Nanomaterials for Potential Uses in Extraterrestrial Environments
Author Contributions
Conflicts of Interest
References
- Itoo, A.M.; Vemula, S.L.; Gupta, M.T.; Giram, M.V.; Kumar, S.A.; Ghosh, B.; Biswas, S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J. Control. Release 2022, 350, 26–59. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, Y.; Tang, C.; Tan, Y.; Zheng, X.; Deng, Y.; He, N.; Li, S. Recent advance in nanomaterials for cancer immunotherapy. Chem. Eng. J. 2022, 435, 134145. [Google Scholar] [CrossRef]
- Maleki, A.; He, J.; Bochani, S.; Nosrati, V.; Shahbazi, M.-A.; Guo, B. Multifunctional Photoactive Hydrogels for Wound Healing Acceleration. ACS Nano 2021, 15, 18895–18930. [Google Scholar] [CrossRef]
- Nicosia, A.; Vento, F.; Satriano, C.; Villari, V.; Micali, N.; Cucci, L.M.; Sanfilippo, V.; Mineo, P.G. Light-Triggered Polymeric Nanobombs for Targeted Cell Death. ACS Appl. Nano Mater. 2020, 3, 1950–1960. [Google Scholar] [CrossRef]
- Zeshan, M.; Bhatti, I.A.; Mohsin, M.; Iqbal, M.; Amjed, N.; Nisar, J.; AlMasoud, N.; Alomar, T.S. Remediation of pesticides using TiO2 based photocatalytic strategies: A review. Chemosphere 2022, 300, 134525. [Google Scholar] [CrossRef]
- Boulkhessaim, S.; Gacem, A.; Khan, S.H.; Amari, A.; Yadav, V.K.; Harharah, H.N.; Elkhaleefa, A.M.; Yadav, K.K.; Rather, S.-U.; Ahn, H.-J.; et al. Emerging Trends in the Remediation of Persistent Organic Pollutants Using Nanomaterials and Related Processes: A Review. Nanomaterials 2022, 12, 2148. [Google Scholar] [CrossRef]
- Matei, E.; Predescu, A.M.; Râpă, M.; Țurcanu, A.A.; Mateș, I.; Constantin, N.; Predescu, C. Natural Polymers and Their Nanocomposites Used for Environmental Applications. Nanomaterials 2022, 12, 1707. [Google Scholar] [CrossRef]
- Shah, M.A.; Pirzada, B.M.; Price, G.; Shibiru, A.L.; Qurashi, A. Applications of nanotechnology in smart textile industry: A critical review. J. Adv. Res. 2022, 38, 55–75. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Speranza, G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials 2021, 11, 967. [Google Scholar] [CrossRef]
- Lombini, M.; Schreiber, L.; Albertini, R.; Alessi, E.M.; Attinà, P.; Bianco, A.; Cascone, E.; Colucci, M.E.; Cortecchia, F.; De Caprio, V.; et al. Solar ultraviolet light collector for germicidal irradiation on the moon. Sci. Rep. 2023, 13, 8326. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.A. Elemental and Isotopic Composition of the Galactic Cosmic Rays. Annu. Rev. Nucl. Part. Sci. 1983, 33, 323–382. [Google Scholar] [CrossRef]
- Gohel, A.; Makwana, R. Multi-layered shielding materials for high energy space radiation. Radiat. Phys. Chem. 2022, 197, 110131. [Google Scholar] [CrossRef]
- Wilson, J.W.; Shinn, J.L.; Tripathi, R.K.; Singleterry, R.C.; Clowdsley, M.S.; Thibeault, S.A.; Cheatwood, F.M.; Schimmerling, W.; Cucinotta, F.A.; Badhwar, G.D.; et al. Issues in deep space radiation protection. Acta Astronaut. 2001, 49, 289–312. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hameed, A.M. Radiation effects on composite materials used in space systems: A review. NRIAG J. Astron. Geophys. 2022, 11, 313–324. [Google Scholar] [CrossRef]
- Naser, M.Z. Extraterrestrial construction materials. Prog. Mater. Sci. 2019, 105, 100577. [Google Scholar] [CrossRef]
- Chen, J.; Ding, N.; Li, Z.; Wang, W. Organic polymer materials in the space environment. Prog. Aerosp. Sci. 2016, 83, 37–56. [Google Scholar] [CrossRef]
- Mezzina, L.; Nicosia, A.; Baratta, G.A.; Palumbo, M.E.; Scirè, C.; Mineo, P.G. Effects of Simulated Solar Wind on Polymethyl Methacrylate Thin Film. Nanomaterials 2022, 12, 1992. [Google Scholar] [CrossRef]
- Shavers, M.; Semones, E.; Tomi, L.; Chen, J.; Straube, U.; Komiyama, T.; Shurshakov, V.; Li, C.; Rühm, W. Space agency-specific standards for crew dose and risk assessment of ionising radiation exposures for the International Space Station. Z. Med. Phys. 2024, 34, 14–30. [Google Scholar] [CrossRef]
- Durante, M. Space radiation protection: Destination Mars. Life Sci. Space Res. 2014, 1, 2–9. [Google Scholar] [CrossRef]
- Shavers, M.R.; Zapp, N.; Barber, R.E.; Wilson, J.W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F.A. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters. Adv. Space Res. 2004, 34, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Zaccardi, F.; Toto, E.; Rastogi, S.; La Saponara, V.; Santonicola, M.G.; Laurenzi, S. Impact of Proton Irradiation on Medium Density Polyethylene/Carbon Nanocomposites for Space Shielding Applications. Nanomaterials 2023, 13, 1288. [Google Scholar] [CrossRef] [PubMed]
- Vricella, A.; Delfini, A.; Albano, M.; Santoni, F.; Pastore, R.; Rubini, G.; Marchetti, M. Study and ground simulations of outgassing and hypervelocity impacts on carbon-based materials for space applications. In Proceedings of the 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Rome, Italy, 20–22 June 2018; pp. 652–657. [Google Scholar]
- Jiao, L.; Gu, Y.; Wang, S.; Yang, Z.; Wang, H.; Li, Q.; Li, M.; Zhang, Z. Atomic oxygen exposure behaviors of CVD-grown carbon nanotube film and its polymer composite film. Compos. Part A Appl. Sci. Manuf. 2015, 71, 116–125. [Google Scholar] [CrossRef]
- Weerasinghe, J.; Prasad, K.; Mathew, J.; Trifoni, E.; Baranov, O.; Levchenko, I.; Bazaka, K. Carbon Nanocomposites in Aerospace Technology: A Way to Protect Low-Orbit Satellites. Nanomaterials 2023, 13, 1763. [Google Scholar] [CrossRef] [PubMed]
- Bram, A.I.; Gouzman, I.; Bolker, A.; Atar, N.; Eliaz, N.; Verker, R. Influence of POSS Type on the Space Environment Durability of Epoxy-POSS Nanocomposites. Nanomaterials 2022, 12, 257. [Google Scholar] [CrossRef] [PubMed]
- Zagni, C.; Scamporrino, A.A.; Riccobene, P.M.; Floresta, G.; Patamia, V.; Rescifina, A.; Carroccio, S.C. Portable Nanocomposite System for Wound Healing in Space. Nanomaterials 2023, 13, 741. [Google Scholar] [CrossRef] [PubMed]
- Trusso Sfrazzetto, G.; Santonocito, R. Nanomaterials for Cortisol Sensing. Nanomaterials 2022, 12, 3790. [Google Scholar] [CrossRef] [PubMed]
- Samsonov, N.M.; Bobe, L.S.; Gavrilov, L.I.; Novikov, V.M.; Farafonov, N.S.; Grigoriev, J.I.; Zaitsev, E.N.; Romanov, S.J.; Grogoriev, A.I.; Sinjak, J.E. Long-duration space mission regenerative life support. Acta Astronaut. 2000, 47, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.L.; Tobias, B.; Orozco, N.Y. Status of ISS Water Management and Recovery. In Proceedings of the 43rd International Conference on Environmental Systems, Vail, CO, USA, 14–18 July 2013. [Google Scholar]
- Williams, D.; Dake, J.; Gentry, G. International Space Station Environmental Control and Life Support System Status: 2009–2010. In Proceedings of the 40th International Conference on Environmental Systems, Barcelona, Spain, 11–15 July 2010. [Google Scholar]
- Mezzina, L.; Nicosia, A.; Vento, F.; De Guidi, G.; Mineo, P.G. Photosensitized Thermoplastic Nano-Photocatalysts Active in the Visible Light Range for Potential Applications Inside Extraterrestrial Facilities. Nanomaterials 2022, 12, 996. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicosia, A.; Mineo, P. Nanomaterials for Potential Uses in Extraterrestrial Environments. Nanomaterials 2024, 14, 893. https://doi.org/10.3390/nano14100893
Nicosia A, Mineo P. Nanomaterials for Potential Uses in Extraterrestrial Environments. Nanomaterials. 2024; 14(10):893. https://doi.org/10.3390/nano14100893
Chicago/Turabian StyleNicosia, Angelo, and Placido Mineo. 2024. "Nanomaterials for Potential Uses in Extraterrestrial Environments" Nanomaterials 14, no. 10: 893. https://doi.org/10.3390/nano14100893
APA StyleNicosia, A., & Mineo, P. (2024). Nanomaterials for Potential Uses in Extraterrestrial Environments. Nanomaterials, 14(10), 893. https://doi.org/10.3390/nano14100893