycling Effect on Mechanical and Tribological Characterization of Two Indirect Dental Restorative Materials. J. Brazilian Soc. Mech. Sci. Eng. 2017, 39, 1–17. [Google Scholar] [CrossRef]
- Takahashi, M.; Bando, Y. Difference in Surface Roughness of Ethylene-Vinyl-Acetate Sheet before and after Application of Finishing Liquid. Mater. Sci. Appl. 2018, 09, 985–992. [Google Scholar] [CrossRef]
- Commission Internationale de l’ Éclairage—CIE. Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms; Supplement No. 2 of Publication CIE No. 15 (E-1.3.1); Bureau Central de la CIE: Paris, France, 2004. [Google Scholar]
- Commission Internationale de l’Eclairage. Colorimetry Technical Report; CIE Publication No. 15:2004; Bureau Central de la CIE: Vienna, Austria, 2004. [Google Scholar]
- Kürklü, D.; Azer, S.S.; Yilmaz, B.; Johnston, W.M. Porcelain Thickness and Cement Shade Effects on the Colour and Translucency of Porcelain Veneering Materials. J. Dent. 2013, 41, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Lin, H.; Huang, Q.; Zheng, G. Determining Color Difference Thresholds in Denture Base Acrylic Resin. J. Prosthet. Dent. 2015, 114, 702–708. [Google Scholar] [CrossRef]
- Xu, H.; Yaguchi, H. Visual Evaluation at Scale of Threshold to Suprathreshold Color Difference. Color Res. Appl. 2005, 30, 198–208. [Google Scholar] [CrossRef]
- Alfouzan, A.F.; Alotiabi, H.M.; Labban, N.; NejerAl-Otaibi, H.; Al Taweel, S.M.; AlShehri, H.A. Color Stability of 3D-Printed Denture Resins: Effect of Aging, Mechanical Brushing and Immersion in Staining Medium. J. Adv. Prosthodont. 2021, 13, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Hygroscopic and Hydrolytic Effects in Dental Polymer Networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Kim, M.C.; Byeon, D.J.; Jeong, E.J.; Go, H.B.; Yang, S.Y. Color Stability, Surface, and Physicochemical Properties of Three-Dimensional Printed Denture Base Resin Reinforced with Different Nanofillers. Sci. Rep. 2024, 14, 1842. [Google Scholar] [CrossRef]
- Azmy, E.; Al-Kholy, M.R.Z.; Gad, M.M.; Al-Thobity, A.M.; Emam, A.N.M.; Helal, M.A. Influence of Different Beverages on the Color Stability of Nanocomposite Denture Base Materials. Int. J. Dent. 2021, 2021, 5861848. [Google Scholar] [CrossRef]
- Nikawa, H.; Hamada, T.; Yamashiro, H.; Kumagai, H. A review of in vitro and in vivo methods to evaluate the efficacy of denture cleansers. Int. J. Prosthodont. 1999, 12, 153–159. [Google Scholar]
- Machado, A.L.; Breeding, L.C.; Vergani, C.E.; da Cruz Perez, L.E. Hardness and Surface Roughness of Reline and Denture Base Acrylic Resins after Repeated Disinfection Procedures. J. Prosthet. Dent. 2009, 102, 115–122. [Google Scholar] [CrossRef]
- Robinson, J.G.; McCabe, J.F.; Storer, R. The Whitening of Acrylic Dentures: The Role of Denture Cleansers. Br. Dent. J. 1985, 159, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Arruda, C.N.F.; Sorgini, D.B.; De Oliveira, V.C.; Macedo, A.P.; Lovato, C.H.S.; De Paranhos, H.F.O. Effects of Denture Cleansers on Heat-Polymerized Acrylic Resin: A Five-Year-Simulated Period of Use. Braz. Dent. J. 2015, 26, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Alfouzan, A.; Alnouwaisar, A.; Alazzam, N.; Al-Otaibi, H.; Labban, N.; Alswaidan, M.; Al-Taweel, S.; Alshehri, H. Surface Roughness Analysis of Prepolymerized CAD/CAM Dental Acrylic Resins Following Combined Surface Treatments. Mater. Sci. Pol. 2021, 39, 209–218. [Google Scholar] [CrossRef]
- Çakmak, G.; Donmez, M.B.; Akay, C.; Atalay, S.; Silva de Paula, M.; Schimmel, M.; Yilmaz, B. Effect of Simulated Brushing and Disinfection on the Surface Roughness and Color Stability of CAD-CAM Denture Base Materials. J. Mech. Behav. Biomed. Mater. 2022, 134, 105390. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.C.; Driscoll, C.F.; Romberg, E.; Luo, Q.; Thompson, G. Surface Roughness of Denture Base Acrylic Resins after Processing and after Polishing. J. Prosthodont. 2006, 15, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Duyck, J.; Vandamme, K.; Krausch-Hofmann, S.; Boon, L.; De Keersmaecker, K.; Jalon, E.; Teughels, W. Impact of Denture Cleaning Method and Overnight Storage Condition on Denture Biofilm Mass and Composition: A Cross-over Randomized Clinical Trial. PLoS ONE 2016, 11, e0145837. [Google Scholar] [CrossRef]
- De Rezende Pinto, L.; Rodríguez Acosta, E.J.T.; Távora, F.F.F.; Da Silva, P.M.B.; Porto, V.C. Effect of Repeated Cycles of Chemical Disinfection on the Roughness and Hardness of Hard Reline Acrylic Resins. Gerodontology 2010, 27, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Yuzugullu, B.; Acar, O.; Cetinsahin, C.; Celik, C. Effect of Different Denture Cleansers on Surface Roughness and Microhardness of Artificial Denture Teeth. J. Adv. Prosthodont. 2016, 8, 333–338. [Google Scholar] [CrossRef]
- Ozyilmaz, O.Y.; Akin, C. Effect of Cleansers on Denture Base Resins’ Structural Properties. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019827797. [Google Scholar] [CrossRef]
- Kassab, N.; Mustafa, E.; Hasan, R. Antifungal Effect: Comparison of Commercial Denture Cleansers and Microwave Energy. Al-Rafidain Dent. J. 2009, 9, 24–31. [Google Scholar] [CrossRef]
- Anjai, M.; Damiyanti, M.; Triaminingsih, S. Effect of Immersion Time in Denture Cleanser on the Transverse Strength of Heat-Cured Acrylic Resin. J. Phys. Conf. Ser. 2018, 1073, 062012. [Google Scholar] [CrossRef]
Denture Cleanser | Description/Manufacturer | Composition | Immersion Solution Preparation and Instructions | Simulation Immersion Protocol |
---|---|---|---|---|
Sodium hypochlorite NaOCl (S) | Sodium hypochlorite solution | 5.25% sodium hypochlorite solution | (i) A solution of 5.25% NaOCl was diluted by combining 50 mL of NaOCl with 200 mL of water to achieve a concentration of 1% NaOCl. (ii) Immersion for 10 min at room temperature was performed. | (i) Baseline measurement (T0) was conducted by immersing for two days in distilled water. (ii) Next, all specimens were immersed for 12 days in solutions, mimicking one year of immersion. Subsequently, measurements were conducted again (T1). (iii) Following an additional 12 days of immersion to simulate two years of immersion, measurements were repeated (T2). (iv) Between each immersion, specimens were retrieved, rinsed with water, and then, immersed in distilled water at room temperature before the subsequent immersion cycle. |
Distilled water (DW) | Distilled water | - | Immersed in DW at room temperature throughout experimental time. | |
Corega (effervescent tablet 1) | Disinfectant effervescent tablet (Dungarvan, Co. Waterfold, Ireland) | Sodium bicarbonate, Sodium carbonate peroxide, potassium caroate (potassium monopersulfate), sodium carbonate, citric acid, TAED, sodium benzoate, PEG-180, sodium lauryl sulfate, VP/VA copolymer, aroma, subtilisin, cellulose gum, CI 42090, CI 73015, CI 19140 | (i) One tablet was dissolved in 200 mL of warm tap water (40 °C). (ii) Immersion for 3 min occurred once per day. | |
Fittydent (effervescent tablet 2) | Disinfectant effervescent tablet (Fittydent International GmbH Carlbergergasse, Wein, Austria) | Sodium bicarbonate, potassium monopersulphate, sodium perborate monohydrate, surfactant, form booster, colorant, flavoring agent, excipient | (i) One tablet was dissolved in 200 mL of warm tap water (40 °C). (ii) Immersion for 5 min occurred once per day. |
Material | % | Time | NaOCl Mean (SD) | Fittydent Mean (SD) | Corega Mean (SD) | Water Mean (SD) | p-Value |
---|---|---|---|---|---|---|---|
PMMA | T1 | 1.5 (0.3) | 1.5 (0.6) | 1.5 (0.6) | 1.4 (0.5) | 0.116 | |
T2 | 2.4 (0.5) | 2.4 (0.6) | 1.9 (0.5) | 2.2 (0.3) | 0.136 | ||
p-value | 0.000 * | 0.003 * | 0.135 | 0.001 * | |||
NextDent | 0% | T1 | 4.8 (2.0) | 0.6 (0.3) a,b | 0.8 (0.5) a,c | 1.6 (1.6) b,c | 0.000 * |
T2 | 4.6 (0.7) | 0.9 (0.4) a,b | 1.2 (0.4) a,c | 1.7 (1.7) b,c | 0.000 * | ||
p-value | 0.692 | 0.071 | 0.093 | 0.885 | |||
0.5% | T1 | 3.2 (1.2) | 0.47 (0.4) a,b | 1.2 (1.6) a,c | 0.65 (0.6) b,c | 0.000 * | |
T2 | 3.8 (0.7) | 0.87 (0.8) a,b | 0.6 (0.2) a,c | 0.81 (0.2) b,c | 0.000 * | ||
p-value | 0.173 | 0.170 | 0.263 | 0.450 | |||
1% | T1 | 4.9 (1.1) | 0.55 (0.3) a,b | 0.84 (0.5) a,c | 0.54 (0.4) b,c | 0.000 * | |
T2 | 5.2 (1.1) | 0.89 (0.6) a,b | 0.65 (0.3) a,c | 0.89 (0.4) b,c | 0.000 * | ||
p-value | 0.552 | 0.125 | 0.332 | 0.055 | |||
3% | T1 | 5.24 (0.9) | 0.54 (0.4) a,b | 0.72 (0.7) a,c | 0.38 (0.2) b,c | 0.000 * | |
T2 | 5.42 (0.7) | 0.77 (0.6) a,b | 0.82 (0.5) a,c | 0.59 (0.2) b,c | 0.000 * | ||
p-value | 0.631 | 0.344 | 0.727 | 0.022 * | |||
5% | T1 | 5.41 (0.8) | 0.77 (1.2) a,b | 1.67 (2.4) a,c | 0.66 (1.1) b,c | 0.000 * | |
T2 | 5.71 (0.7) | 0.94 (1.3) a,b | 1.69 (2.2) a,c | 0.60 (0.5) b,c | 0.000 * | ||
p-value | 0.397 | 0.764 | 0.981 | 0.880 | |||
ASIGA | 0% | T1 | 0.63 (0.36) a,b | 0.54 (0.54) a,c | 0.85 (0.85) b,c | 1.71 (0.84) | 0.000 * |
T2 | 0.61 (0.25) a,b | 0.63 (0.63) a,c | 0.83 (0.83) b,c | 2.1 (0.70) | 0.000 * | ||
p-value | 0.86 | 0.68 | 0.95 | 0.33 | |||
0.5% | T1 | 0.81 (0.6) | 0.54 (0.2) | 0.65 (0.2) | 0.49 (0.2) | 0.185 | |
T2 | 1.13 (0.7) | 1.0 (1.0) | 0.64 (0.4) | 0.58 (0.2) | 0.185 | ||
p-value | 0.27 | 0.17 | 0.91 | 0.35 | |||
1% | T1 | 0.73 (0.6) | 0.79 (0.3) | 0.52 (0.3) | 0.36 (0.2) | 0.083 | |
T2 | 1.1 (0.8) a,b | 0.58 (0.5) a,c,d | 0.63 (0.3) b,c,e | 0.43 (0.2) d,e | 0.021 * | ||
p-value | 0.24 | 0.29 | 0.38 | 0.39 | |||
3% | T1 | 0.54 (0.4) | 0.80 (0.5) | 0.76 (0.8) | 0.77 (0.6) | 0.775 | |
T2 | 0.73 (0.7) | 0.87 (0.4) | 0.85 (0.2) | 1.1 (0.7) | 0.482 | ||
p-value | 0.49 | 0.75 | 0.75 | 0.25 | |||
5% | T1 | 0.53 (0.2) | 0.57 (0.6) | 0.99 (0.9) | 0.78 (1.3) | 0.604 | |
T2 | 1.19 (0.3) | 1.25 (1.4) | 0.69 (0.3) | 0.49 (0.3) | 0.095 | ||
p-value | 0.000 * | 0.187 | 0.36 | 0.513 |
% | NaOCl Mean (SD) | Fittydent Mean (SD) | Corega Mean (SD) | Water Mean (SD) | p-Value | ||
---|---|---|---|---|---|---|---|
PMMA | Control | 0.46 (0.1) A | 0.43 (0.02) | 0.46 (0.05) A | 0.45 (0.03) | 0.621 | |
T1 | 0.73 (0.2) | 0.48 (0.14) a,b | 0.60 (0.06) a | 0.034 (0.06) b | 0.000 * | ||
T2 | 0.37 (0.02) A | 0.41 (0.04) | 0.41 (0.04) A | 0.039 (0.04) | 0.170 | ||
p-value | 0.000 * | 0.249 | 0.000 * | 0.000 * | |||
NextDent | 0% | Control | 0.57 (0.05) a,b | 0.55 (0.08) a,c | 0.59 (0.09) A,b,c | 0.74 (0.09) | 0.000 * |
T1 | 0.57 (0.13) a,b | 0.59 (0.09) a,c | 0.76 (0.09) | 0.58 (0.1) A,b,c | 0.001 * | ||
T2 | 0.58 (0.05) | 0.61 (0.09) | 0.61 (0.1) A | 0.60 (0.13) A | 0.894 | ||
p-value | 0.928 | 0.358 | 0.001 * | 0.005 * | |||
0.5% | Control | 0.64 (0.19) | 0.57 (0.08) | 0.65 (0.05) | 0.58 (0.07) | 0.240 | |
T1 | 0.53 (0.07) a,b | 0.64 (0.13) c | 0.59 (0.05) a,c,d | 0.49 (0.08) b,d | 0.003 * | ||
T2 | 0.52 (0.04) | 0.55 (0.06) | 0.48 (0.02) | 0.53 (0.1) | 0.09 | ||
p-value | 0.054 | 0.086 | 0.000 * | 0.132 | |||
1% | Control | 0.64 (0.2) | 0.42 (0.03) a,b | 0.51 (0.05) A,a,c | 0.43 (0.04) b,c | 0.000 * | |
T1 | 0.73 (0.2) a | 0.48 (0.1) b,c | 0.6 (0.06) a,b | 0.34 (0.06) A,c | 0.000 * | ||
T2 | 0.69 (0.1) | 0.48 (0.1) a | 0.52 (0.06) A,a | 0.34 (0.06) A | 0.000 * | ||
p-value | 0.528 | 0.351 | 0.002 * | 0.001 * | |||
3% | Control | 0.63 (0.07) A,a | 0.69 (0.05) a | 0.49 (0.13) b | 0.43 (0.09) b | 0.000 * | |
T1 | 0.60 (0.1) A,a | 0.8 (0.06) A | 0.56 (0.09) a | 0.39 (0.05) | 0.000 * | ||
T2 | 0.43 (0.06) a,b | 0.78 (0.07) A | 0.46 (0.07) a | 0.37 (0.03) b | 0.000 * | ||
p-value | 0.000 * | 0.002 * | 0.110 | 0.182 | |||
5% | Control | 0.47 (0.04) | 0.46 (0.05) | 0.46 (0.04) | 0.48 (0.05) | 0.698 | |
T1 | 0.54 (0.13)a | 0.38 (0.08) b | 0.47 (0.13) a,c | 0.38 (0.04) A,b,c | 0.002 * | ||
T2 | 0.49 (0.08) | 0.46 (0.12) | 0.47 (0.15) | 0.37 (0.56) A | 0.074 | ||
p-value | 0.219 | 0.078 | 0.928 | 0.000 * | |||
ASIGA | 0% | Control | 0.53 (0.1) | 0.48 (0.11) | 0.52 (0.1) | 0.58 (0.07) | 0.214 |
T1 | 0.34 (0.09) A | 0.35 (0.03) A | 0.29 (0.03) A | 0.27 (0.08) A | 0.051 | ||
T2 | 0.3 (0.04) A,a,b | 0.31 (0.03) A,a,c | 0.23 (0.04) A,d | 0.28 (0.04) A,b,c,d | 0.000 * | ||
p-value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |||
0.5% | Control | 0.45 (0.08) | 0.47 (0.09) | 0.54 (0.06) | 0.53 (0.08) | 0.052 | |
T1 | 0.54 (0.09) | 0.59 (0.14) | 0.57 (0.06) | 0.55 (0.07) | 0.721 | ||
T2 | 0.52 (0.08) | 0.54 (0.09) | 0.53 (0.06) | 0.53 (0.06) | 0.908 | ||
p-value | 0.082 | 0.076 | 0.452 | 0.647 | |||
1% | Control | 0.39 (0.13) a,b | 0.43 (0.11) a | 0.61 (0.08) c | 0.57 (0.13) b,c | 0.000 * | |
T1 | 0.52 (0.18) | 0.53 (0.17) | 0.69 (0.09) | 0.63 (0.12) | 0.05 | ||
T2 | 0.39 (0.12) a | 0.51 (0.09) a,b | 0.63 (0.06) b,c | 0.67 (0.13) c | 0.000 * | ||
p-value | 0.086 | 0.209 | 0.087 | 0.18 | |||
3% | Control | 0.61 (0.05) A,a,b,c | 0.59 (0.03) A,a,d | 0.56 (0.06) b,e | 0.65 (0.08) c,d,e | 0.021 * | |
T1 | 0.72 (0.07) a,b | 0.7 (0.07) B,a,c | 0.59 (0.04) d | 0.68 (0.11) b,c,d | 0.005 * | ||
T2 | 0.64 (0.08) A | 0.63 (0.09) A,B | 0.61 (0.03) | 0.66 (0.11) | 0.567 | ||
p-value | 0.003 * | 0.004 * | 0.106 | 0.736 | |||
5% | Control | 0.45 (0.09) A,a,b,c | 0.34 (0.18) a,d | 0.47 (0.03) b,d,e | 0.50 (0.07) c,e | 0.014 * | |
T1 | 0.59 (0.08) B,a,b | 0.38 (0.21) c,d | 0.52 (0.05) a,c,e | 0.53 (0.05) b,d,e | 0.000 * | ||
T2 | 0.53 (0.06) A,B | 0.45 (0.13) | 0.52 (0.05) | 0.53 (0.07) | 0.160 | ||
p-value | 0.002 * | 0.372 | 0.05 | 0.528 |
Material | Source | Type III Sum of Squares | Df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
NextDent | Intercept | 1389.165 | 1 | 1389.165 | 1421.548 | 0.000 * |
Solution * time | 1.587 | 3 | 0.529 | 0.541 | 0.654 | |
Solution * concentration | 58.414 | 12 | 4.868 | 4.981 | 0.000 * | |
Time * concentration | 0.130 | 4 | 0.032 | 0.033 | 0.998 | |
Solution * time * concentration | 5.096 | 12 | 0.425 | 0.435 | 0.949 | |
Error | 351.799 | 360 | 0.977 | |||
Total | 3013.228 | 400 | ||||
ASIGA | Intercept | 253.478 | 1 | 253.478 | 700.277 | 0.000 * |
Solution * time | 1.570 | 3 | 0.523 | 1.445 | 0.229 | |
Solution * concentration | 28.403 | 12 | 2.367 | 6.539 | 0.000 * | |
Time * concentration | 0.255 | 4 | 0.064 | 0.176 | 0.951 | |
Solution * time * concentration | 5.358 | 12 | 0.447 | 1.234 | 0.258 | |
Error | 130.309 | 360 | 0.362 | |||
Total | 427.931 | 400 |
Material | Source | Type III Sum of Squares | Df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
NextDent | Intercept | 174.928 | 1 | 174.928 | 20,012.946 | 0.000 * |
Solution * time | 0.472 | 6 | 0.079 | 9.006 | 0.000 * | |
Solution * concentration | 2.990 | 12 | 0.249 | 28.507 | 0.000 * | |
Time * concentration | 0.199 | 8 | 0.025 | 2.843 | 0.004 * | |
Solution * time * concentration | 0.542 | 24 | 0.023 | 2.583 | 0.000 * | |
Error | 4.720 | 540 | 0.009 | |||
Total | 186.702 | 600 | ||||
ASIGA | Intercept | 159.114 | 1 | 159.114 | 18,074.412 | 0.000 * |
Solution * time | 0.169 | 6 | 0.028 | 3.191 | 0.004 * | |
Solution * concentration | 1.185 | 12 | 0.099 | 11.213 | 0.000 * | |
Time * concentration | 1.878 | 8 | 0.235 | 26.663 | 0.000 * | |
Solution * time * concentration | 0.159 | 24 | 0.007 | 0.751 | 0.799 | |
Error | 4.754 | 540 | 0.009 | |||
Total | 172.064 | 600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gad, M.M.; Khattar, A.; Alramadan, D.M.; Al Dawood, Z.H.; Al Shehab, S.S.; Al Zaher, R.H.; Alzain, L.O.; Khan, S.Q.; Abdelfattah, M.Y. Nanoparticle-Modified 3D-Printed Denture Base Resins: Influence of Denture Cleansers on the Color Stability and Surface Roughness In Vitro. Nanomaterials 2024, 14, 891. https://doi.org/10.3390/nano14100891
Gad MM, Khattar A, Alramadan DM, Al Dawood ZH, Al Shehab SS, Al Zaher RH, Alzain LO, Khan SQ, Abdelfattah MY. Nanoparticle-Modified 3D-Printed Denture Base Resins: Influence of Denture Cleansers on the Color Stability and Surface Roughness In Vitro. Nanomaterials. 2024; 14(10):891. https://doi.org/10.3390/nano14100891
Chicago/Turabian StyleGad, Mohammed M., Abdulrahman Khattar, Doha M. Alramadan, Zainab H. Al Dawood, Sujood S. Al Shehab, Rabab H. Al Zaher, Layal Osama Alzain, Soban Q. Khan, and Mohamed Y. Abdelfattah. 2024. "Nanoparticle-Modified 3D-Printed Denture Base Resins: Influence of Denture Cleansers on the Color Stability and Surface Roughness In Vitro" Nanomaterials 14, no. 10: 891. https://doi.org/10.3390/nano14100891
APA StyleGad, M. M., Khattar, A., Alramadan, D. M., Al Dawood, Z. H., Al Shehab, S. S., Al Zaher, R. H., Alzain, L. O., Khan, S. Q., & Abdelfattah, M. Y. (2024). Nanoparticle-Modified 3D-Printed Denture Base Resins: Influence of Denture Cleansers on the Color Stability and Surface Roughness In Vitro. Nanomaterials, 14(10), 891. https://doi.org/10.3390/nano14100891