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Over the past decades, the development of nanomaterials has played an important
role in the most intriguing aspects of new technologies in several scientific fields, such as
nanoelectronics, nanomedicine [1–4], environmental remediation [5–7], and sensing [8–10],
just to mention a few. Among the future challenges, perhaps the most difficult ones
concern space exploration activities and the use of ordinary materials in extraterrestrial
environments. Indeed, the main space agencies are working on a series of cutting-edge
projects with the colonization of the Moon and Mars as their final goal [11].

In this context, it might not be possible to use common materials due to the chemical
and physical stresses caused by extreme environmental conditions, such as low gravity,
solar wind, and cosmic rays (ionizing radiation and high-energy ions) [12–14], that can
deeply and negatively impact the structural and chemico-physical properties of the used
materials [15]. Therefore, understanding the chemico-physical effects of extreme envi-
ronmental conditions on materials is critical in terms of developing advanced solutions
suitable for the different aspects and challenges of space missions.

Polymer-based materials play a key role in the development of infrastructures de-
signed for extraterrestrial environments due to their ease of processability and low weight.
As an example, different polymers and composites are interesting to use as extraterres-
trial construction materials because they can be produced in situ by exploiting the local
resources of the extraterrestrial environments [16]. Nevertheless, their durability under
harsh conditions (e.g., thermal cycles and vacuum, as well as space stresses such as solar
wind, cosmic rays, and UV radiation) must be improved [17].

For instance, as shown by Mezzina et al. [18], mimicked solar wind bombardment
produces significant structural changes on polymethylmethacrylate (PMMA) that affect the
properties and chemical structure of its backbone, determining a degradation route, in turn
leading to the formation of a brittle crosslinked polymer.

Considering the issues of the extraterrestrial environment, radiation shielding is also
crucial in order to ensure the liveability of spacecraft cockpits and human habitats. Space
agencies are aware of the risks of ionizing radiation exposures for their crews, inducing
deleterious late effects on human organisms [19]. These might be even worse, considering
long-term expeditions. Different materials have been investigated in the context of passive
radiation shielding. As an example, NASA has used composite panels of aluminum and
polyethylene to shield the crew on the International Space Station [20,21]. By exploiting
the radiation tolerance of the carbon-based systems, the loads of suitable fillers within
the polymer matrix might improve the performance of the materials. With regard to this,
Zaccardi et al. [22] investigated the improvements in the radiation shielding properties of a
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medium-density polyethylene when loaded with graphene nanoplatelets and/or multi-
walled carbon nanotubes, showing the efficiency of the proposed nanocomposites that
undergo negligible changes in their chemico-physical properties after proton bombardment.

The presence of several destructive agents is not only a problem of the extreme outer
space environment that future space missions must face. For example, satellites for commu-
nications, meteorology, observations, etc. are located in the low earth orbit (LEO), where the
density of residual oxygen is sufficient to induce chemical and physical material erosion. In
fact, due to the UVC-triggered photodissociation of atmospheric oxygen in LEO, the most
abundant gaseous species in this region is represented by atomic oxygen, a strong erosive
agent. This is known to induce oxidative decomposition in polymeric materials, resulting in
erosion phenomena as well as morphological and chemical alterations. Carbon-based nano-
materials are already intensively used in spacecraft manufacturing as structural materials
(brake disks, vehicle nose tips, etc.) [23], but could be exploited for corrosion mitigation in
space thanks to their peculiar features [24]. A comprehensive discussion of the pathways
responsible for material degradation in the LEO environment is reported in the review by
Weerasinghe et al. [25], which also focuses on the findings from state-of-the-art in-flight
and simulated experiments involving carbon nanocomposites for aerospace technology.

In addition to carbon nanocomposites, as reported by Bram et al. [26], the durability of
polymers under harsh LEO conditions could also be improved by incorporating polyhedral
oligomeric silsesquioxane (POSS). In particular, the study focused on epoxy resins as
polymeric matrix and the role of POSS in improving their resistance through its self-
passivation under atomic oxygen bombardment, forming a SiO2 layer.

Long-term space projects and missions will also include the presence of humans for
both deep space explorations (crew and scientists) and commercial spaceflights (passen-
gers). In this context, the development of nanomaterials must also deal with the crew
and passengers’ potential health issues. A trivial health issue could be the occurrence of
a wound, which is easily treated on Earth but not in space. The work by Zagni et al. [27]
aimed to develop a biocompatible poly-2-hydroxyethylmethacrylate system containing
halloysite nanotubes as a container for Thymol, a drug that has wound-healing proper-
ties. The miniaturization of the system and its loading and releasing capabilities make
it a promising skin repair system/solution for space missions. On the other hand, the
extreme physiological conditions that space crews will have to face can determine stressful
conditions that call for constant monitoring to prevent them from becoming critical, espe-
cially during long-term missions. Monitoring secreted hormones through wearable sensors
might be a solution. With regard to this, Trusso Sfrazzetto et al. [28] discuss different smart
optical and electrochemical nanosensors based on nanomaterials suitable for the detection
of stress-related cortisol levels in biological samples.

In view of the future colonization of satellites and other planets, space agencies must
also work on pollution reduction solutions in closed environments. As is well known on
Earth, indoor pollution is emitted by both furniture and human activities, resulting in the
contamination of both gas and liquid phases. In addition to the risks that arise from daily
exposure to pollutants, a major concern for long-term spaceflights is also related to the re-
covery of water and air [29]. Indeed, current water and air remediation technologies [30,31]
are hard to maintain without spare parts, so they might be supported by passive systems
to prolong their lives. Photocatalytic nanosystems capable of depolluting fluids from
xenobiotic waste using low-energy indoor treatments could be a potential solution not only
for extraterrestrial human habitats but also for underground terrestrial infrastructures that
are not directly exposed to sunlight. Exploiting advanced oxidation processes, Mezzina
et al. [32] reported on the development of a filmable thermoplastic nanosystem based on
copolyacrylates as the polymeric matrix and titanium dioxide as the photocatalytic moiety.
To provide photodegradation efficiency also through indoor light sources, a porphyrin
macromonomer was used as the photosensitizer. The proposed photosensitized nanocom-
posite resulted efficiently in terms of photodegradation of xenobiotic pollutants in water
during batch experiments performed under visible light radiation.
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In conclusion, considering all the above issues to face in space environments and the
potential solutions investigated, the Special Issue titled “Nanomaterials for Potential Uses
in Extraterrestrial Environments” shed light on the important role that nanomaterials play
in the design of future space colonization challenges, inspiring the engineering of new
nanomaterials and their applications in interdisciplinary fields.
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