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Abstract: Black phosphorus and black phosphorus nanosheets are widely used in the flame retardant
field because of their excellent properties, but the immature preparation methods have resulted in
extremely high preparation cost, which greatly limits their development and application. In this
paper, various preparation methods of black phosphorus and black phosphorus nanosheets are
described in detail, the advantages and disadvantages of each method are analyzed in depth, the
flame-retardant mechanism and application of black phosphorus and black phosphorus nanosheets
in flame retardants are discussed, and the subsequent development direction of black phosphorus
and black phosphorus nanosheets is proposed.

Keywords: BP; BPNSs; flame retardant

1. Introduction

According to the 2022 China Phosphorus Chemical Industry Market Outlook and
Investment Strategy Planning Analysis Report, China is the world’s largest producer and
consumer of phosphorus chemical products. In 2021, China produced 777,500 tonnes of
yellow phosphorus and consumed about 750,000 tonnes, both figures lower than those in
2016 [1]. China’s phosphorus chemical industry is currently facing a bottleneck, despite
being largely self-sufficient, and diversification, personalization, and high-end products
are the prevailing trends [2]. Among them, black phosphorus (BP) has garnered significant
attention due to its exceptional performance.

Black phosphorus (BP) is an allotrope of phosphorus, along with red phosphorus (RP),
white phosphorus (WP), and violet phosphorus. Black phosphorus nanosheets (BPNSs)
have a layer-like structure very similar to graphene, with layers connected by weak van
der Waals forces [3,4]. Black phosphorus nanosheets have a unique wrinkled honeycomb
structure, which gives them many outstanding properties, such as excellent optoelectronic
performance, high charge carrier mobility, field-effect transistor effects, and high theoretical
specific capacity. This has led to wide applications of black phosphorus nanosheets in
optoelectronics [5], energy storage [6,7], sensors [8,9], batteries [10,11], and other fields. In
recent years, it has also been reported that black phosphorus nanosheets have tremendous
potential for development in the field of flame retardancy, significantly increasing the
limiting oxygen index (LOI) and reducing the peak heat release rate (PHRR) of materials at
low addition levels (mass fraction ≤ 10%).

However, the promising application prospects of black phosphorus nanosheets are
hindered by its demanding preparation methods. Currently, the preparation of black
phosphorus nanosheets mostly relies on black phosphorus as the raw material. However,
the preparation of black phosphorus itself faces issues such as high cost and difficulty
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in scaling up, resulting in products with more or less impurities and poor crystallinity.
The price of black phosphorus on the market even exceeds that of gold [12–14]. Low-cost
and scalable production of black phosphorus nanosheets is currently a pressing issue,
which is of great importance for promoting the application of black phosphorus nanosheets.
Therefore, this paper elaborates on the preparation methods of black phosphorus and black
phosphorus nanosheets, summarizes the advantages and disadvantages of each method,
and analyzes and prospects the application prospects of both.

2. Preparation of Black Phosphorous

Currently, there are many methods to prepare black phosphorus, which can be broadly
classified into the pressurized method and the catalytic method according to the preparation
principle. Pressurization refers to the preparation of black phosphorus by a phase change
of red or white phosphorus through high pressure. Methods such as the high temperature
and high pressure method and the mechanical ball milling method are categorized as
high-pressure methods. The catalytic method refers to reducing the activation energy of
the reaction by adding a catalyst so that black phosphorus can be prepared under lower
pressure. Examples of the catalytic method include the mercury reflux method, bismuth
melting method, and mineralization method.

2.1. Pressurization
2.1.1. High Temperature and High Pressure Method

The high temperature and high pressure method is a widely used technique for prepar-
ing black phosphorus crystals under specific conditions. The initial production of black
phosphorus dates back to the early 20th century, when Bridgman successfully converted
white phosphorus into black phosphorus using high-temperature and high-pressure con-
ditions (1.2–1.3 GPa hydrostatic pressure, 200 ◦C). Subsequently, Bridgman explored the
production of bulk black phosphorus at lower temperatures [15], resulting in a method that
yielded superior quality and quantity compared to the previous approach, albeit requiring
higher pressure (8.0 GPa). Despite the harsh preparation conditions, this method stands
out as one of the most effective for preparing black phosphorus. Moreover, scholars have
continuously refined this approach over time. Jacobs [16] successfully prepared black
phosphorus at hydrostatic pressures ranging from 1.1 Gpa to 1.6 Gpa. Shirotani [17] syn-
thesized nano-sized crystals of black phosphorus at 2.3 Gpa and 500 ◦C. Akahama [18]
produced bulk black phosphorus at 1 Gpa and 900 ◦C. Sun et al. [19] rapidly prepared bulk
black phosphorus at temperatures between 20 ◦C and 800 ◦C under pressures of 2–5 Gpa.
Zhao et al. [20] produced black phosphorus materials doped with transition metals at
1.6 Gpa and 700 ◦C. However, the harsh conditions required to achieve a high temperature
and high pressure make this method unsuitable for large-scale production.

2.1.2. Mechanical Ball Milling

The mechanical ball milling method involves using ball milling media to impact RP
at a high speed in a ball mill to produce black phosphorus. The fundamental principle of
the ball milling method is akin to that of the high temperature and high pressure method.
It also utilizes high-speed impact to generate high pressure, inducing a phase change
in RP. As early as the last century, Günther et al. [21] employed mechanical ball milling
to synthesize bulk black phosphorus. Due to black phosphorus’s high susceptibility to
oxidation, Park et al. [22] used the inert gas argon to fill the environment during preparation.
Nagao et al. [23] compared the X-ray diffraction patterns (XRD) of black phosphorus and
found that black phosphorus prepared by a hybrid ball mill exhibits superior crystallinity
compared to that prepared by a planetary ball mill (Figure 1). However, the ball milling
method for obtaining the BP crystal form is less effective than the high temperature and
high pressure method. Following this, some scholars utilized the ball milling method
to prepare black phosphorus composite materials, thus laying the groundwork for the
preparation of black phosphorene.
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However, the BP crystal form produced by mechanical ball milling is of poor quality
and requires an extended processing time, often spanning dozens of hours. This extended pro-
cessing time significantly increases costs, rendering it unsuitable for large-scale applications.

2.2. Catalytic Methods
2.2.1. The Mercury Reflux Method and the Bismuth Melting Method

The mercury catalytic method utilizes mercury to lower the activation energy, making
it a form of catalytic method in theory. Kerbs et al. [24] used metallic mercury to reduce the
pressure during the reaction and prepared millimeter-sized massive black phosphorus at
370–410 ◦C. Despite requiring a lower pressure, this method has a lengthy experimental
cycle and poses health risks due to the use of metallic mercury. Furthermore, the process of
removing residual mercury also reduces production efficiency. The bismuth fusion method
bears some resemblance to the mercury reflux method. Baba et al. [25] initially synthesized
white phosphorus from red phosphorus as the raw material under inert gas protection.
Subsequently, they reacted white phosphorus with hot bismuth at 400 ◦C to obtain BP
crystals. However, the white phosphorus used in the experiment, along with the nitric acid
solution used in the subsequent washing process, is hazardous. Moreover, the product
contains numerous sulfides and other impurities.

Based on the experimental results of numerous scholars, both the mercury reflux
method and the bismuth fusion method exhibit several disadvantages. These methods
employ inherently hazardous raw materials, yield a low output, and incur high experi-
mental costs. Consequently, few researchers choose to utilize these two methods for black
phosphorus preparation.

2.2.2. Mineralization

While all the aforementioned methods can produce bulk black phosphorus, the high
pressure method necessitates an exceedingly high pressure. Additionally, the experimental
conditions of the ball milling method, mercury reflux method, and bismuth fusion method
are relatively stringent, significantly impeding black phosphorus production. To address
these challenges, scholars have discovered a new preparation method, the mineraliza-
tion method, through extensive experimental studies. The mineralization method utilizes
safer red phosphorus as a raw material, which is then mixed with a mineralizing agent in
specific proportions. Subsequently, the mixture undergoes a series of temperature treat-
ments, including heating and cooling, to produce well-crystallized bulk black phosphorus.
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Lange et al. [26] utilized this method to prepare bulk black phosphorus by mixing Au,
Sn, and SnI4 as mineralizers with red phosphorus and conducting the reaction at 600 ◦C.
Nilges et al. [27] refined their experimental approach by placing the mineralizing agent into
a sealed quartz tube and subjecting it to controlled temperature changes. The process took
more than 30 h to produce black phosphorus. Subsequent researchers further optimized the
mineralizer to lower experimental costs. Köpf et al. [28] exclusively employed Sn and SnI4
as mineralizers, and successfully produced centimeter-scale bulk black phosphorus by ad-
justing the reaction temperature. The neutron powder diffraction pattern (Figure 2) reveals
the presence of only one crystal form of black phosphorus throughout the entire reaction
process. Li et al. [29] conducted extensive studies and experiments on the formation tem-
perature and growth model of black phosphorus. They proposed a new “gas–solid–solid”
phase growth mechanism, as illustrated in Figure 3. Through experiments, they found that
Sn24P22-XI8 is relatively stable below 520 ◦C, when P4 can break down on its surface and
diffuse into it. When the concentration of phosphorus is high enough, it will precipitate on
the surface of Sn24P22-XI8 to form black phosphorus. The morphology of the black phos-
phorus bands is uniform, which satisfies the “gas–solid–solid” phase growth mechanism
proposed by them.

Nanomaterials 2024, 14, x FOR PEER REVIEW 4 of 30 
 

 

address these challenges, scholars have discovered a new preparation method, the miner-

alization method, through extensive experimental studies. The mineralization method uti-

lizes safer red phosphorus as a raw material, which is then mixed with a mineralizing 

agent in specific proportions. Subsequently, the mixture undergoes a series of tempera-

ture treatments, including heating and cooling, to produce well-crystallized bulk black 

phosphorus. Lange et al. [26] utilized this method to prepare bulk black phosphorus by 

mixing Au, Sn, and SnI4 as mineralizers with red phosphorus and conducting the reaction 

at 600 °C. Nilges et al. [27] refined their experimental approach by placing the mineraliz-

ing agent into a sealed quartz tube and subjecting it to controlled temperature changes. 

The process took more than 30 h to produce black phosphorus. Subsequent researchers 

further optimized the mineralizer to lower experimental costs. Köpf et al. [28] exclusively 

employed Sn and SnI4 as mineralizers, and successfully produced centimeter-scale bulk 

black phosphorus by adjusting the reaction temperature. The neutron powder diffraction 

pattern (Figure 2) reveals the presence of only one crystal form of black phosphorus 

throughout the entire reaction process. Li et al. [29] conducted extensive studies and ex-

periments on the formation temperature and growth model of black phosphorus. They 

proposed a new “gas–solid–solid” phase growth mechanism, as illustrated in Figure 3. 

Through experiments, they found that Sn24P22-XI8 is relatively stable below 520 °C, when 

P4 can break down on its surface and diffuse into it. When the concentration of phosphorus 

is high enough, it will precipitate on the surface of Sn24P22-XI8 to form black phosphorus. 

The morphology of the black phosphorus bands is uniform, which satisfies the “gas–

solid–solid” phase growth mechanism proposed by them. 

 

Figure 2. Neutron diffraction pattern of black phosphorus [28]. Reprinted with permission from 

Ref. [28]. Copyright 2014, copyright Marianne Köpf. 

 

Figure 3. Li’s hypothesized growth machine [29]. Reprinted with permission from Ref. [29]. Copy-

right 2018, copyright Sheng Li. 

Figure 2. Neutron diffraction pattern of black phosphorus [28]. Reprinted with permission from
Ref. [28]. Copyright 2014, copyright Marianne Köpf.

Nanomaterials 2024, 14, x FOR PEER REVIEW 4 of 30 

address these challenges, scholars have discovered a new preparation method, the miner-

alization method, through extensive experimental studies. The mineralization method uti-

lizes safer red phosphorus as a raw material, which is then mixed with a mineralizing 

agent in specific proportions. Subsequently, the mixture undergoes a series of tempera-

ture treatments, including heating and cooling, to produce well-crystallized bulk black 

phosphorus. Lange et al. [26] utilized this method to prepare bulk black phosphorus by 

mixing Au, Sn, and SnI4 as mineralizers with red phosphorus and conducting the reaction 

at 600 °C. Nilges et al. [27] refined their experimental approach by placing the mineraliz-

ing agent into a sealed quartz tube and subjecting it to controlled temperature changes. 

The process took more than 30 h to produce black phosphorus. Subsequent researchers 

further optimized the mineralizer to lower experimental costs. Köpf et al. [28] exclusively 

employed Sn and SnI4 as mineralizers, and successfully produced centimeter-scale bulk 

black phosphorus by adjusting the reaction temperature. The neutron powder diffraction 

pattern (Figure 2) reveals the presence of only one crystal form of black phosphorus 

throughout the entire reaction process. Li et al. [29] conducted extensive studies and ex-

periments on the formation temperature and growth model of black phosphorus. They 

proposed a new “gas–solid–solid” phase growth mechanism, as illustrated in Figure 3. 

Through experiments, they found that Sn24P22-XI8 is relatively stable below 520 °C, when 

P4 can break down on its surface and diffuse into it. When the concentration of phosphorus 

is high enough, it will precipitate on the surface of Sn24P22-XI8 to form black phosphorus. 

The morphology of the black phosphorus bands is uniform, which satisfies the “gas–

solid–solid” phase growth mechanism proposed by them. 

Figure 2. Neutron diffraction pattern of black phosphorus [28]. Reprinted with permission from 

Ref. [28]. Copyright 2014, copyright Marianne Köpf. 

Figure 3. Li’s hypothesized growth machine [29]. Reprinted with permission from Ref. [29]. Copy-

right 2018, copyright Sheng Li. 
Figure 3. Li’s hypothesized growth machine [29]. Reprinted with permission from Ref. [29]. Copy-
right 2018, copyright Sheng Li.

The development of high pressure methods for preparing black phosphorus has
raised prospects for large-scale production. Presently, researchers are continuing to explore
methods to reduce experimental costs, focusing on raw materials, reaction mechanisms,
and other aspects. Furthermore, the formation mechanism of black phosphorus has long
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been a topic of controversy. The current explanations encompass two mechanisms: the
“gas–solid–solid” phase and phase induction. Our goal remains to achieve the high-quality,
low-cost, and large-scale production of black phosphorus.

2.3. Comparison of Various Preparation Methods

The advantages and disadvantages of various preparation methods for black phos-
phorus are shown in Table 1.

Table 1. Comparison of various preparation methods for black phosphorus.

Method Principle Advantages Disadvantages

High temperature and high
pressure method

High temperature and high pressure
make white phosphorus and red

phosphorus phase-change
Short time and easy to reproduce Small product size, high cost,

high equipment requirements

Mechanical ball milling

The high-speed impact of the ball
milling medium on the red

phosphorus causes it to undergo a
phase change

The inert gas prevents black phosphorus
from being oxidized to some extent

Poor crystal shape and
time-consuming

Mercury reflux method,
bismuth melting method

Mercury and bismuth are used to
reduce the activation energy of

the reaction
The reaction conditions are mild

Small product size,
time-consuming, more
polluting, and costly

Mineralization
The mineralizer reacts with red

phosphorus in a series of temperature
changes

Good crystallinity, high reproducibility,
green environmental protection,

low cost
Difficult-to-achieve scale

3. Preparation of Black Phosphorus Nanosheets

At present, the methods for preparing BPNSs can be broadly classified into two
categories: the “top–down method” and the “bottom–up method”. The former involves
producing black phosphorus nanosheets through the exfoliation of large pieces of black
phosphorus crystals using external forces such as ultrasonic waves and electric fields. This
process generally includes liquid phase exfoliation and mechanical exfoliation. Various
liquid phase exfoliation methods exist. These include the electrochemical exfoliation
method, ultrasonic exfoliation method, shear exfoliation method, microwave exfoliation
method, etc. It is noteworthy that ultrasonic exfoliation is a method widely used by industry,
academia, and research institutes for preparing black phosphorus nanosheets. The latter
refers to the preparation of black phosphorene through the incremental accumulation
of molecules or atoms. The commonly used methods include the solvothermal method,
chemical vapor deposition method, and high pressure method.

3.1. Top–Down Method
3.1.1. Mechanical Stripping Method

The mechanical exfoliation method is commonly employed to isolate two-dimensional
layered materials into nanomaterials with a few layers or a single atomic layer thick-
ness. In 2004, Novoselov et al. [30] demonstrated the mechanical exfoliation method by
using tape to isolate a small amount of single-layer graphene from bulk graphite. The
structure of black phosphorus nanosheets closely resembles that of graphite, as both ma-
terials exhibit a layered structure held together by weak van der Waals forces between
the layers. Consequently, some scholars have explored the use of this method to prepare
black phosphorus nanosheets. Li et al. [31] successfully employed tape to peel off black
phosphorus nanosheets. Additionally, they affixed the black phosphorus flakes to silicon
dioxide silicon wafers to fabricate field-effect transistors (FETs) for microprocessors and
memories. Chen et al. [32] similarly employed tape to peel off black phosphorus films.
However, this method results in a very low yield of black phosphorus nanosheets, and
both black phosphorus and black phosphorus nanosheets are prone to oxidation, leading
to low product purity. Subsequently, some scholars enhanced the tape exfoliation method.
Castellanos-Gomez et al. [33] augmented this approach by incorporating a silicone resin
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transmission layer, thereby enhancing the yield of black phosphorus nanosheets. Lu [34]
combined Ar+ plasma with the tape exfoliation method to produce more stable black
phosphorus nanosheets. Extensive characterization revealed that the structure of the black
phosphorene was intact and not oxidized, as shown in Figure 4.
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Scholars have successfully demonstrated the feasibility of preparing black phosphorus
nanosheets through mechanical exfoliation. While the experimental conditions are simple,
the process requires a significant amount of time and intensive labor. Moreover, the yields
of various improved methods are not consistent [35,36]. Furthermore, the challenge of raw
material oxidation remains unsolved. The introduction of inert gas only partially mitigates
the oxidation of black phosphorus and black phosphorene, resulting in a final product that
is still partially oxidized.

3.1.2. Liquid Phase Exfoliation

The liquid phase exfoliation method is a widely employed technique for preparing
nanomaterials. Due to its high yield, good quality, and minimal structural damage to BPNSs,
the liquid phase exfoliation method is one of the most commonly employed techniques
for preparing BPNSs. BPNSs are prepared by dispersing bulk black phosphorus or black
phosphorus powder in an organic solvent [37], and subsequently applying an external
field force to break the weak van der Waals forces between layers or the chemical bonds
within the layers. A crucial aspect of this method is selecting an appropriate organic
solvent. Due to black phosphorus’s susceptibility to oxidation in air, the selected liquid
phase must be an oxygen-scavenging solvent. Common solvents for this purpose include
N,N-dimethylformamide (DMF) [38], N-methyl-2-pyrrolidone (NMP) [39,40], ethanol [41],
and isopropyl alcohol [42,43]. The choice of solvent also impacts the subsequent peeling
and application of black phosphorus nanosheets. It is also essential to isolate the air with
an inert gas during the operation to prevent the produced black phosphorus from oxidizing
upon contact with air.

The ultrasonic exfoliation method employs ultrasonic waves to disrupt the weak van
der Waals forces between the layers of black phosphorus. Given sufficient ultrasonic time
and frequency, the method can even disrupt the stronger covalent bonds within the layers.
The resulting black phosphorus nanosheets are smaller in size and exhibit a broader range of
applications. In 2014, Kang et al. [44] successfully produced black phosphorus nanosheets
using the liquid phase exfoliation method in an NMP solution (Figure 5). Guo et al. [45]
subsequently added a NaOH solution to NMP to enhance its water stability, with hydroxide
ions attaching to the surface of black phosphorus nanosheets. Jia [46] successfully separated
black phosphorus nanosheets from an NMP solution using the liquid phase exfoliation
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method. Additionally, Bat-Erdene [47] found that organic solvents can isolate oxygen and
prevent the oxidation of black phosphorus nanosheets. The ultrasonic peeling method
partially mitigates the oxidation of black phosphorus and black phosphorene. However,
during practical operation, the high boiling points of the organic solvents used result in
their adsorption on the surface of the black phosphorus nanosheets, making them difficult
to completely remove. This leads to the low purity of the prepared black phosphorene,
thereby affecting the performance of the subsequent composite materials. Furthermore,
organic solvents are harmful to the environment and human health, underscoring the
importance of green organic solvents [48]. Zhao [49], Lee [50], and others discovered
through extensive experimentation that ionic liquids can serve as substitutes for organic
solvents. Ionic liquids are characterized by low volatility, high thermal stability, high
ionic conductivity, non-toxicity, and recyclability. However, their relatively high cost may
increase the overall expense of preparing black phosphorene. Chen et al. [51] substituted
inexpensive deionized water for organic solvents and prepared stably dispersed black
phosphorene using ultrasound. However, the efficiency of ultrasonic exfoliation alone is low.
Yang et al. [52] used deoxygenated water as the solvent and applied a microwave–ultrasonic
synergistic assistance method to exfoliate black phosphorus. Compared with ultrasonic
exfoliation alone, this method not only increases the yield of BPNSs, but also greatly reduces
the time required for exfoliation.
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Microwave exfoliation is also a commonly used method to prepare two-dimensional
materials. This method has been used by researchers to prepare various two-dimensional
materials, including graphene and two-dimensional transition metal dichalcogenides
(TMDs) [53,54]. Due to the high similarity between graphite and black phosphorene,
many scholars have also attempted to use this method to prepare black phosphorus
nanosheets. Wang Qin et al. [55] used NMP and dimethyl sulfoxide (DMSO) as solvents
and microwave-assisted exfoliation to finally obtain black phosphorus nanosheets with a
size of 40 nm × 200 nm and an average thickness of 7 nm. While this method successfully
produced nanoscale black phosphorus flakes, it was time-consuming. Bat-Erdene et al. [47]
successfully produced high-quality black phosphorus nanosheets in a short time by in-
creasing the frequency of microwaves. The principle is illustrated in Figure 6. Scholars’
research indicates that the microwave exfoliation method is relatively simple and has
a very short processing cycle. This method represents a novel approach to preparing
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black phosphorene. However, the yield of this method requires improvement. Therefore,
extensive experiments are still required to investigate the effects of parameters such as
time, temperature, microwave power, and other factors on the yield, size, and quality of
black phosphorene. Moreover, since microwave exfoliation also involves the use of organic
solvents, it is necessary to research how to identify a cost-effective and environmentally
friendly organic solvent.
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The electrochemical exfoliation method was initially employed to prepare graphene
and MoS2 with larger lateral sizes on a large scale in the early days. The fundamental
principle is that the applied electric field force causes gas molecules or ions in the solution
to enter the interlayer of BP, leading to an expansion in the volume of BP and consequently
destroying the interlayer van der Waals force of BP. Subsequently, the required BPNSs can
be obtained once the layers are separated [56–58]. The electrochemical stripping method
can be categorized into three types based on the position of the raw material BP during
the stripping process: anodic stripping, cathodic stripping, and electrolyte stripping. In
2016, Erande et al. [59] first elucidated the mechanism of the anode stripping of black
phosphorus. They proposed that the attack of oxygen-containing free radicals, the insertion
of ions, and the expansion of gas molecules destroyed the van der Waals force between
BP layers. Jiang et al. [60] fabricated a novel type of black phosphorus nanosheet, porous
black phosphorene, using the anodic stripping method. They employed BP as the anode,
platinum wire as the cathode, and sulfuric acid as the electrolyte. The preparation process
is shown in Figure 7. Baboukani et al. [61] utilized bipolar electrochemical exfoliation and
deposition to produce BP nanosheets. Liu et al. [62] employed sodium foil as the anode
and BP as the cathode to assemble a battery. The battery was discharged, placed in de-
oxygenated water, ultrasonicated, and centrifuged to obtain black phosphorus nanosheets.
Refer to Figure 8 Atomic Force Microscope (Agilent 5500 AFM, USA).

In comparison to other the preparation methods, the electrochemical stripping method
offers advantages such as environmental friendliness, efficiency, and relative controlla-
bility, making it significantly important in advancing the large-scale preparation of black
phosphorene. However, this method also has two major problems that need to be ur-
gently solved. One is its lack of controllability. Currently, the structure and size of black
phosphorus nanosheets are uncontrollable, and it is not possible to produce BPNSs of the
same specifications as graphene simultaneously. Secondly, the yield of black phosphorus
nanosheets needs improvement. Defects in the preparation method and losses during the
washing process have greatly limited the development path for large-scale preparation of
black phosphorus nanosheets.
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The majority of the aforementioned methods use organic solvents as the medium for
stripping black phosphorus. Hence, the use of environmentally friendly organic solvents for
stripping black phosphorus in the liquid phase is crucial. Additionally, while the efficiency
of single ultrasonic peeling is low, the use of a synergistic method combining microwave
and ultrasonic assistance not only increases the yield of BPNSs, but also significantly
reduces the peeling time compared to ultrasonic peeling alone.

3.2. The Bottom–Up Method
3.2.1. Solvothermal Method

The solvothermal method was historically used to prepare nanoparticles. It uses
non-aqueous solutions or organic substances as solvents, puts the substrate into a closed
space such as a reactor, and reacts by increasing the temperature and the pressure of the
solution itself. The nanoparticles produced by this method have good crystal form, high
purity, good dispersion, controllable particle size, low experimental temperature, and stable
reaction [63]. In 2017, Zhao et al. [64] took advantage of the fact that ammonium fluoride can
reduce the surface activation of the substrate. They dispersed red phosphorus (RP) powder
in a solution of ammonium fluoride and distilled water, stirred it thoroughly, and placed it
in a high-pressure reactor for 16 h. Finally, polycrystalline black phosphorus nanosheets
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were obtained after washing and drying the product. Tian et al. [65,66] improved their
method. They replaced red phosphorus with low-cost and more reactive white phosphorus,
and then used an ethylenediamine solution as the solvent. Through this method, black
phosphorus nanosheets (BPNSs) were finally prepared. The preparation process and
sample characterization are shown in Figure 9. Tian’s method requires lower experimental
temperatures and is less time-consuming than Zhao’s, thereby reducing experimental
costs to a certain extent. Similar to Tian’s scheme, Zhu [67] increased the reaction time
and lowered the reaction temperature, and also prepared BPNSs by the solvothermal
method (Figure 10). Subsequently, some scholars also produced porous phosphorus-based
composite nanosheets by changing the solvent. These nanosheets are composed of black
phosphorus, amorphous red phosphorus, and phosphorus oxide. The solvothermal method,
which requires a relatively low reaction temperature, is not only simple to operate, but also
cost-effective, making it widely used. However, there are also problems such as the black
phosphorus nanosheets produced having a poor crystalline form and being easily oxidized.
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3.2.2. Chemical Vapor Deposition

The chemical vapor deposition (CVD) method refers to the reaction of one or more
elemental or gas-phase compounds containing thin-film elements to form a thin film
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under high-temperature conditions. The nano-two-dimensional materials prepared by
this method have a good crystal form and controllable size. The current technology is
relatively mature and has achieved the preparation of large-area ultra-thin nano two-
dimensional materials. Common materials prepared using chemical vapor deposition
include graphene [68,69], transition metal sulfides [70,71], and hexagonal boron nitride
(h-BN) [72,73]. In 2016, Smith et al. [74] used this method to prepare a nano-black phos-
phorus sheet film with an average area greater than 3 square microns and about 4 layers.
Jiang et al. [75] produced a few-layer black phosphorus (non-nanoscale) using titanium
foil and nanotubes as substrates under normal pressure. Izquierdo et al. [76] used red
phosphorus (RP), tin, and high tin iodide as raw materials and silicon dioxide/silicon as
the substrate to successfully produce micron-sized black phosphorus single crystals, but
impurities were present on the surface. The biggest advantage of the chemical vapor depo-
sition method over traditional preparation methods is that it directly skips the preparation
of bulk black phosphorus and replaces it with cheap red phosphorus. The reaction time is
shorter than that of traditional processes, saving a lot of costs. However, controlling the
size of the produced black phosphorus film is challenging, and impurities such as white
phosphorus (WP), red phosphorus (RP), and tin compounds are present on the surface
of the few layers of black phosphorus. This method is still in the exploratory stage, and
various technologies are not yet mature.

3.2.3. High Pressure Method

Both black phosphorus and black phosphorene can be synthesized using high tem-
perature and high pressure methods. The key step in synthesizing black phosphorus is
applying pressure to a red phosphorus film, which undergoes a phase transformation
to become black phosphorene. Li et al. [77] initially deposited a red phosphorus film on
a polyethylene terephthalate (PET) substrate, followed by the application of high pres-
sure, resulting in the formation of a black phosphorene film. Li et al. [78] deposited red
phosphorus on a flexible polyester substrate under room-temperature and high-pressure
conditions, thereby synthesizing a stretchable black phosphorus polycrystalline film for the
first time. Subsequently, they refined the experimental procedures and synthesized a black
phosphorene film on sapphire at 1.5 GPa and 700 ◦C (Figure 11). Black phosphorene flakes
synthesized using high temperature and high pressure methods are large in size and thin,
making them convenient for various applications. However, further exploration is needed
for large-scale production.
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3.3. Comparison of Various Preparation Methods

The advantages and disadvantages of various preparation methods for black phos-
phorus nanosheets are shown in Table 2.

Table 2. Comparison of various preparation methods for black phosphorus nanosheets.

Method Principle Advantages Disadvantages

Mechanical stripping method Use external force to peel,
such as tape, etc. Simple operation Time-consuming, low yield,

easily oxidized

Liquid phase exfoliation

In the mixed solution with
external field force, such as

ultrasonic wave, microwave,
electric field, etc.

The black phosphene
prepared has many forms,

such as BPNSs, BPQDs,
porous black phosphene and

so on

Higher organic solvent
contamination, low yield,

easily oxidized

Solvothermal method

Black phosphorus nanosheets
were catalyzed by

temperature, pressure and
solvent in a closed system

Simple operation and low cost Poor crystallinity, thicker
black phosphorus nanosheets

Chemical vapor deposition
Nano black phosphorus was

prepared by high temperature
gas–solid and phase catalysis

Simple operation, low cost
and not time-consuming

It is not yet mature and has
impurities

High pressure method

Red phosphorus film is
directly converted into black
phosphorus film by applying

high pressure

The black phosphorus film
has a large size and thin

thickness

High energy consumption
and harsh reaction conditions

4. Flame Retardant Mechanism and Application
4.1. Flame Retardant Mechanism of Black Phosphazene as Various Flame Retardants

Polymer flame retardants can be classified based on their effective elements into
halogen flame retardants, nitrogen flame retardants, phosphorus flame retardants, inorganic
flame retardants, etc. Halogen flame retardants release halogen compounds into the air at
high temperatures. While they can inhibit combustion, they also produce toxic substances
such as dioxins, bromides, and chlorides, which degrade the base material’s strength,
heat resistance, and other properties [79–81]. Common nitrogen-based flame retardants
include carbamates [82,83], phosphorus–nitrogen mixed flame retardants [84], and nitrogen
heterocyclic compounds [85]. However, practical application has revealed that these flame
retardants can produce nitrogen oxides and other pollutants. Their flame retardant effect
is closely related to the type and shape structure of the substrate, and can sometimes
affect the mechanical and conductive properties of high-performance materials (such as
glass fiber, etc.). Additionally, nitrogen-based flame retardants face challenges such as
difficulty in decomposition and high cost, which are also issues encountered by inorganic
flame retardants.

In addition to the aforementioned flame retardants, phosphorus-based flame retar-
dants are widely used in plastics, rubber, and electronic appliances. Phosphorus flame
retardants include ether phosphate ester, ester phosphate ester, urethane phosphate ester,
and nitrogen–phosphorus flame retardants [86,87]. The appropriate phosphorus flame
retardant can be selected according to the specific application. Organophosphorus flame
retardants, such as phosphorus oxide and phosphate esters, offer high flame retardant
efficiency and low smoke volume. However, their small molecular size and poor thermal
stability make them prone to migration. Inorganic phosphorus flame retardants, such
as ammonium polyphosphate and red phosphorus, offer excellent thermal stability, low
cost, low toxicity, and migration resistance. However, their flame retardant efficiency is
significantly lower than that of organic phosphorus flame retardants.
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The flame retardant mechanisms of phosphorus flame retardants include gas phase
interaction, condensed phase interaction, and synergistic effects. For example, red phospho-
rus thermally decomposes during combustion, forming phosphoric acid, which promotes
dehydration and carbonization of the polymer. This process creates a heat-resistant carbon
protective layer. This protective layer isolates the substrate from contact with oxygen, slows
down the generation of flammable gases, and provides heat insulation. In the initial stage
of combustion, phosphorus-based flame retardants can combine with newly formed H•
free radicals, OH• free radicals, and PO• free radicals to prevent free radical chain depoly-
merization reactions, thereby controlling combustion. Sometimes, adding a large amount
of red phosphorus enhances the flame retardant effect. However, due to the large size of
red phosphorus particles and their difficulty in being nano-sized, they are incompatible
with the substrate and tend to be unevenly dispersed. As an allotrope of red phosphorus,
black phosphorus (BP) is a chemically inert substance, which mitigates the compatibility
issues. Black phosphorus’ excellent thermal stability, non-flammability, and good electrical
conductivity make it widely used in electronic components, field transistors, batteries, and
other applications.

The flame retardant mechanism of black phosphorus has been extensively studied by
scholars. Qiu et al. [88] proposed a convincing explanation, dividing the general combustion
process of the substrate into two stages (Figure 12). In the first stage, when the temperature
is below 450 ◦C, black phosphorus nanosheets inhibit combustion through a condensed
phase effect, blocking combustion by isolating flammable gases from the substrate. In the
second stage, when the temperature exceeds 450 ◦C, black phosphorus nanosheets exhibit
a dual flame retardant mechanism similar to red phosphorus, involving both condensed
phase and gas phase effects [89]. BPNSs undergo thermal decomposition, generating
reactive radicals such as PO•, HPO•, and PO2• from the undecomposed portion, which trap
free radicals like H• and OH•, thereby reducing the production of combustible substances.
Additionally, black phosphorus is highly susceptible to oxidation in air, leading to the
formation of PxOy and other phosphoric acid derivatives. Scholars have experimentally
found that epoxy resin (EP) reacts with these phosphoric acid derivatives, forming O-P-O
and O-P=O complexes, which promote the formation of carbon residues. The residual
carbon layer isolates the substrate from the air, inhibiting the release of heat and smoke
emissions, thus achieving flame retardancy.
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Ref. [88]. Copyright 2019, copyright Shuilai Qiu.

The flame retardant performance of a substrate is influenced by the content and size
of flame retardants. BPNSs, similar to graphene, possess a lamellar structure. Micron-sized
BPNSs can “encircle” free radicals such as H- and OH- to capture them, and promote the
formation of a carbon layer to isolate air, thereby serving a flame retardant role (Figure 13).
BPNSs at the micrometer scale can capture free radicals such as H• and OH• and promote
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the formation of a carbon layer to isolate air, acting as a flame retardant. In contrast,
amorphous red phosphorus cannot encircle these free radicals (Figure 13). Additionally,
black phosphorus exhibits a higher thermal decomposition temperature and superior
mechanical properties compared to red phosphorus.
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4.2. Black Phosphorus and Black Phosphorus Alkene for Flame Retardant Applications
4.2.1. Polyurethane

Polyurethane (PU) is widely utilized in our daily lives due to its excellent mechanical
properties; however, it also presents flammability challenges that need to be addressed.
Ren et al. [90] used ultrasonication to obtain a black phosphorus suspension with a
phosphene content of 40 mg/L, which was then mixed with waterborne polyurethane
(WPU) to produce a 0.6 mm thick BP/WPU membrane. The preparation process is shown
in Figure 14a. Testing showed that the LOI of BP/WPU increased from 24.2% to 26.8%, and
the peak heat flow was reduced by 34.7%. Combustion experiments revealed that BP/WPU
developed a significantly dense carbon layer on the surface with a residual carbon rate of
2.3%. The coke layer insulates and prevents flammable gases from reaching the substrate,
enhancing the flame retardant effect. Compared to pure WPU, which produces numerous
molten liquid droplets and burns out quickly, the addition of BP significantly improves the
flame retardant performance of WPU. The combustion process of both materials is depicted
in Figure 14b.
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Figure 14. (a) Schematic diagram of the BP/WPU preparation process. (b) Burning surface images of
pure WPU (left) and BP/WPU (right) strips in the surrounding environment [90]. Reprinted with
permission from Ref. [90]. Copyright 2018, copyright Xinlin Ren.

Yin et al. [91] prepared a montmorillonite (MMT)-modified BP through liquid phase
intercalation, which was added to WPU as a flame retardant to produce the composite
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material MMT-BP/WPU. Experimental results showed that this composite material ex-
hibited lower PHRR and THR compared to pure WPU, BP alone, or MMT. XPS images
also indicated that the Si–O–P bond promoted the formation of a carbon layer (Figure 15).
Additionally, the addition of the flame retardant did not affect the elongation at break of
the composites, and the tensile strength was even increased by almost 60%.
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permission from Ref. [91]. Copyright 2023, copyright Sihao Yin.

However, subsequent studies have found that BPNSs cause mechanical degradation
of WPU, affecting its flame retardant effect. Ren et al. [92] prepared a new composite
material, black phosphine/graphene, using a high-pressure nano-homogenizer. XRD
analysis (Figure 16) showed that the characteristic peaks of black phosphine disappeared
inside the composite material, indicating the breakage of the P–P bond of black phosphine
to form a more stable P–C bond, thereby enhancing the environmental stability of BP.
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Black phosphorus alone has a limited effect as a flame retardant. Some scholars have
added synergistic flame retardants to enhance the flame retardant effect of black phospho-
rus [93,94]. Yin et al. [95] added hexagonal boron nitride (BN), another flame retardant,
to the BP/WPU system to create a new BP/BN/WPU composite material. Experimental
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results showed that the LOI of this new composite material is as high as 33.8%, and the peak
heat release rate is reduced by half, despite the flame retardant content being only 0.4 wt%.
The flame retardant mechanism of this system (Figure 17) involves the combination of
free radicals formed by black phosphorus, oxygen atoms, and hydrogen atoms with those
generated by EP pyrolysis to inhibit the combustion chain reaction. Furthermore, the
oxidized products of black phosphorus promote the formation of the carbon layer and,
together with BN, isolate the contact between oxygen and the substrate.

Nanomaterials 2024, 14, x FOR PEER REVIEW 16 of 30 
 

 

 

Figure 16. XRD images of BP/G, G, BP [92]. Reprinted with permission from Ref. [92]. Copyright 

2019, copyright Xinlin Ren. 

Black phosphorus alone has a limited effect as a flame retardant. Some scholars have 

added synergistic flame retardants to enhance the flame retardant effect of black phos-

phorus [93,94]. Yin et al. [95] added hexagonal boron nitride (BN), another flame retard-

ant, to the BP/WPU system to create a new BP/BN/WPU composite material. Experimental 

results showed that the LOI of this new composite material is as high as 33.8%, and the 

peak heat release rate is reduced by half, despite the flame retardant content being only 

0.4 wt%. The flame retardant mechanism of this system (Figure 17) involves the combina-

tion of free radicals formed by black phosphorus, oxygen atoms, and hydrogen atoms 

with those generated by EP pyrolysis to inhibit the combustion chain reaction. Further-

more, the oxidized products of black phosphorus promote the formation of the carbon 

layer and, together with BN, isolate the contact between oxygen and the substrate. 

 

Figure 17. Schematic diagram of the flame retardant mechanism [95]. Reprinted with permission 

from Ref. [95]. Copyright 2020, copyright Sihao Yin. 

The team at CAI [96] first prepared tannic acid (TA)-modified black phosphorus, and 

then used solvent blending to incorporate it into thermoplastic polyurethanes (TPU) to 

produce TPU/TA-BP composites. TA was chosen because it can eliminate the superoxide 

radicals on the surface of black phosphorus, greatly enhancing its stability, and the mod-

ified black phosphorus exhibited good dispersion within the TPU composite. The experi-

mental results showed a 56.5% reduction in the HRR and a 43% reduction in the THR 

peaks of the composite (Figure 18). 

Figure 17. Schematic diagram of the flame retardant mechanism [95]. Reprinted with permission
from Ref. [95]. Copyright 2020, copyright Sihao Yin.

The team at CAI [96] first prepared tannic acid (TA)-modified black phosphorus, and
then used solvent blending to incorporate it into thermoplastic polyurethanes (TPU) to
produce TPU/TA-BP composites. TA was chosen because it can eliminate the superoxide
radicals on the surface of black phosphorus, greatly enhancing its stability, and the modified
black phosphorus exhibited good dispersion within the TPU composite. The experimental
results showed a 56.5% reduction in the HRR and a 43% reduction in the THR peaks of the
composite (Figure 18).
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Cai et al. [97] grafted polydimethylsiloxane (PDMS) onto the surface of BPNSs and
incorporated it into TPU, resulting in a composite material with improved moisture resis-
tance and flame retardant properties. Their research revealed that while PDMS enhances
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the environmental stability of BPNSs, BPNSs also enhance the flame retardancy of TPU. The
THR and PHRR of the composite materials were reduced by 14.3% and 59.6%, respectively,
and the carbon dioxide produced by combustion was also reduced by nearly half, indicating
a reduction in the toxicity of the composite materials. The aforementioned studies have
demonstrated that black phosphorus is well-suited for use as a flame retardant in EP.

4.2.2. Epoxy Resin

Similar to polyurethane (PU), epoxy resin (EP) is characterized by excellent mechanical
properties, ease of processing, and a relatively low cost, making it a popular choice in
electronic appliances and transportation. However, the limited oxygen index (LOI) of
this polymer is only 19.8, indicating its flammability. As a result, some researchers have
incorporated black phosphorus into it to enhance its flame retardant performance.

Yang [98] modified diazotized BP by covalently grafting ferrocene oligomers (refer
to Figure 19 for the preparation process) and incorporated the modified BP into EP to
enhance the strength of the composite material while suppressing smoke and reducing
toxicity. Experimental results showed that with only 2 wt% modified BP added, the total
smoke volume (TSP) and smoke production rate (TSP) of the EP composite decreased by
about half, and the PHRR and THR decreased to 62.2% and 58.5%, respectively. Besides its
significant flame retardant effect, modified BP also enhances the mechanical properties of
EP composite materials and reduces the rate of organic matter volatilization, demonstrating
excellent environmental stability.
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2022, copyright Wenhao Yang.

Qiu et al. [99] first discovered, through extensive data analysis, that the two-dimensional
structure of covalent organic frameworks exhibits characteristics such as high crystallinity,
low density, and good stability [100], making them widely used. They integrated black
phosphorus with organic frameworks to explore their synergistic flame retardant effects
with epoxy resins. They initially prepared aminated black phosphorus, followed by using
cyanuric chloride and melamine as monomer organic framework (TOF) to grow on the sur-
face of BPNSs via in situ polymerization, creating organic–inorganic hybrids (BP-NH-TOF).
These hybrids were then incorporated into an epoxy resin matrix to produce EP composite
materials (refer to Figure 20 for the preparation process). Experiments show that with
the addition of only 2 wt% of BP-NH-TOF hybrid, the THR and HRR of EP composites
are reduced by 44.3% and 61.2%, respectively. This method involves first aminating black
phosphorus and then achieving synergistic flame retardancy. The preparation process is
quite cumbersome.
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The former traditional modification conditions can also obtain better results, but
the actual efficiency is lower, so some scholars have improved the experimental method.
Li et al. [101] utilized the electrochemical stripping method and spiral spray drying tech-
nology to prepare a novel flame retardant using BPNSs. They observed that it enhanced
the flame retardancy of EP. Experimental results indicated that with a BPNS content as low
as 0.94 wt%, the EP composite could achieve a V-0 rating according to UL-94. Additionally,
the material exhibited a 30% improvement in mechanical properties. Ren et al. [102] em-
ployed ultrasound-assisted self-assembly of BP and graphite-like carbon nitride (g-C3N4)
to synthesize a novel flame retardant, BP-CN (Figure 21), which was then incorporated
into EP to produce a new composite material, EP/BP-CNx, with superior flame retardant
properties. Experimental results demonstrated that the LOI of the composite material
with 2 wt% BP-CNx increased to 31%, and the THR and PHRR decreased to 49.6% and
47.72%, respectively. They further adjusted the BP and CN ratio, and analysis of the carbon
residue from the combustion material indicated varying fire protection properties could
be achieved.

Zhou et al. [103] enhanced the dispersion of BP in EP by attaching reduced graphene
oxide (rGO) to its surface, creating a new flame retardant, BP-RGO nanohybrid. Experi-
mental results showed that the PHRR and THR of EP composite materials were reduced
by 55.2% and 54.4%, respectively, and the TSP was reduced by 28.5%. This indicates a
significant improvement in the flame retardant performance of the EP composite material.
Additionally, the EP/BP-RGO 2.0 nanocomposite exhibited good air stability after being
soaked in water for a month, as discovered by the researchers (Figure 22).

Zou et al. [104] utilized a combination of liquid phase ultrasonic exfoliation and
ball milling to fabricate BPCNTs from black phosphorus and multi-walled carbon nan-
otubes (MCNTs), which were then integrated into EP to produce new EP nanocomposites
(Figure 23). The study revealed that the addition of just 2 wt% BPCNTs reduced the PHRRP
and THR of the composite material by 55.81% and 41.17% respectively. TG-FTIR testing
showed that the presence of numerous dense carbon layers inhibited the release of CO,
indicating the significant potential of black phosphorus in enhancing the flame retardancy
of polymers. Regarding the dispersion issue of black phosphorus, Chu et al. [105] proposed
a new dispersion approach. They employed an iterative dispersion strategy to separate
the aggregates and dispersions in the BP partial dispersion through multiple cycles to
achieve an approximately uniform dispersion state. Furthermore, they utilized iron (III)
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trifluoromethanesulfonate functionalized black phosphorus (BFF) for flame retardant mod-
ification of the epoxy matrix (Figure 24). Experiments found that the LOI of the epoxy
thermosetting plastic reached 29.2% with the addition of only 0.2 wt% BFF. However,
this method also has drawbacks. It requires the use of more black phosphorus during
dispersion, which increases the cost.

Nanomaterials 2024, 14, x FOR PEER REVIEW 19 of 30 
 

 

Figure 20. Schematic representation of the fabrication process of BP-NH-TOF nanohybrids [99]. 

Reprinted with permission from Ref. [99]. Copyright 2020, copyright Shuilai Qiu. 

The former traditional modification conditions can also obtain better results, but the 

actual efficiency is lower, so some scholars have improved the experimental method. Li et 

al. [101] utilized the electrochemical stripping method and spiral spray drying technology 

to prepare a novel flame retardant using BPNSs. They observed that it enhanced the flame 

retardancy of EP. Experimental results indicated that with a BPNS content as low as 0.94 

wt%, the EP composite could achieve a V-0 rating according to UL-94. Additionally, the 

material exhibited a 30% improvement in mechanical properties. Ren et al. [102] employed 

ultrasound-assisted self-assembly of BP and graphite-like carbon nitride (g-C3N4) to syn-

thesize a novel flame retardant, BP-CN (Figure 21), which was then incorporated into EP 

to produce a new composite material, EP/BP-CNx, with superior flame retardant proper-

ties. Experimental results demonstrated that the LOI of the composite material with 2 wt% 

BP-CNx increased to 31%, and the THR and PHRR decreased to 49.6% and 47.72%, re-

spectively. They further adjusted the BP and CN ratio, and analysis of the carbon residue 

from the combustion material indicated varying fire protection properties could be 

achieved. 

 

Figure 21. Flame retardant mechanism of EP/BP-CN nanocomposites [102]. Reprinted with per-

mission from Ref. [102]. Copyright 2021, copyright Xiyun Ren. 

Zhou et al. [103] enhanced the dispersion of BP in EP by attaching reduced graphene 

oxide (rGO) to its surface, creating a new flame retardant, BP-RGO nanohybrid. Experi-

mental results showed that the PHRR and THR of EP composite materials were reduced 

by 55.2% and 54.4%, respectively, and the TSP was reduced by 28.5%. This indicates a 

significant improvement in the flame retardant performance of the EP composite material. 

Additionally, the EP/BP-RGO 2.0 nanocomposite exhibited good air stability after being 

soaked in water for a month, as discovered by the researchers (Figure 22). 

Figure 21. Flame retardant mechanism of EP/BP-CN nanocomposites [102]. Reprinted with permis-
sion from Ref. [102]. Copyright 2021, copyright Xiyun Ren.

Nanomaterials 2024, 14, x FOR PEER REVIEW 20 of 30 
 

 

 

Figure 22. Schematic diagram for the RGO modification of BP-RGO [103]. Reprinted with permis-

sion from Ref. [103]. Copyright 2020, copyright Yifan Zhou. 

Zou et al. [104] utilized a combination of liquid phase ultrasonic exfoliation and ball 

milling to fabricate BPCNTs from black phosphorus and multi-walled carbon nanotubes 

(MCNTs), which were then integrated into EP to produce new EP nanocomposites (Figure 

23). The study revealed that the addition of just 2 wt% BPCNTs reduced the PHRRP and 

THR of the composite material by 55.81% and 41.17% respectively. TG-FTIR testing 

showed that the presence of numerous dense carbon layers inhibited the release of CO, 

indicating the significant potential of black phosphorus in enhancing the flame retardancy 

of polymers. Regarding the dispersion issue of black phosphorus, Chu et al. [105] pro-

posed a new dispersion approach. They employed an iterative dispersion strategy to sep-

arate the aggregates and dispersions in the BP partial dispersion through multiple cycles 

to achieve an approximately uniform dispersion state. Furthermore, they utilized iron (III) 

trifluoromethanesulfonate functionalized black phosphorus (BFF) for flame retardant 

modification of the epoxy matrix (Figure 24). Experiments found that the LOI of the epoxy 

thermosetting plastic reached 29.2% with the addition of only 0.2 wt% BFF. However, this 

method also has drawbacks. It requires the use of more black phosphorus during disper-

sion, which increases the cost. 

 

Figure 23. Schematic illustration for the fabrication of the BP-MCNT and its nanocomposites [104]. 

Reprinted with permission from Ref. [104]. Copyright 2020, copyright Bin Zou. 

Figure 22. Schematic diagram for the RGO modification of BP-RGO [103]. Reprinted with permission
from Ref. [103]. Copyright 2020, copyright Yifan Zhou.



Nanomaterials 2024, 14, 892 20 of 29

Nanomaterials 2024, 14, x FOR PEER REVIEW 20 of 30 
 

 

 

Figure 22. Schematic diagram for the RGO modification of BP-RGO [103]. Reprinted with permis-

sion from Ref. [103]. Copyright 2020, copyright Yifan Zhou. 

Zou et al. [104] utilized a combination of liquid phase ultrasonic exfoliation and ball 

milling to fabricate BPCNTs from black phosphorus and multi-walled carbon nanotubes 

(MCNTs), which were then integrated into EP to produce new EP nanocomposites (Figure 

23). The study revealed that the addition of just 2 wt% BPCNTs reduced the PHRRP and 

THR of the composite material by 55.81% and 41.17% respectively. TG-FTIR testing 

showed that the presence of numerous dense carbon layers inhibited the release of CO, 

indicating the significant potential of black phosphorus in enhancing the flame retardancy 

of polymers. Regarding the dispersion issue of black phosphorus, Chu et al. [105] pro-

posed a new dispersion approach. They employed an iterative dispersion strategy to sep-

arate the aggregates and dispersions in the BP partial dispersion through multiple cycles 

to achieve an approximately uniform dispersion state. Furthermore, they utilized iron (III) 

trifluoromethanesulfonate functionalized black phosphorus (BFF) for flame retardant 

modification of the epoxy matrix (Figure 24). Experiments found that the LOI of the epoxy 

thermosetting plastic reached 29.2% with the addition of only 0.2 wt% BFF. However, this 

method also has drawbacks. It requires the use of more black phosphorus during disper-

sion, which increases the cost. 

 

Figure 23. Schematic illustration for the fabrication of the BP-MCNT and its nanocomposites [104]. 

Reprinted with permission from Ref. [104]. Copyright 2020, copyright Bin Zou. 

Figure 23. Schematic illustration for the fabrication of the BP-MCNT and its nanocomposites [104].
Reprinted with permission from Ref. [104]. Copyright 2020, copyright Bin Zou.

Nanomaterials 2024, 14, x FOR PEER REVIEW 21 of 30 
 

 

 

Figure 24. Flame retardant mechanism of BFF in EP [105]. Reprinted with permission from Ref. 

[105]. Copyright 2023, copyright Hanghang Chu. 

Qu et al. [106] argued that the adsorption energy of inverted materials could influ-

ence the surface modification of BPNSs. They first calculated the adsorption energy of 

melamine–formaldehyde (MF) on BPNSs using density functional theory to demonstrate 

their compatibility. Subsequently, the MF-functionalized modified BPNSs were incorpo-

rated into the EP system to produce the new composites, resulting in an observed increase 

in LOI to 31.1% in experiments. Qu divided the combustion process into two phases with 

the 400 °C demarcation line (Figure 25). Below this temperature, the cohesive-phase flame 

retardant mechanism of thermal cleavage of modified BPNSs to promote the formation of 

a carbon layer was observed. Above this temperature, the reactive radicals and decom-

posed phosphoric acid derivatives generated in the process of combustion of BPNSs insu-

lated the oxygen to achieve the flame retardant effect. 

 

Figure 25. Illustration of the flame retardant mechanism of BP@MF in EP matrices [106]. Reprinted 

with permission from Ref. [106]. Copyright 2020, copyright Zhencai Qu. 

4.2.3. Other Materials 

Besides PU and EP, many other polymers also require improvements in their flame 

retardant properties. Qian et al. [107], inspired by “Cannikin’s law”, applied BPNSs with 

metal-organic frameworks (MOFs) to high polycarbonates (PCs) to enhance their thermal 

and fire safety. They first prepared BP@MIL53 hybrids from BPNSs, 2-aminobenzene di-

carboxylic acid (NH2-BDC), and N,N-dimethylformamide (DMF) using a hydrothermal 

method. The flame retardant mechanism of this flame retardant mainly involves enhanc-

ing the thermal stability of PC composites by strengthening the weaker carbonate bonds. 

Figure 24. Flame retardant mechanism of BFF in EP [105]. Reprinted with permission from Ref. [105].
Copyright 2023, copyright Hanghang Chu.

Qu et al. [106] argued that the adsorption energy of inverted materials could influ-
ence the surface modification of BPNSs. They first calculated the adsorption energy of
melamine–formaldehyde (MF) on BPNSs using density functional theory to demonstrate
their compatibility. Subsequently, the MF-functionalized modified BPNSs were incorpo-
rated into the EP system to produce the new composites, resulting in an observed increase
in LOI to 31.1% in experiments. Qu divided the combustion process into two phases with
the 400 ◦C demarcation line (Figure 25). Below this temperature, the cohesive-phase flame
retardant mechanism of thermal cleavage of modified BPNSs to promote the formation of a
carbon layer was observed. Above this temperature, the reactive radicals and decomposed
phosphoric acid derivatives generated in the process of combustion of BPNSs insulated the
oxygen to achieve the flame retardant effect.
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4.2.3. Other Materials

Besides PU and EP, many other polymers also require improvements in their flame
retardant properties. Qian et al. [107], inspired by “Cannikin’s law”, applied BPNSs with
metal-organic frameworks (MOFs) to high polycarbonates (PCs) to enhance their thermal
and fire safety. They first prepared BP@MIL53 hybrids from BPNSs, 2-aminobenzene
dicarboxylic acid (NH2-BDC), and N,N-dimethylformamide (DMF) using a hydrothermal
method. The flame retardant mechanism of this flame retardant mainly involves enhancing
the thermal stability of PC composites by strengthening the weaker carbonate bonds. It
was found that the thermal stability of PC composites with only 1 wt% of BP@MIL53
hybrids was significantly improved, and the mechanical properties of PC composites were
unaffected, while the flame retardant performance was enhanced (Figure 26).

Nanomaterials 2024, 14, x FOR PEER REVIEW 22 of 30 
 

 

It was found that the thermal stability of PC composites with only 1 wt% of BP@MIL53 

hybrids was significantly improved, and the mechanical properties of PC composites were 

unaffected, while the flame retardant performance was enhanced (Figure 26). 

 

Figure 26. Schematic mechanism of the fire resistance and thermal stability of BP@MIL-53-rein-

forced PC and its nanocomposites [107]. Reprinted with permission from Ref. [107]. Copyright 

2022, copyright Ziyan Qian. 

Since BPNSs undergo oxidative photolysis, Qiu et al. [108] used a light stabilizer, 

hindered amine light stabilizer (HALS), to enhance the environmental stability of BPNSs. 

They first prepared negatively charged BPNSs using butyl lithium intercalation, then di-

azotized the black phosphorus nanosheets and grafted them with HALS. Finally, they 

added the modified black phosphorene to EP to obtain new composite materials (EP/BP-

HAN). The characterization revealed that as the amount of modified black phosphorene 

increased from 0.5 wt% to 2.0 wt%, the PHRR value and THR value decreased by 32.8% 

and 9%, respectively (Figure 27). 

 

Figure 27. Possible flame retardant mechanism of EP/BP-HAN nanocomposites [108]. Reprinted 

with permission from Ref. [108]. Copyright 2020, copyright Shuilai Qiu. 
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PC and its nanocomposites [107]. Reprinted with permission from Ref. [107]. Copyright 2022,
copyright Ziyan Qian.

Since BPNSs undergo oxidative photolysis, Qiu et al. [108] used a light stabilizer,
hindered amine light stabilizer (HALS), to enhance the environmental stability of BPNSs.
They first prepared negatively charged BPNSs using butyl lithium intercalation, then
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diazotized the black phosphorus nanosheets and grafted them with HALS. Finally, they
added the modified black phosphorene to EP to obtain new composite materials (EP/BP-
HAN). The characterization revealed that as the amount of modified black phosphorene
increased from 0.5 wt% to 2.0 wt%, the PHRR value and THR value decreased by 32.8%
and 9%, respectively (Figure 27).
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with permission from Ref. [108]. Copyright 2020, copyright Shuilai Qiu.

To reduce the toxic smoke generated by material combustion and inhibit the oxidative
decomposition of black phosphorus nanosheets (BPNSs), Zhou [109] developed a novel
flame retardant by encapsulating triazine-based silane and Co(OH)2 on the surface of
BPNSs, which was subsequently added to unsaturated polyester resin (UPR). Scanning
electron microscope (SEM) images indicated successful encapsulation without agglomera-
tion, and X-ray photoelectron spectroscopy (XPS) analysis confirmed the preservation of the
BPNSs’ crystal structure (Figure 28). Experimental results demonstrated a 42.3% reduction
in total smoke production (TSP) for the UPR composite containing 2 wt% modified black
phosphorus nanosheets.

Nanomaterials 2024, 14, x FOR PEER REVIEW 23 of 30 
 

 

To reduce the toxic smoke generated by material combustion and inhibit the oxida-

tive decomposition of black phosphorus nanosheets (BPNSs), Zhou [109] developed a 

novel flame retardant by encapsulating triazine-based silane and Co(OH)2 on the surface 

of BPNSs, which was subsequently added to unsaturated polyester resin (UPR). Scanning 

electron microscope (SEM) images indicated successful encapsulation without agglomer-

ation, and X-ray photoelectron spectroscopy (XPS) analysis confirmed the preservation of 

the BPNSs’ crystal structure (Figure 28). Experimental results demonstrated a 42.3% re-

duction in total smoke production (TSP) for the UPR composite containing 2 wt% modi-

fied black phosphorus nanosheets. 

 

Figure 28. (a) SEM images of modified BPNSs. (b) XPS spectra of each material [109]. Reprinted 

with permission from Ref. [109]. Copyright 2023, copyright Yifan Zhou. 

To enhance the stability of black phosphorus, Zhou et al. [110] utilized a hydrother-

mal reaction method to prepare modified BP functionalized with cetyltrimethylammo-

nium bromide (CATB), which was subsequently incorporated into a polylactic acid (PLA) 

system to produce PLA/BP-CATB composite materials. Experimental results indicate a 

24% reduction in peak heat release rate (PHRR) and a 23% reduction in total heat release 

(THR) with the addition of only 2 wt% BP-CATB (Figure 29). 

 

Figure 29. HRR (a) and THR (b) curves of PLA and its composites [110]. Reprinted with permis-

sion from Ref. [110]. Copyright 2020, copyright Yifan Zhou. 

Moreover, some researchers have opted for environmentally friendly phytic acid to 

modify black phosphorus with a green approach, as phytic acid is extensively utilized in 

bio-based flame retardants for polymers [111,112]. Qiu’s team [88] employed electrochem-

ical methods to fabricate cobalt phytic acid-functionalized BPNSs. Various tests revealed 

that these functionalized black phosphorus nanosheets not only enhanced the flame re-

tardant properties of the composite materials but also improved their mechanical 

Figure 28. (a) SEM images of modified BPNSs. (b) XPS spectra of each material [109]. Reprinted with
permission from Ref. [109]. Copyright 2023, copyright Yifan Zhou.



Nanomaterials 2024, 14, 892 23 of 29

To enhance the stability of black phosphorus, Zhou et al. [110] utilized a hydrothermal
reaction method to prepare modified BP functionalized with cetyltrimethylammonium
bromide (CATB), which was subsequently incorporated into a polylactic acid (PLA) system
to produce PLA/BP-CATB composite materials. Experimental results indicate a 24%
reduction in peak heat release rate (PHRR) and a 23% reduction in total heat release (THR)
with the addition of only 2 wt% BP-CATB (Figure 29).

Nanomaterials 2024, 14, x FOR PEER REVIEW 23 of 30 
 

 

To reduce the toxic smoke generated by material combustion and inhibit the oxida-

tive decomposition of black phosphorus nanosheets (BPNSs), Zhou [109] developed a 

novel flame retardant by encapsulating triazine-based silane and Co(OH)2 on the surface 

of BPNSs, which was subsequently added to unsaturated polyester resin (UPR). Scanning 

electron microscope (SEM) images indicated successful encapsulation without agglomer-

ation, and X-ray photoelectron spectroscopy (XPS) analysis confirmed the preservation of 

the BPNSs’ crystal structure (Figure 28). Experimental results demonstrated a 42.3% re-

duction in total smoke production (TSP) for the UPR composite containing 2 wt% modi-

fied black phosphorus nanosheets. 

 

Figure 28. (a) SEM images of modified BPNSs. (b) XPS spectra of each material [109]. Reprinted 

with permission from Ref. [109]. Copyright 2023, copyright Yifan Zhou. 

To enhance the stability of black phosphorus, Zhou et al. [110] utilized a hydrother-

mal reaction method to prepare modified BP functionalized with cetyltrimethylammo-

nium bromide (CATB), which was subsequently incorporated into a polylactic acid (PLA) 

system to produce PLA/BP-CATB composite materials. Experimental results indicate a 

24% reduction in peak heat release rate (PHRR) and a 23% reduction in total heat release 

(THR) with the addition of only 2 wt% BP-CATB (Figure 29). 

 

Figure 29. HRR (a) and THR (b) curves of PLA and its composites [110]. Reprinted with permis-

sion from Ref. [110]. Copyright 2020, copyright Yifan Zhou. 

Moreover, some researchers have opted for environmentally friendly phytic acid to 

modify black phosphorus with a green approach, as phytic acid is extensively utilized in 

bio-based flame retardants for polymers [111,112]. Qiu’s team [88] employed electrochem-

ical methods to fabricate cobalt phytic acid-functionalized BPNSs. Various tests revealed 

that these functionalized black phosphorus nanosheets not only enhanced the flame re-

tardant properties of the composite materials but also improved their mechanical 

Figure 29. HRR (a) and THR (b) curves of PLA and its composites [110]. Reprinted with permission
from Ref. [110]. Copyright 2020, copyright Yifan Zhou.

Moreover, some researchers have opted for environmentally friendly phytic acid to
modify black phosphorus with a green approach, as phytic acid is extensively utilized in bio-
based flame retardants for polymers [111,112]. Qiu’s team [88] employed electrochemical
methods to fabricate cobalt phytic acid-functionalized BPNSs. Various tests revealed that
these functionalized black phosphorus nanosheets not only enhanced the flame retardant
properties of the composite materials but also improved their mechanical behavior. Overall,
the modification of different functional groups can significantly enhance the stability and
dispersion of black phosphorus (Figure 30).
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Liu et al. [114] prepared BP@PPC modified with hyperbranched carbonized foaming
agent (HCFA) black phosphorus through in situ polymerization and applied it to PP to
enhance its flame retardant properties. In comparison to conventional piperazine pyrophos-
phate flame retardant (PAPP), the addition of 2 wt% BP@PPC was found to enhance the
vertical combustion performance of PP to reach the V-0 level.
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Since black phosphorus will oxidize and decompose, Guo et al. [115] placed black
phosphorus in NMP to ball-mill BPNSs. They also grafted BP with oxygen-containing
groups of sucrose (N) to disperse it evenly in the PVA matrix, enhancing its air stability.
Experiments found that when 5 wt% BP-N was added, the PHRR and THR of PVA com-
posites were reduced by 52.5% and 32.8%, respectively, compared with pure PVA, and the
tensile strength was increased by 131.2%. This provides a new idea for stripping BP and
modifying BP (Figure 31).
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Single- or few-layer black phosphorus may be a candidate material for preparing
polymer nanocomposites as nanoadditives due to its mechanical properties, thermal sta-
bility, and size effects [116,117], akin to graphene [118,119]. The steps to achieve scal-
able exfoliation of single- or few-layer black phosphorus (BP) nanosheets are crucial for
BP applications.

5. Summary and Vision for the Future

Black phosphorus and black phosphorus nanosheets possess broad development
prospects. Their excellent performance in all aspects far surpasses that of graphene,
which is currently widely used. However, the immature preparation technology and
unclear formation mechanism greatly hinder the development of black phosphorus and
black phosphorene.

Several major difficulties need to be addressed for black phosphorus in the future.
Firstly, the preparation cost of black phosphorus is high due to its long preparation cycle
and low output. Currently, most methods used in industry, academia, and research involve
ultrasonic peeling, with prices typically around 2000 yuan per gram, fluctuating. Other
“low-cost” methods often use dangerous chemical raw materials like white phosphorus
and ethylenediamine, resulting in products that do not meet analytical purity requirements.
Secondly, black phosphorus requires an oxygen-free environment for storage and experi-
mental operations to prevent oxidation and decomposition. Some scholars have proposed
a preservation method for black phosphorus similar to the one used for preserving metal
aluminum, where the formation of an oxidized phosphoric acid compound on the surface
of black phosphorus acts as a “separator” to isolate the air for protection. However, due to
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the high price of black phosphorus, this method appears to be too costly. Additionally, the
modification of nano black phosphorus for flame retardant applications requires further
improvement. Subsequent surface modifications can enhance its compatibility and stability
with high molecular material matrices, thereby improving its flame retardant properties.

In summary, identifying a lower-cost, environmentally friendly, and high-capacity
black phosphorus preparation process, along with a surface modification method to en-
hance its stability and compatibility, is an urgent issue that needs to be addressed.
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