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Abstract: We propose a controllable topological add-drop filter based on magnetic–optical photonic
crystals. This add-drop filter is composed of two straight waveguides and a hexagonal photonic crys-
tal ring resonator. The waveguide and ring resonator are constructed by three different honeycomb
magnetic–optical photonic crystals. The expanded lattice is applied with an external magnetic field
so that it breaks time-reversal symmetry and the analogous quantum spin Hall effect simultaneously.
While the standard one and the compressed one are not magnetized and trivial, the straight waveg-
uide supports pseudospin-down (or pseudospin-up) one-way states when the expanded lattice is
applied with an external magnetic field of +H (or −H). The ring resonator possesses multiple resonant
modes which can be divided into travelling modes and standing modes. By using the travelling
modes, we have demonstrated the function of the add-drop filter and realized the output port control
by changing the direction of the magnetic field. Moreover, a large tunable power ratio from near 0
to 52.6 is achieved by adjusting the strength of the external magnetic field. The structure has strong
robustness against defects due to the topological protection property. These results have potential in
wavelength division multiplexing systems and integrated topological optical devices.

Keywords: magnetic–optical photonic crystals; photonic crystal ring resonator; add-drop filter;
pseudospin states

1. Introduction

Photonic crystals (PCs) provide excellent conditions to manipulate light and elec-
tromagnetic (EM) waves on the subwavelength scale [1,2]. In ordinary dielectric PCs,
photons are easy to be backscattered by defects and impurities. In 2008, by introducing an
external magnetic field (EMF) to the magneto-optical photonic crystal (MOPC) to break
time-reversal symmetry (TRS), Haldane and Raghu found that the Dirac point of the band
structure is broken down to open a topological bandgap which supports the unidirectional
topological edge state. For these unidirectional edge states, EM waves propagate unidirec-
tionally with strong robustness against backscattering and defects. Subsequently, inspired
by these works, researchers proposed various photonic analogies to the quantum Hall (QH)
effect, quantum spin Hall (QSH) effect, and quantum valley Hall (QVH) effect [3–7].

In 2015, WU et al. [8] proposed that the pseudospin-dependent helical edge state can
be reached by compressing and expanding the honeycomb lattice of PCs. Two honeycomb
lattices have different Chern numbers, which cause the pseudospin-up (or pseudospin-
down) state when they are put together. In addition, various topological devices such as
the pseudospin beam splitter [9], pseudospin polarization topological line defect [10], and
unidirectional waveguide based on dielectric materials [11] have been realized. Generally,
pseudospin waveguides are constructed by a topological PC and a trivial PC. They only
support edge states to propagate along the interface between the two PCs, meaning that its
waveguide available area is very narrow, and space utilization is limited. Recently, three
kinds of methods have been proposed to achieve large-area one-way transmissions in a
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three-layer heterogeneous structure by the photonic analogue to QH effect [12], QVH ef-
fect [13,14], and QSH effect [15,16], which provide a feasible idea to broaden the waveguide
area for effective transmission. Furthermore, according to the research of Yu et al. [16],
pseudospin-field-dependent waveguide transmission can be realized and regulated by
applying magnetic fields in a heterogeneous structure.

In recent years, photonic crystal ring resonators (PCRRs) have attracted great attention
due to their excellent characteristics such as low loss, high quality factor, as well as flexible
configurations. Because of their efficient resonant coupling nature, various PCRR-based
optical devices, such as ultra-high-Q optical filter [17] and topological ADF [18–20], have
been proposed. Especially noteworthy is an add-drop filter (ADF), which allows the
transfer of one or several frequency channels from the bus waveguide through a resonator
system to the drop waveguide without disturbing the other channels, playing an important
role in many application fields, such as wavelength division multiplexing systems. Earlier
ADFs were based on microcavity, and they usually support only one resonant mode. Later,
ADFs based on dielectric PCRR with different shapes were designed [21–25], which would
generate backscattering due to surface roughness and affect performance. Very recently,
Tang et al. proposed topological multichannel MOPC-based ADFs, which possess strong
robustness which results from the broken TRS. Inspired by these works, it is highly desired
to realize a topological ADF with output port control and an adjustable power ratio by
using pseudospin-dependent MOPC waveguide and PCRR together.

In this work, we propose a controllable topological ADF which is constructed by two
straight MOPC waveguides and a hexagonal PCRR. The MOPC waveguide supports the
pseudospin-dependent state, while the PCRR possesses multiple resonant modes which are
divided into travelling modes and standing modes. Based on the coupling effect between
the pseudospin waveguide state and the travelling mode, we have realized the function
of ADF. Additionally, the output port and power ratio control of the ADF have been
achieved by modifying the direction and strength of the EMF, respectively. This topological
device has strong robustness against obstacles. Our work may provide feasible ideas for
designing efficient topological optical devices and further understand wavelength division
multiplexing systems.

2. Materials and Methods
2.1. Basic Honeycomb PC and Band Structure Analyses

Figure 1a shows that the basic MOPC model considered here is a triangular lattice
of hexagonal clusters. Each hexagonal cluster consists of six yttrium iron garnet (YIG)
rods, and it has C6v symmetry. The grey region represents the primitive cell, and the
dashed black hexagon labels the artificial atom. The lattice constant of the basic MOPC is
a = 1.15 cm. The dielectric constant and radius of each YIG rod are εr = 15 and r = 0.09a. The
rods are arranged in air, whose dielectric constant is 1. The distance between the centers
of the YIG rod and the center of its lattice is R, as denoted in Figure 1a. We design three
different lattices, i.e., expanded lattice A (Figure 1(b1). We mark it with a blue color further
in the paper), compressed lattice B (Figure 1(b2). We mark it with a yellow color further in
the paper), and standard honeycomb lattice C (Figure 1(b3). We mark it with the blue color
further in the paper), with a/R = 2.88, 3.68, and 3, respectively, as shown by the insets of
Figure 1(b1–b3). Lattices B and C are non-magnetized, while lattice A is applied with an
EMF of +H = 2900 G along the +z (or −z) axis, which causes the permeability of the YIG
to become the following tensor [5,26]

µ̂ =

 µr −jµk 0
jµk µr 0
0 0 1

. (1)

where µr = 1 + ωm(ω0 + jαω)/[(ω0 + jαω)2 − ω2], µk = ωωm/[(ω0 + jαω)2 − ω2]. In the
above formula, ωm = 2πγM0 is the characteristic frequency, ω0 = 2πγH0 is the resonant
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frequency, γ = 2.8 MHz/Oe is the magnetic rotatory ratio, the saturation magnetization
intensity is M0 = 1780 G, and α = 0.0003j is the damping coefficient that can be ignored. We
use the commercial software COMSOL MULTIPHYSICS 5.6 to calculate the band structures
and all the simulations in the frequency domain. Details specific to the computational
methods are shown in Table A1 in Appendix A. It is noted that TM mode (Hx, Hy, and
Ez ̸= 0) can couple with the anisotropic permeability of the YIG due to the EMF along the z
axis, while TE mode (Ex, Ey, and Hz ̸= 0) does not. Therefore, only TM mode is considered
in this work. In addition, to avoid the appearance of TE mode and confine the EM wave
in xoy plane, the structure should have a thickness less than 1a and be covered between
two metal plates on the bottom and the top. Under these conditions, only TM mode is
supported, and we can use a 2D model to carry out the simulations for simplicity.
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in (b1,b2). 

The band structures for lattices A, B, and C are calculated by the finite element 
method and shown in Figure 1(b1–b3). For the standard lattice C (a/R = 3) without an 
external magnetic field, its band structure has a double Dirac cone at 𝛤, as shown in Fig-
ure 1(b3). When the lattice is compressed (lattice B with a/R = 3.68), the two Dirac cones 
are separated into two pairs of two-fold degenerate 𝑝 (blue) and 𝑑 (red) states and create 
a band gap of [11.99, 14.08] (GHz). However, lattice B does not have band inversion, mean-
ing that it is a trivial MOPC. The eigenmode functions at the Dirac cone can be classified 
into 𝑝௫ , 𝑝௬ , 𝑑௫௬ , 𝑑௫మି௬మ  based on spatial parities and pseudospin basis states, and the 

Figure 1. The basic structure of the honeycomb lattice and the band structure: (a) the parameter
definitions of the honeycomb lattice; (b1–b3) the band structure of expanded lattice A (blue), com-
pressed lattice B (yellow), and standard lattice C (red). The eigenfields in lattices A and B are showed
in (b1,b2).

The band structures for lattices A, B, and C are calculated by the finite element method
and shown in Figure 1(b1–b3). For the standard lattice C (a/R = 3) without an external
magnetic field, its band structure has a double Dirac cone at Γ, as shown in Figure 1(b3).
When the lattice is compressed (lattice B with a/R = 3.68), the two Dirac cones are separated
into two pairs of two-fold degenerate p (blue) and d (red) states and create a band gap
of [11.99, 14.08] (GHz). However, lattice B does not have band inversion, meaning that
it is a trivial MOPC. The eigenmode functions at the Dirac cone can be classified into
px, py, dxy, dx2−y2 based on spatial parities and pseudospin basis states, and the field
patterns of degenerate p and d states are shown on the right of Figure 1(b2). Differently,
for the expanded lattice A (a/R = 2.88) with +H = 2900 G, Figure 1(b1) displays that it
has band inversion, indicating that it is a nontrivial MOPC. Due to the broken TRS and
space inversion symmetry simultaneously, band inversion occurs to create four kinds of
eigenfields [5,11,27], i.e., p± = px ± ipy and d± = dxy ± idx2−y2 . The field patterns

of p± and d± states and the corresponding Poynting vectors
→
S = Re[

→
E ×

→
H∗]/2 are

shown on the right of Figure 1(b1). The clockwise and counterclockwise patterns of the
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Poynting vectors in lattice A represent the pseudospin-down and pseudospin-up states,
respectively [9,28].

We can use the spin Chern number to characterize the properties of the band struc-
ture [29,30], and this can be written as follows:

C± = ±[sgn(B) + sgn(M0 ± g)]/2 (2)

where B and M0 are model parameters defined by the coupling coefficients and g is the
strength of a uniform exchange field [31]. For the cases of +H and −H, the spin Chern
number of lattice A (a/R = 2.88) is C± = (0,−1) and C± = (1, 0), respectively, where
the signs of + and − in C± correspond to pseudospin-up and -down components [16],
incicating that lattice A is a topological MOPC. However, the spin Chern number of lattice
B (a/R = 3.68) with no EMF is C± = 0, meaning that it is a trivial MOPC. Additionally, the
presence of the Dirac cone of lattice C (a/R = 3) is not broken, meaning that it is also a trivial
MOPC. These results are consistent with the band inversion analyses conducted previously.

2.2. Projected Band Structure of ACB Sandwiched Waveguide

Now, we further construct a heterostructure waveguide by sandwiching lattice C
between A and B (i.e., the ACB waveguide), and its supercell is shown in Figure 2b. The
layer numbers of lattices A, C, and B are 6, 1, and 6, respectively. Figure 2a shows the
projected band structures along the kx direction when lattice A is applied with +H = 2900 G
or −H = −2900 G, respectively. It is found that there exists a bandgap from 13.25 to
13.62 GHz, and the red (or blue) solid line within the bandgap represents the waveguide
state when −H (or +H) is applied to lattice A. Such red and blue curves have negative
and positive slopes, respectively, meaning that they have opposite velocities. To analyze
their propagation characteristics, a typical frequency ωs = 13.599 GHz intersecting with
the red and blue curves at points 1 (+H) and 2 (−H) is adopted. From the eigenfields and
time-averaged Poynting vectors at points 1 and 2 [Figure 2c], one can find that the blue and
red curves correspond to pseudospin-down (clockwise pattern) and pseudospin-up (coun-
terclockwise pattern) states, respectively. Therefore, due to the combined action of broken
TRS and spatial inversion symmetry [16], the designed waveguide with +H/ − H supports
pseudospin-down leftwards/pseudospin-up rightwards one-way states, respectively.

Nanomaterials 2024, 14, 919 4 of 11 
 

 

field patterns of degenerate p and d states are shown on the right of Figure 1(b2). Differ-
ently, for the expanded lattice A (a/R = 2.88) with +𝐻 = 2900 G, Figure 1(b1) displays that 
it has band inversion, indicating that it is a nontrivial MOPC. Due to the broken TRS and 
space inversion symmetry simultaneously, band inversion occurs to create four kinds of 
eigenfields [5,11,27], i.e., 𝑝± =  𝑝௫ ± 𝑖𝑝௬ and 𝑑± =  𝑑௫௬ ± 𝑖𝑑௫మି௬మ. The field patterns of 𝑝± 
and 𝑑± states and the corresponding Poynting vectors 𝑆 = 𝑅௘ൣ𝐸ሬ⃗ × 𝐻ሬሬ⃗ ∗൧ 2⁄  are shown on 
the right of Figure 1(b1). The clockwise and counterclockwise patterns of the Poynting 
vectors in lattice A represent the pseudospin-down and pseudospin-up states, respec-
tively [9,28]. 

We can use the spin Chern number to characterize the properties of the band struc-
ture [29,30], and this can be written as follows: 𝐶± = ±ሾ𝑠𝑔𝑛(𝐵) + 𝑠𝑔𝑛(𝑀଴ ± 𝑔)ሿ/2 (2)

where B and M0 are model parameters defined by the coupling coefficients and g is the 
strength of a uniform exchange field [31]. For the cases of +𝐻 and – 𝐻, the spin Chern num-
ber of lattice A (a/R = 2.88) is 𝐶± = (0, −1) and 𝐶± =  (1, 0), respectively, where the signs of + 
and −  in 𝐶±  correspond to pseudospin-up and -down components [16], incicating that 
lattice A is a topological MOPC. However, the spin Chern number of lattice B (a/R = 3.68) with 
no EMF is 𝐶± = 0, meaning that it is a trivial MOPC. Additionally, the presence of the Dirac 
cone of lattice C (a/R = 3) is not broken, meaning that it is also a trivial MOPC. These results 
are consistent with the band inversion analyses conducted previously. 

2.2. Projected Band Structure of ACB Sandwiched Waveguide 
Now, we further construct a heterostructure waveguide by sandwiching lattice C be-

tween A and B (i.e., the ACB waveguide), and its supercell is shown in Figure 2b. The layer 
numbers of lattices A, C, and B are 6, 1, and 6, respectively. Figure 2a shows the projected band 
structures along the kx direction when lattice A is applied with +H = 2900 G or −H = −2900 G, 
respectively. It is found that there exists a bandgap from 13.25 to 13.62 GHz, and the red (or 
blue) solid line within the bandgap represents the waveguide state when −H (or +H) is applied 
to lattice A. Such red and blue curves have negative and positive slopes, respectively, meaning 
that they have opposite velocities. To analyze their propagation characteristics, a typical fre-
quency ωs = 13.599 GHz intersecting with the red and blue curves at points 1 (+H) and 2 (−H) 
is adopted. From the eigenfields and time-averaged Poynting vectors at points 1 and 2 [Figure 
2c], one can find that the blue and red curves correspond to pseudospin-down (clockwise pat-
tern) and pseudospin-up (counterclockwise pattern) states, respectively. Therefore, due to the 
combined action of broken TRS and spatial inversion symmetry [16], the designed waveguide 
with +𝐻/−𝐻  supports pseudospin-down leftwards/pseudospin-up rightwards one-way 
states, respectively. 

 
Figure 2. (a) Schematic diagram of the supercell structure formed by lattices A, B, and C; (b) pro-
jected band of the supercell. The red and blue arrows represent pseudospin-up and pseudospin-
Figure 2. (a) Schematic diagram of the supercell structure formed by lattices A, B, and C; (b) projected
band of the supercell. The red and blue arrows represent pseudospin-up and pseudospin-down
states, respectively; (c) the eigenfield distributions and time-averaged Poynting vectors at points 1
and 2.
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2.3. Hexagonal Topological PCRR

Next, we study the properties of the hexagonal PCRR depicted in Figure 3a. The PCRR
is composed of three parts: inside part (lattice A), middle part (lattice C), and outside part
(lattice B), all of which have the same parameters as discussed previously. Only inside part
A is applied with +H along the +z axis.

We have calculated the resonant modes of the PCRR by the finite element method.
The results in Figure 3b show that the PCRR supports multiple resonant modes within the
topological band gap. Due to the six 120◦ corners in the PCRR, the degeneracy of a pair of
cavity modes is lifted to form a pair of new modes called the traveling mode and standing
mode (Figure 3b). Figure 3c,d present the Ez field distributions of two typical modes
oscillating at 13.394 GHz (travelling mode) and 13.503 GHz (standing mode). In order to
understand the difference between the travelling mode and standing mode clearly, we
provide two dynamic GIF figures as Figure S1 in Supplementary Materials. The dynamic
GIF figures clearly demonstrate the evolution of the Ez field distribution when its phase
varies from 0 to 2π. One can find that the Ez field flows clockwise along the boundary
of the PCRR for the travelling mode at 13.394 GHz. Differently, for the standing mode
at 13.503 GHz, the EM wave cannot flow and is localized at the boundary of the PCRR.
It should be noted that in the topological bandgap, there are several groups of travelling
modes and standing modes with similar properties [32,33] which play a major role in the
coupling phenomenon between the topological waveguide and the PCRR [34,35].
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in the topological bandgap, respectively.

2.4. Single Waveguide Coupling with PCRR

Based on the above analyses, we further construct a two-port structure consisting of a
straight ACB sandwiched waveguide and a PCRR, as shown in Figure 4a. The waveguide
channel contains only one layer of lattice C. The distance between the PCRR and the
straight waveguide is 2a. The lower part PC (i.e., lattice A) is applied with −H to support
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the pseudospin-down state propagating leftwards in the straight waveguide. The input
and output ports are marked as P0 and P1, respectively. A pseudospin-down source (S−)
marked by a black star is placed on the right side of P0. Due to the coupling effect between
the waveguide and the PCRR, the resonant frequencies are slightly changed. For example,
the typical resonant frequencies at 13.394 GHz in a pure PCRR shift to 13.395 GHz now, and
their Ez field distributions are shown in Figure 4b,c. Obviously, for the case of 13.395 GHz,
the EM wave can be easily coupled into the PCRR and then return the waveguide to
propagate leftwards unidirectionally. However, for the standing mode at 13.503 GHz, since
it has weaker coupling efficiency than the travelling mode at 13.395 GHz, after the EM wave
enters the PCRR, it is well confined in the PCRR and hardly goes back to the waveguide
again. These results are consistent with our previous analysis. Figure 4d presents the
transmission spectra within the bandgap. The transmittances for 13.395 and 13.503 GHz
marked by two dots as travelling mode and standing mode, respectively, also verify the
previous analyses.
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3. Results
3.1. Controllable Four-Port ADF

Now, we proceed to study the working mechanism of a controllable topological ADF.
Figure 5a shows the schematic diagram of the ADF which is composed of one PCRR
and two straight waveguides. For convenience, we define the lower and upper straight
waveguides as the bus and dropping channels (denoted by C2 and C1), respectively. The
input port is P0, and the output ports are P1, P2, and P3. The regions of lattice A below C2
and inside the PCRR are applied with −H and +H, respectively. While for lattice A above
C1, we can apply +H or −H to control the EM wave to exit in different dropping ports
(P2 or P3). A pseudospin-down source (S−) denoted by a black star is placed in the bus
channel near P0.
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Figure 5. (a) Schematic diagram of the four-port ADF. (b) Ez field distributions of the non-resonant
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transmission spectra within the bandgap of 13.392–13.449 GHz when +H is applied to lattice A above
C1. (d1,d2) Ez field distributions and transmission spectra while +H is changed to −H.

The working mechanism of the controllable ADF is explained as follows. Figure 5b
shows the simulation result for a non-resonant frequency at 13.431 GHz. Due to the non-
resonant property, the EM wave propagates along C1 and does not couple with the PCRR,
leading to total transmission from P0 to P1. When +H is applied to lattice A above C1,
the Ez field distribution at 13.395 GHz and the transmission spectra of three output ports
within the bandgap are calculated, and they are shown in Figure 5(c1,c2). The incoming
EM wave from P0 is divided into two parts. One still transmits in C2 and exports from P1,
while the other is coupled with the PCRR and coupled into C1, so it ends up exporting from
P2. Similarly, Figure 5(d1,d2) show the results when the EMF applied to lattice A above
C1 is reversed from +H to −H. The EM wave is also divided into two parts. One part still
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exits from P1, while the other part is coupled to exit from P3 instead of P2, meaning that the
dropping energy can be switched to exit from different ports by controlling the direction of
the EMF applied to lattice A above C1. In other words, the topological waveguide-resonator
system can be considered to be a topological ADF because it can easily add or remove
signals to the output ports of waveguides.

In addition, we investigate the robustness of the ADF by introducing two perfect
electronic conductor (PEC) defects into the structure. One PEC is placed in the C2 channel,
while the other is placed inside the PCRR, as denoted in Figure 6a. We apply −H for
lattice A above C1. The Ez field distribution at 13.395 GHz and transmission spectra of
13.392–13.412 GHz are shown in Figure 6a,b. Obviously, the EM wave bypasses the PECs to
propagate forwards, only causing local phase change, but it has almost no influence on the
transmittances at P1, P2, and P3. From Figure 6b, one can find that the transmission spectra
are almost the same as that without defects in Figure 5(d2). These results prove that the
structure has strong robustness against PEC defects, which provides excellent tolerance for
the fabrication of ADF.
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Figure 6. (a,b) Ez field distribution at 13.395 GHz and transmission spectra when PEC defects are
introduced into the waveguide and PCRR (−H is applied to lattice A above C1).

3.2. Power Ratio Analyses of the ADF

In this section, we investigate the relationship between the power outputs and the
strength of the EMF when the ADF structure serves as a power splitter. When +H > 2900 G,
the transmittances at P1, P2, and P3 will sharply decrease so that the strength of the EMF
+H is limited from 1500 to 2800 G. Figure 7a shows the relationship curves between the
transmittance (P2 and P3) and +H for the travelling mode at 13.395 GHz. Figure 7b further
shows the power ratio of P2/P3 as +H increases from 1500 to 2800 G. The three black
arrows denote the special points at different magnetic fields. As shown in Figure 7a, the
blue curve for the power output from P2 has two transmittance peaks of 51.1% and 47.3%,
which correspond to the two valleys of the red curve for that from P3. The power ratios of
these two special points are 33.6 and 52.6, which are achieved for +H = 2280 and 2740 G,
respectively. Additionally, there exists another special power ratio of P2/P3 = 1:1 when
H = +1820 G, which means that the power of the EM wave is evenly split into P2 and P3 of
the dropping channel. The maximum power ratio of P2 / P3 = 52.6 appears at +H = 2740 G.
For example, Figure 7c,d present the Ez field distributions for P2 / P3 = 1:1 and 33.8 at
+H = 1820 and 2280 G, respectively. Therefore, we have found a power splitter with a large
available range of power ratio from near 0 to 52.6 by controlling the strength of the EMF.
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4. Conclusions

In conclusion, we have designed a controllable hexagonal ADF constructed by topolog-
ical MOPC waveguides and a PCRR. Due to the combined actions of broken time-reversal
symmetry (TRS) and an analogous quantum spin Hall (QSH) effect, the MOPC waveguide
supports the pseudospin-field-dependent state, while the PCRR possesses travelling and
standing modes. Based on these properties, a topological four-port ADF is designed. The
output port of the ADF can be altered by changing the direction of the EMF. Furthermore,
the power ratio of the ADF ranging from near 0 to 52.6 is achieved by manipulating the
strength of the EMF. The designed structure has strong robustness against obstacles. These
results provide feasible ideas for constructing high-performance topological optical devices
in wavelength division multiplexing systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14110919/s1, Figure S1: The Ez field distributions of the
travelling mode (13.394 GHz) and standing mode (13.504 GHz) when its phase varies from 0 to 2π.
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Appendix A

Table A1. The setting details for simulations by COMSOL MULTIPHYSICS.

Precision

Coordinate system selection Global coordinate system

Boundary selection Scattering boundary selection

Orthonormal block limit 10,000,000

Pivoting perturbation 1.0 × 10−8

Number of iterations
Maximum number of
eigenvalue iterations 300

Number of iterations in control entities 8

Details of spatial
mesh

Spatial mesh Free triangular mesh

Predefined Finer

Maximum element size 0.00766 m

Minimum element size 2.59 × 10−5 m

Curvature factor 0.25
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